
Calf far PartictpaUon 6^19for Participatton Call for Pantcipatton Call for Particfpation Call ̂ r Participation Calf \

ISi:<

m

o

.5-
•g
fi ;

t M
c

I
a r

o

c

M
f i
Q :

a

' m i

m .

5
c :

a

i p
i m

^ :

?iSiS;
U

S. i
I

P R O G R A M
C O M P R E H E N S I O N
W O R K S H O P

In cooperation with
the Conference on

Software Maintenance
O r l a n d o , F l o r i d a

a t t h e

Hyatt Orlando
(407396.5090)

o n

November 9 ,1992

Position papers are due
September 5,1992.

Papers are
limited to 3 pages.

Send to
Vaclav Rajlich

(address provided in
Organizers box at

right). Acceptance/
rejection notices

w i l l b e m a i l e d o n

Oc tober 1 ,1992 .

Workshop attendance is
limited. The workshop

will be organized
around a very small
set of presentations

and subsequent
d i s c u s s i o n s . A l l

accepted position
papers will be

d i s t r i b u t e d t o t h e

workshop participants.
The conclus ions of the

workshop will
be presented to the

C o n f e r e n c e o n

S o f t w a r e M a i n t e n a n c e

during a special session.

To participate in the Program Comprehension Workshop,
you are invited to submit a position paper.

The issues related to programmer productivity are becoming increasingly critical. A
significant part of programmer effort is devoted to software maintenance. Here, the
critical issue is software comprehension.
The Program Comprehension Workshop will gather researchers from both academia

and industry. They will explore the issues of software comprehension, its influence
on programmer productivity, state-of-the-art, and research directions.
Position papers related, but not limited, to the following topics are invited:

• Impact of software comprehension on programmer productivity: What are the
available data? • Theories of software comprehension • Experiments related to
software comprehension • Tools facilitating software comprehension • (Re)Struct-
uring software for better comprehension • Comprehension of programming
in-the-small versus in-the-large • Software comprehension and AI • Software
comprehension and general reading comprehension • State-of-the-art and research
agendas • Domain knowledge and software comprehension.

Organizers
Vaclav Rajlicb
Departmentof Computer Science
Wayne State University
I>em)i^ MI 48202
Telephone: S13.577.5423
FA X : 3 1 3 3 7 7 . 6 8 6 8
e-maiU ▼tr@cs.wayne.edu
express mail: 431 State Hall
5 1 4 3 C a s s A v e

b / o r m a n W i l d e :
Department of Computer Science
University of WestTlorida
Pensacola, FL 32514
e-mail: wilde@cs.uwf.cd

M a l c o l m M u n r o
C e n t r e f o r S o f t w a r e M a i n t e n a n c e
University of Durham
DurhamDHl SLE, England
e-ma i l :
Malco lm3Iunro@durhara.ac.uk

A n i e i l o C i m i t i l e

DIS—-Dipartmeeto di [nfonoatica.
e Sls tea i is t icn
UniTeraity of Naples
via Claudio 21,80125 Naples:, Italy
e-maih cimitile@inadsed.unina.it :

Peter Selfridge-
A T i c T B c U r o o m 2 B 4 2 5
600 Mo untain Ave
P O B o x 6 3 6
Murny HUT, NJ 07974
e-mail: pgs@reseBrdi.attxom'. v '.

Workshop fee
$35 for IEEE Computer Society members. $45 for nonmembers (paid
during registration). Workshop participants are encouraged to stay for
the duration of the entire Conference on Software Maintenance on
N o v e m b e r 1 0 — 1 2 .

Call for Participation Call lor Pariicipation Call
IEEE Computer Scdety . : < : ; W S > S S # . < S ' - 5 S » R S S : :

Call for Participation Call for ParticipattormCalffyti

C S M - 9 2

Program Comprehens ion

Wo r k s h o p N o t e s

(D is t r i bu t ion l im i ted to workshop a t tendees)

W o r k s h o p C o m m i t t e e :

Vaclav Raj l ich, Wayne State Univers i ty
A n i e l l o C i m i t i l e , U n i v e r s i t y o f N a p l e s

M a l c o l m M u n r o , U n i v e r s i t y o f D u r h a m
Peter Selfr idge, AT&T Bel l Labs

Norman Wi lde, Univers i ty o f West F lor ida

N o v e m b e r 9 , 1 9 9 2
H y a t t O r l a n d o

O r l a n d o , F l o r i d a

Sponsored by IEEE Computer Society

/(japos jajnduioQ 3331 psjosuodg

ep!J0|3 'opuBpo
opuepo nCitH

Z661 '6 JaquiaAOM

(saapuane doi|S5iJOAi oj paiiuiii uoijnqujsia)

s9jo^[doqs5iaoy^

uoisu9iiajdiuo3 uicaSoaj

Z6-PMS3

P a r t i c i p a n t s

A l t i z e r C h a r l e s
Naval Postgraduate School
Monterey, CA 93943

Bal lantyne Michael
EDS Research, Aust in Lab
1601 Rio Grande, Suite 500
Austin, TX 78701

B e r z i n s Va l d i s
Naval Postgraduate School
Monterey, CA 93943

Boldyreff Cornelia
School of Eng. & Comp. Sci.
Univ. of Durham, Sci. Lab.
South Road
D u i i i a m D H l 3 L E ,
Uni ted Kingdom

Cal l iss Frank W.
Dept. of Comp. Sci. & Eng.
College of Eng. & Applied Sci.
Arizona State University
Tempe, AZ 85287-5406

C a n f o r a G . .
Dis-Dep. of "Informatica e Sistemistica
University of Naples "Federico 11"
via Claudio 21, 80125
Naples, Italy

C i m i t i l e A .
Dis-Dep. of "Informatica e Sistemistica
University of Naples "Federico 11"
via Claudio 21, 80125
Naples, Italy

Clayton R.
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

C u r t i s B i l l
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Cuti l lo Fi l ippo
F o r m a t i o n s . r . l .
V i a A m e n d o l a 1 6 2 / 1
70126 Bari, Italy

Dampier David A.
Naval Postgraduate School
Monterey, CA 93943

D e C a r l i n i U .
Dis-Dep. of "informatica e Sistemistica
University of Naples "Federico 11"
via Claudio 21, 80125
Naples, Italy

D i e t r i c h S u z a n n e W.
Dept. of Comp. Sci. & Eng.
College of Eng. & Applied Sci.
Arizona State University
Tempe, AZ 85287-5406

Harrold Mary Jean
Dept. of Computer Science
Clemson Univers i ty
Clemson, SC 29634-1906

Kozaczynski Wojtek
Center for Strategic Technology Research
(CSTaR), Andersen Consulting
100 South Wacker Dr.
Chicago, IL 60606

Lanub i le F i l i ppo
Dipartimento di Informatica
Universityof Bari
Via Amendola 173, 70126 Bar i
I t a l y

L e B l a n c R i c h a r d J .
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

L u q i
Naval Postgraduate School
Monterey, CA 93943

Malloy Brian
Dept. of Computer Science
Clemson Univers i ty
Clemson, SC 29634-1906

M u n r o M a l c o l m
Centre for Software Maintenance
University of Durham
D u r h a m D H l 3 L E
Eng land

N i n g J i m
Center for Strategic Technology Research
(CSTaR), Andersen Consulting
100 South Wacker Dr.
Chicago, IL 60606

O l s h e f s k i D a v i s P .
P.O . Box 704
Yorktown Heights, NY 10598

Ornbum Stephen B.
College of Computing
Georgia Institute of Tehnology
Atlanta, OA 30332-0280

Quil ici Alex
University of Hawaii at Manoa
2540 Dole St, Holmes 483
Honolulu, HI 96822

Rajlich Vaclav
Department of Computer Science
Wayne State University
Detroit, MI 48202

Rugaber Spencer
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

Sametinger Johannes
Ins t i t u t f u r W inscha f t s i n f o rma t i k
CD Laboratory for Software Engineering
Johannes Kepler University of Linz
a - 4 0 4 0 L i n z , A u s t r i a

Selfr idge Peter
AT&T Bel l Labs
room 2B-425
6 0 0 M o u n t a i n Av e .
P.O. Box 636
Murray Hill, NJ 07974

Va n S i c k l e L a r r y
EDS Research, Austin Lab.
1601 Rio Grande, Suite 500
Aust in , TX 78701

V a n s A . M .
Dept. of Computer Science
Colorado State University
Fort Coll ins, CO 80524

Visaggio Giuseppe
Dipartimento di Informatica
University of Bari
Via Amendola 173, 70126 Bari
I t a l y

von Mayrhauser A.
Dept. of Computer Science
Colorado State University
Fort Collins, CO 80524

W i l d e N o r m a n
Dept. of Computer Science
University of West Florida
Pensacola, FL 32514

Z u s e H o r s t
Techn ische Un ive rs i ta t
Berlin (FR 5-3)
Frank l ins t rabe 28 /29
1 Berl in 10
G e r m a n y

Zvegintzov Nicholas
141 Saint Marks Place, Suite 5F
Staten Island, NY 10301

C O N T E N T S

R o l e o f T r a n s l a t i o n M e c h a n i s m s i n S o f t w a r e
C o m p r e h e n s i o n
C h a r l e s A l t i z e r a n d Va l d i s B e r z i n s

D e s i g n F r a m e w o r k s : a B a s i s f o r R e c o r d i n g P r o g r a m
U n d e r s t a n d i n g ^
C o r n e l i a B o l d y r e f f

S p e c i fi c a t i o n R e c o v e r y U s i n g T r a n s f o r m a t i o n s 6
F r a n k W . C a l l i s s

U n d e r s t a n d i n g O b j e c t - O r i e n t e d P r o g r a m s T h r o u g h
D e d u c t i o n 9
F r a n k W . C a l l i s s a n d S u z a n n e W . D i e t r i c h

V A P S : V i s u a l A i d s f o r P a s c a l S o f t w a r e C o m p r e h e n s i o n 1 3
G . C a n f o r a , A . C i m i t i l e , U . D e C a r l i n i

N e x t S t e p s f o r L i t e r a t e P r o g r a m m i n g 1 5
R . C l a y t o n

P r o g r a m C o m p r e h e n s i o n W o r k s h o p 1 8
B i l l C u r t i s

U s i n g P r o g r a m S l i c i n g f o r S o f t w a r e C o m p r e h e n s i o n 2 1
Fil ippo Cuti l lo, Fil ippo Lanubile, Giuseppe Visaggio
A u t o m a t e d S o f t w a r e M a i n t e n a n c e U s i n g C o m p r e h e n s i o n
a n d S p e c i fi c a t i o n 2 4
D a v i d A . D a m p i e r , L u q i

An In tegra ted Representa t ion fo r Program Comprehens ion 27
Mary Jean Harrold and Brian Malloy

Automat ing Program Comprehens ion by Concept Recogn i t ion 29
Wojtek Kozaczynski and Jim Ning

T o o l s F a c i l i t a t i n g S o f t w a r e C o m p r e h e n s i o n
D a v i d P . O l s h e f s k i

R e c o v e r i n g A p p l i c a t i o n K n o w l e d g e f r o m I m p e r a t i v e C o d e . .
Stephen B. Ornburn and Richard J. LeBlanc

Program Understanding Through Ad Hoc, Interactive Query
F a c i l i t i e s o n a R e v e r s e E n g i n e e r i n g R e p o s i t o r y
G a r y O s t r o l e n k

Program Comprehens ion as a Coopera t i ve Process
A l e x Q u i l i c i

Reve rse Eng inee r ing by S imu l taneous P rog ram Ana lys i s
a n d D o m a i n S y n t h e s i s
Spence r Rugaber

Improv ing P rog ram Comprehens ion o f Ob jec t -Or ien ted
S o f t w a r e S y s t e m s w i t h O b j e c t - O r i e n t e d D o c u m e n t a t i o n 4 8
J o h a n n e s S a m e t i n g e r

R e e n g i n e e r i n g f o r P o r t i n g T r a n s a c t i o n P r o c e s s i n g
A p p l i c a t i o n s 5 1
L a r r y Va n S i c k l e a n d M i c h a e l B a l l a n t y n e

P r o m C o d e C o m p r e h e n s i o n M o d e l t o T o o l C a p a b i l i t i e s 5 4
A . v o n M a y r h a u s e r a n d A . M . Va n s

R e s e a r c h i n P r o g r a m C o m p r e h e n s i o n : S o m e A n a l o g i e s
a n d D i r e c t i o n s 5 8
N o r m a n W i l d e

P r o g r a m C o m p r e h e n s i o n 6 1
H o r s t Z u s e

A n a l y z i n g a n d C o n t r o l l i n g I n s t a l l e d S o f t w a r e 6 5
N i c h o l a s Z v e g i n t z o v

R O L E O F T R A N S L AT I O N M E C H A N I S M S I N S O F T WA R E C O M P R E H E N S I O N

C h a r l e s A i t i z e r a n d Va l d i s B e r z i n s
Naval Postgraduate School
Monterey, California 93943

A b s t r a c t

Software production costs have steadily spiraled upward as technology leads to cheaper but ever more powerful
hardware. Higher demands and expectations for software systems have resulted in large software systems with corre
spondingly large price tags. In response to growing software costs software reengineering is emerging as a viable
methodology. It is often more cost-effective to keep existing software systems and maintain them as user require
ments or operating environments change over time. Significant to software reengineering, are the processes of for
ward and reverse engineering. Due to the lack of available documentation for many legacy software systems it is
necessary to analyze source code to extract design information so that modifications can be applied to the software in
an effort to update it A common point of reference for software reengineering is the original system design. The
design must be understood before maintenance can be performed on software, that is, the comprehension of software
systems is significant to reengineering. Some aspects of reverse engineering can be expressed as a translation process.
Translation processes already exist in the realm of forward engineering which can translate system specifications into
implementation source code. Sophisticated translator generator tools allow a maintenance programmer to develop
forward and reverse engineering translators which automate much of the reengineering process and allow legacy sys
tems to be effectively up̂ ed and maintained quickly at lower costs.

I . I n t r o d u c t i o n

Software reengineering refers to the act of modifying a software product to correct faults, improve performance,
or adapt it to a changed environment. Software reengineering is a growing concern today because the cost of software
system development has reached a point where it is often more cost-effective to keep and maintain existing software
than it is to build new software systems.

At the heart of software reengineering is software comprehension, the ability to capture the purpose and design
of existing software so that modifications can be intelligently implemented. Formal specification languages exist
today which allow a developer to specify system requirements at a level of abstraction higher than conventional pro
gramming languages. Formal specifications can be translated into source code and subsequently executed. Such sys
tems are common and demonstrate that formal specification languages are a feasible method of expressing the
semantics of a software system. Given the ability to allow semantic expression of software systems, specification lan
guages will play a key role in program comprehension.

Mapping formal specification languages to source code is accomplished using a translation mechanism. Transla
tor generator tools allow a programmer to construct a translation system quickly. Given a formal source language and
a target language a translator generator provides a method to describe the general semantics of the source language in
terms of an attribute grammar. The attribute grammar is used to produce a translation into an equivalent expression in
terms of the target language. Ordinarily, when a software system is being constructed using a specification language
the system design is already known and the translator maps the design specifications into some target language like
Ada, C, or pascal. When our concern is software comprehension, there is often source code but little or no accompa
nying design documentation. Translator generators can be used to reverse engineer the source code back to specifica
tion. Since the existing source code is written in a formal programming language, all that is necessary is to choose a
formal specification language capable of representing the semantics of the source code and then derive the attribute
equations necessary to map source code constructs into specification language constructs. Given these conditions, a
translator generator tool can produce the translation mechanism required to capture the semantics of any program
written in the source language.

mis researcn was supported in pSToy the National science houno
and in part by the Army Research Office under grant number ARC-145-91.

on unaer grant numoer

1

n. Choosing A Suitable Specification Mechanism
The Computer Aided Prototyping System (CAPS) currently being developed at the Naval Postgraduate School

is primarily a forward engineering tool. CAPS is used to rapidly prototype real-time systems[l]. Central to CAPS is a
specification language called Prototyping System Description Language (PSDL). A system designer details the spec
ifications of a software system in terms of dataflow, control flow, timing constraints, abstract data types, and execu
tion modules. PSDL has suflScient constructs to represent all of these specifications. Such specifications are input to
CAPS via various tools including a graphical editor and a syntax-directed editor. CAPS models the designer's system
as a program written in PSDL. A translator built-in to CAPS translates the PSDL specification into compilable Ada
modules which, when executed, will effectively implement the desired prototype system.

The ability to model the semantics of a system in terms of its dataflow, control flow, data structures, and execu
tion modules makes PSDL a suitable standard for the semantic expression of a software system. Given an existing
programming language, a translator can be constructed that will scan a program written in that language, extract
information about the semantic components of the program, and finally map the semantic information into PSDL
constructs. Program comprehension of an existing software system is enhanced after the system is translated to
PSDL. A maintenance programmer gains insight into the system's purpose and design by studying the PSDL specifi
cations. Modifications can then be applied to the PSDL version of the system and CAPS can subsequently reengineer
the new modified system into a working prototype.

m. Domain And Prohlems

Software reengineering actually consists of three processes, forward engineering, restructuring, and reverse
engineering.

Forward engineering is the process of translating firom system requirements specifications into a physical imple
mentation. The analysis and design phases of a software system life-cycle ideally result in a complete set of specifica
tions for a new system. The forward engineering process takes the implementation-independent specifications and
produces a physical implementation of the software system. It must be understood that the new system being created
will probably be expected to have an extended lifetime, that is, maintenance will be a significant part of the system
after it is delivered. Forward engineering plays a role in the software maintenance effort by embedding information in
the software system that assists with program comprehension in the future. In systems like CAPS which automate
forward engineering it is a relatively simple matter to automatically embed design information into the translated
source code implementation. Information about dataflow, control flow, module connections, etc., can be gleaned from
the PSDL code and embedded into the implementation code as comments.

It should be pointed out that the implementation source code produced by CAPS is not intended for human eyes.
CAPS maintains a design database for each prototype created. If the need for maintenance arises the maintenance
designer deals with the system at the design level, the Ada source code is never touched. Any design changes are
maintained in the design database and the updated system specifications are automatically converted into a PSDL
program which is subsequently translated into the new version of Ada source code.

Reverse engineering is the process of analyzing a subject system to identify its components and their interrela
tionships and then creating representations of the system in another form or at a higher level of abstraction. Transla
tion mechanisms play a key role in reverse engineering. They provide the means to syntactically analyze a program
and translate it into a higher level of abstraction where the program can be more easily comprehended.

Through the use of Knuth's attribute grammars it is possible to semantically redefine a program written in any
formal language [2]. An attribute grammar associates zero or more attributes with each syntactic construct of a formal
language. As a program is parsed according to its grammar rules, information about the program is collected, ana
lyzed, created, and stored in attributes. The semantics of the original program can be expressed in terms of attribute
equations on the set of attributes. A semantically equivalent translation can be produced from the set of attributes. For
example, it is possible to extract information about dataflow in an Ada procedure or function by parsing the module
specification. In doing so, the names of any input or output parameters can be scanned and traced throughout the
module. Variable references within a module can be analyzed to determine if they are local or global. The manipula
tion of global variables indicates the presence of implicit dataflow in the module. The point is that such items as pro
cedure parameters and variables are syntactically detectable through parsing but they can also be semantically
analyz&d through the use of an attribute grammar.

Once a translator has been constructed to recognize and analyze the syntactic constructs of a given programming
language the translator is valid for any program written in that language. Existing software systems written in a com-

2

mon language like FORTRAN or COBOL can be submitted to a single translator designed for FORTRAN or COBOL,
respectively, and a consistent translation will be produced regardless of the original application.

CAPS currently is not capable of reverse engineering. The existence of translator generator tools, however, makes
this a feasible capability in future versions. As stated earlier, a translator can be produced that will translate from some
original programming language into PSDL. By examining the PSDL version of the program insight can be gleaned
about the purpose and design of the program so that changes can be implemented. Along these lines, it has been demon
strated that it is possible to build such a translation system for Ada modules [3]. A translation system was developed
which translates an Ada module into a PSDL representation. The PSDL and Ada modules are then stored in a reusable
software base to be used later. This project does not translate an entire system in Ada but it demonstrates that the auto
mated reverse engineering technique does indeed have potential.

Software comprehension will greatly benefit from translation mechanisms which automate reverse engineering. In
particular, when it becomes possible to translate a system into a PSDL representation, the maintenance progranuner can
be relieved of the burden of having to learn a variety of programming languages. Maintenance can instead be performed
on the PSDL version at a higher level of abstraction and the forward engineering problem can be handled by CAPS.

I V. C o n c l u s i o i i

The task of reenginqering existing software systems will continue to grow in importance as long as software pro
duction costs continue to escalate. However, reengineering is difficult, at best, when dealing with legacy software that
was developed at a time when modem software engineering and maintenance techniques did not exist Technology is
quickly moving to the point where many aspects of software reengineering can be automated. The CAPS project atNPS
has demonstrated that through the use of sophisticated translator generation tools it is possible to deal with software
systems at a high level of abstraction, particularly the design level. PSDL allows a designer to specify the requirements
for a real-time software system. It is suggested that PSDL can be used to express the semantics of a software system by
formally defining the system in terms of its dataflow, control flow, data structures, and execution modules. For purposes
of reengineering, technology exists which suggests that translators can be produced which are capable of scanning
existing software systems and mapping them into a semantic expression in terms of PSDL. Once a program can be con
verted to a high level abstraction, it is relatively straightforward to move from the abstraction forward into a new imple
mentation of the original system, thus completing the whole software reengineering process.

L i s t O f R e f e r e n c e s

1. Luqi, "Software Evolution Through R^id Prototyping," IEEE Computer, Volume 22, Number 5, pp. 13-25, May
1989.
2. Knuth, DJE., "Semantics of Context Free Languages," Mathematical Systems Theory, November 1967, pp. 127-
145.
3. Sealander, J.M.,"Building Reusable Software Components for Automated Retrieval," M.S. Thesis, Naval
Postgraduate School, September 1992.

3

Design Frameworks: a Basis for Recording Program Understanding
Cornelia Boldyreff

School of Engineering and Computer Science,
University of Durham,
Science Laboratories,

South Road,
Durham DHl 3LE, U. K.

Telephone: +44 (91) 374 2638 (direct line).
Fax: +44 (91) 374 3741 (via the Computer Unit).

E-mail: Comelia.Boldyreff@durham.ac.uk

E X T E N D E D A B S T R A C T

A broader perspective of software engineering research now views the whole of the software life cycle
as inherently encompassing both software reuse and maintenance, see, for example, the research agenda
proposed by the Computer Science and Technology Board reported in the March 1990 issue of the
CACM (1990a). A long-term action identified as part of this agenda is the building of a unifying
model for software system development. This research action is motivated by a fear that many of the
large computer-based systems on which our .society depends are becoming unmaintainable; and a press
ing need to improve our understanding of how to create and mainta'n large and complex software sys
t e m s .

As systems grow over time in size and complexity; various problems arise. Old systems may become
insupportable because of reliance on out-dated platforms, software as well as hardware. Large systems
may be in part the result of accummulation of dead code as new components are added to an existing
system. Uncontrolled evolution of software results in unnecessary complexity.
How can software engineers build bridges from old software systems to the improved systems that are
needed in a changing world? Ideally new development must be able to exploit advances in technology
and design techniques supporting better engineering practice without throwing away the hard earned
experience and know-how embodied in what might be termed "existing software assets".
The development of software concept reuse provides one such bridge, particularly where existing
software concepts are taken as the starting point for populating a reuse support system
(Boldyreffl990a, Boldyreffl992a). Through the reuse of software concepts, the designer is able to build
new systems on established conceptual foundations while still taking advantage of improved technology
and techniques in the implementation of the new system. An understanding of the software concepts
employed in the consmiction of a system also provides a firm basis for its maintenance, particularly,
where in the form of perfective maintenance, an evolutionary approach is taken.
Futhermoie, large software systems have evolved to the point where many organisations both in indus
try and commerce could not operate effectively without them. It is important to ensure that the
knowledge and experience of those commissioning, developing and maintaining such systems takes a
recorded form open to scrutiny for managerial as well as technical evaluation and appraisal. Such
understanding of software must be recorded at appropriate levels to ensure its accessibility to all those
within an organisation who need to rely on it throughout its lifetime.
The method of design frameworks developed by the author (Boldyreff1992b, Boldyreffl990b) has been
developed to support both the recording of program understanding and its subsequent reuse in both
maintenance and development. Although the initial focus in development has been primarily on
describing software concepts at the higher levels of abstraction required to facilitate their reuse during

4

flie conceptual phase of design, this method is equaliy appUcable to accommodating other levels of
understanding more appropriate for maintenance of existing software.
Lack of such understanding is acknowledged as a potenUal inhibitor to productivity as the foUowmg
quote from Corbi's paper on Program Understanding illustrates;

In terms of skiUs that are needed as our so/Mare assets grow and age, lack of acadermctraintngin how to go about understanding programs wilt be a major inhibitor to programmer producttvity
in the 1990s. (Corbil989a)

Corbi also points out that programmers having gained understanding
key "gurus" and find their careers are inhibited because their experuse is so valued tot they ~soLd to work on anything else, thus they are trapped. Software maintenance on expliatlyr̂̂ understanding frees such guru programmers from being trapprf m this 7̂̂exnerience results in its availability for both further development and new developments where it canbemused Attempting to maintain software without pubiicaUy recorded conceptual understanding is
simply storing up problems for the future, and design frameworks provide a means of accomplishing
t h i s . . • . u "
The development and use of a design framework in the domain of Steei Production has 87"
research its practical application (Boldyreffl992c). The control systems fourid m asubject to continuous development and provided the basis of a case study in which the design frame
work method was successfully applied to support both maintenance and reuse.
R e f e r e n c e s

1990a.CSTB Computer Science and Technology Board. "Scaling Up: A Research Agen̂r Software
Engineering." Communications of the ACM, vol. 33. no. 3. pp. 281-293. March xcerpfrom the report by the Computer Science and Technology Board.

^̂ '̂ r̂anehâ Boldyreff "Supporting System Design From Reusable Design ̂pTTdml̂fZsecondZer̂tional Conference on INFORMATION SYSTEM D̂OPERSWORKBENCH Methodologies, Techniques, Tools and Procedures, Gdansk, 25- epte er
1990, University of Gdansk, 1990.

Boldyreff and Uwe Krohn. "The PracUUoner Reuse Support Sptem ff̂SS): AConsideration from the Standpoint of Tool InterconnecUon." in Proceedings the Pounh
IFACIIFIP Workshop on Experience with the Management of Software Projects, Austria, May
1819, 1992, 1992.

"""'cŜ B̂oldyreff. "A Design framework for Softŵ ConceptsProduction." in Proceedings of the Third International Conference on INFORMATION
DEVELOPERS WORKBENCH Methodologies, Techniques, Tools and Procedures, Gdansk,
September 1992, University of Gdansk, 1992. In press.

Boldyreffm̂^ P. Eizer. P. Hail. U. Kaaber. J. Keiimann. and J. Witt. "PRACTmONER:Pragmatic Support for the Reuse of Concepts in Existing Software." m Proceedings of Software
Engineering 1990, Brighton, UK, Cambridge University Press. 1990.

Boldyrcff̂»2̂f methods for integrating system components." in Sojiware Reuse and
Reverse Engineering in Practice, ed. P. A. V. Hail. pp. 81-97. Chapman & Hall, 1992.

CorbiW89a...progmm Understanding: Challenge for the 1900's." IBM Systems Journal, vol. 28.
no. 2. February 1989.

5

Specification Recovery using Transformations
F r a n k W , C a l U s s

Department of Computer Science and Engijieering
College of Engineering and Applied Sciences

Arizona State University
Tempe, AZ 85287-540C, U.S.A.

M o t i v a t i o n

Exi.sting reverse engineering techniques are not well suited to large programs. a.s they often require
that an entire program be analyzed before any ineaniiigful information is returned to a])rogrammer.
A form of incremental reverse engineering is presented, whereby a programmer can derive the
s])ecification for sections of the program's code. Tlie.se partial specifications can be stored in such
a way that they can be reused in later reverse engineering activities, thereby overcoming one of
the])roblems that exist with current reverse engineering techniques, namely that the result of a
]Hevious reverse engineering activity is lost or recorded in a form that does not facilitates reuse.

Another important aspect of the technique is that a programmer should not always have to
reverse engineer an entire program whenever a modification has been made to the code. The
proposed technique intends to help a programmer reverse engineer only that section of code affected
by a modification. This allows the reverse engineering to be performed much quicker. All of these
points will be outlined in more detail in the following sections.

Specificat ion Recovery

Most reverse engineering techniques consist of a combination of programmer expertise and informal
strategies. This is an unacceptable approach when we are deriving a formal specification of a
program, where a formal specification is a mathematical description of what the code is doing. The
proposed technique uses a combination of program transformations and program slicing to help a
programmer derive the specification of a program. The use of program transformations provide a
rigorous technique whereby a specification can be derived using a formal and well defined process.
The use of program slicing helps with the use of transformations as they limit the code that a
programmer has to deal with. The use of program sDcing also helps in limiting the amount of
rederivation of specifications that needs to be performed as a result of a program modification.
Each of these points will be explained below.

Program Slices

The concep of a program slice was introduced by Weiser [2]. Weiser defines a program slice to be a
sequence of statements taken from a section of code, where the order of the statements is the same
as in the original section of code, and where aU the statement affect the value of a variable in some
w a y .

With procedural programming languages, programs function by manipulating or modifying
data, values in specific ways. Therefore, in order to understand what a routine is doing, we need to
understand what is happening to the data values in the routine. A slice can provide a description
on how a portion of code achieves some function. Consider a routine R. The function of R can be
characterized as being the combination of the slices that R consists of. These are the slices with
respect to the local variables, formal parameters and global variables. In practice not all.these slices
need to be considered as not aU slices contribute to the perceived function. For example, a user
only recognizes the function of a routine by the output that it generates. The output of a routine

6

is tliroug, 11,0 ,>ara.„otors. Iho global variables tbal are .„oclilio<l. a„<l if tb<. rouli„o is a
l l , r s res fV ' ; '■ " ' b . . < „ , „b i „o< l r „ „ c t i o „ o fI I t a ^ i . ? , ^ , ! ' ' ! ' , T ' , ' r ' " " ' I v a r i a b l e sthat aie iiuolved wjlli tlie expressjoii returned as llie result of a function.

Deriving a Specification
Tbe j.rocess of deriving the speciflcalion of a jirogran, is done in two stages: firstlv the algorithms
enig emi> oyed are unravelled, and secondly the algorithms are then tran.sformed into s),ecinca(.ions.Piogran, sbcing can hel], in deriving the algebraic description by heljiing a programmer to

coiicentiate on only those stateinents tiiat contribute to some function
Associated with a program is a logical formula which encapsulates the initial conditions under

for ,mlI b a .state that satisfies a given final condilfon. Thispf ? " precondition wp(P, R), the weakest precondition that ensures thatpiogiam P terminates m a state R.

cocl.̂ ! of "Sing weakest preconditions for deriving the specification of a .section ofcode consider the following section of code.
procedure MYSTERY(x, y: in out INTEGER) is
begin

y : = y + x ; - - S I
x : = y - x ; — 3 2

y : = y - x ; — S 3
end MYSTERY;

The weakest precondition for the sequence S1;S2;S3 is,
wp(Sl;S2;S3. y = y^ A x = x^)

where y„ and are the final values of y and x respectively. This weakest precondition is equivalent
t o ,

wp(Sl, wp(S2, wp(S3, y = y^ A X = x^,)))

Twfiŝ^ assignments we only need to consider the weakest precondition for assignments.
wp(target:= e x̂pr, R) = R

Avhere R target, ineans that all instances of target, are replaced by expr in R. Applying this rule to
each of the weakest precondition for 31, S2 and S3 we get,

wp(S3,y = ŷ Ax = x̂) = (y = ŷ) A (x = x̂)
y

y ^ — Ylu a X = Xj^

wp(S2,y-x = y„Ax = xJ = (y - x = y„) A (x = x„)
X

= (y - y + X = y^^) A (y - X = x^)
= (x = y^^)A(y-x = a\^)

wp(Sl,x = y^Ay-x = xJ = (x = yj A (y - x = x ĵ
y

= (x = ya,) A (y - X - X = x^)
= (x = ya,) A (y = x^)

7

This shows that the procedure MYSTERY ̂ waps the value of is parameters, so a s])ecification for
this procedure could be of the form

procedure MYSTERY(x. y: in out INTEGER)
pre x=xO and y=yO
post x=yO and y=xO

This was just a simple exam])le of the use of weakest preconditions for reverse engineering. Other
t] aiisformations also exist that can be use in reverse engineering [1]. The selection and automation
of these transformation can be semi-automated, thereby helping to ensure that programmers do
not reach the wrong conclusion because of an error in the reverse engineering process.

Combining Specifications

An important part of the proposed research is the ability to combine si)ecifications. Consider a
routine P that is composed of the slices Si, $2,..., S„. If At is a meaning function that derives a
specification then,

A4IPI = Af[Si]iiJA(IS2l W ... y A1[S,J
That is, the specification of P is the compound specification of the specification for the slices
Si, S2v •Sn.

An important contribution of this ability to combine slices. The amount of reverse engineering
needed after a modification to a section of code already reversed engineered is minimized. When
a program is modified it is only be necessary to derive the specifications for the affected slices.
The specification for the routine can be obtained by combining the specifications for the unaffected
slices with the specifications for the new slices.

Storing Slices and Specifications

In order to be able to reuse the results of past reverse engineering work, it is important that the
slices and the associated specifications be stored in a database that records the links between a slice
and its specification. A hypertext database will be needed to store the slices and associated plans,
as it is not possible to dictate a strict description of the data that relational databases require. The
reverse engineering tool will interact with this database by storing slices and specifications as well
as retrieving slices and plans. In order to keep the database current, a program slicer will generate
all the slices for a section of code. If that section of code ha^ been previously analyzed, then a
comparison will be made between the current set of slices and the old set. Any slices that existed
in the old section of code but not the new one will be removed the database.

R e f e r e n c e s

[1] M. Ward, F.W. Calliss and M. Munro, "The Maintainer's Assistant," in Proceedings of the Con
ference on Software Maintenance - 1989, IEEE Computer Society Press, pp. 307-315, October
1989.

[2] M. Weiser, "Programmers use Slices when Debugging," Communications of the ACM, vol. 25,
no. 7, pp. 446-452, July 1982.

8

Understanding Object-Oriented
Programs Through Deduction
Frank W. Calliss and Suzanne W. Dietrich

Department of Computer Science and Engineering
College of Engineering and Applied Sciences

Arizona State University

Tempe, AZ 85287-5406, U.S.A.

I n t r o d u c t i o n

Our system for program comprehension targets object-oriented languages by focusing on understanding
the dependencies between the program's components. Specifically, our system uses inter-module code
analysis [1], which is a process by which a programmer can analyse a program consisting of interconnected
m o d u l e s .

Several approaches for program comprehension exist, including plan-based systems, e.g., PROUST [6]
and the Programmer's Apprentice [7] and relational database systems, e.g., CIA [2]. Our system is rule-
based, investigating the use of deductive databases as an enabling technology for imderstanding large
object-oriented programs. The goal of this work is to take advantage of the flexibility and extensibility
that the rule-based (deductive) databases have to offer.

Deduc t i ve Da tabases

A deductive database is an extension of a relational database that utilizes a declarative, logic-based
language for database operations. This declarative language offers the flexibility to define a relation
explicitly with facts, implicitly with rules or a combination thereof. This flexibility offers a referential
transparency to the maintenance programmer such that references to any relation are the same. This
abstraction also provides a level of data independence, which gives the knowledge-base system the ability
to provide optimization techniques for evaluation. For example, a common global optimization technique,
known as multiple query optimization, is to materialize a relation defined by rules for subsequent use in
a user session rather than having to re-derive the relation on each reference.

The application of a deductive database is appropriate for the complex domain of inter-module code
analysis. Since the components of a program are highly structured through the concepts of classes (super
classes and subclasses), the use of a deductive database allows the modelling of the superclass/subclass
relationship by its rule capability. Rules allow for the derivation of information and provide a natural
mechanism for inheritance in class hierarchies. These superclass/subclass relationships lead to the spec
ification of queries that are inherently recursive. Relational database query languages, such as SQL, do
not have the capability to express recursive queries. Relational databases use a query language embedded
in a host langxiage to answer such queries. A deductive database allows for the specification of recursive
queries using a single, declarative language. Since a deductive database extends relational technology, a
deductive database retains the conceptual simplicity of relational databases, yet offers additional flexibil
ity by providing a single, computationally complete language with a unified rule capability that allows
for the declarative specification of recursive views and complex ad-hoc queries.

Understanding Through Deduction

Our system uses deductive database technology to store, derive and reason about the program. The
conceptual design of the code analysis knowledge-base [4] uses both facts and rules. A language-specific
preprocessor processes a successfully compiled program to create the factual database instance, while
uniquely numbering the regions in the program with a non-negative integer. The declarative rule capability

9

is used to derive and reason about the information in .the database. We currently identify three uses of
rules in our system: schema rules, code query rules, and problem domain rules.

Schema rules are rules that form an integral component of the database design. Our conceptual
design emphasizes class hierarchies of program components. Rules provide a namral mechanism for the
derivation of information using the class hierarchies.

As an example, consider languages that allow for local and global modules (classes). A global module
is a module that is declared in the outermost region of the program, whereas a local module is a module
that is declared within another module. Schema rules for the global and local modules are:

global-module (Pgm, Enti ty, 0)
m o d u l e (P g m , E n t i t y, 0 , O w n R e g) .

l o c a l - m o d u l e (P g m , E n t i t y , D e c R e g)
module(Pgm, Entity, DecReg, OwnReg), DecReg > 0.

The rule for global-module indicates that a global module is any module that is declared in region
0, the number given to the outermost region in a program. The rule for local-module indicates that
a local module is any module declared in a region whose number is greater than 0.

Code query rules derive information about the source code. These rules can be arbitrarily complex,
including the power of recursion. Typical recursive queries in inter-module code analysis include finding
the origin of a program component (e.g. in a program that contains nested regions and inheritance [3])
and finding the closure of variable aliasing.

As an example, consider aliasing where a variable is known by more than one name. The following
rules define the alias relation as the symmetric and transitive closure of the redefines factual
relation, which is assumed to be populated by the preprocessor based upon the aliasing capabilities of
the language.

a l i a s (V A R , A L I A S) r e d e fi n e s (A L I A S , V A R) .
a l i a s (V A R , A L I A S) a l i a s (A L I A S , V A R) .
a l i as (VAR, AL IAS) a l i as (VAR, AL IASX) , a l i as (AL IAS_X, AL IAS) .

The first rule for alias indicates that a redefinition of a variable is an alias. The second rule for
alias defines the symmetry of the arguments since there is no ordering of the arguments of an alias.
The third rule for alias dejfines the transitive closure of the redefines relation: if ALIASJC is an
alias of VAR and ALIAS is an alias of ALIAS-X, then by transitivity, ALIAS is an alias of VAR.

The following query finds all aliases for variables that have been redefined :

a l i a s (V A R , A L I A S) .

If we want to disallow the case where a variable is its own alias, we can add another rule to compute
t h e a n s w e r :

answer(VAR, ALIAS) alias(ALIAS, VAR), VAR \== ALIAS.
which checks to see that VAR and ALIAS are not identical before returning the answer.

The inherent rule capability of deductive databases also allows a programmer to formulate queries at
the problem level, and to have the answer represented at the program level. This is a form of problem
domain rule. This is done by having semantic information recorded as facts and rules, which can then
be used by the deductive database to answer queries. This capability to draw on semantic information to
assist in deducing information is an improvement over plan based system.

Consider for example a program that records zip codes. A what_is relation records a known
mapping between a real world entity and program entity. With our example, the real world entity is the
zip code, and the program entities are the variable(s) that represent a zip code. Let us assume that the
variable Z represents a zip code. This is represented by the following fact.

1 0

w h a t - i s (' z i p - c o d e ' , ' Z ') .

With this fact recorded, then the programmer need only ask

w h a t _ i s (' z i p - c o d e ' , P E _ Z I P) .

and PE_ZIP would take on the value of all the variables that are explicitly linked to the entity zip-code.
The what-is relation is bi-directional, so a prognunmer can also ask,

w h a t . i s (R W _ E n t , ' Z ') .

and they will discover that Z represents the zip code.
These facts do not lake advantage of any known dependencies between program entities. For example,

if another variable is an alias for Z then that variable is also a zip code, but why should this information
have to be explicitly recorded? This weakness can be overcome by adding a rule called what.is that
derives the mapping between real world entities and program entities:

what-is (RW_Entity, PJEntity):- what J.S (RW_Entity, TMP_Entity) ,
a l i a s (T M P - E n t i t y , P _ E n t i t y) .

This last example outlines several important features that deductive databases offer. The ability to
build rules from other rules shows the extendability of the database. The referential transparency between
facts and rules means that programmers do not have to worry about whether the information is explicitly
stored or derived. The same query will work regardless.

Summary

In summary, deductive databases allow for the declarative specification and efficient evaluation of (recur
sive) rules expressed in logic. By extending the conceptual simplicity of the relational data model with
a rule capability, deductive databases offer the flexibility to both retrieve and reason about knowledge in
the database, which is in the form of both facts and rules.

The reasoning capability of the rule-based system allows for the extension of the system in several
important directions. One extension is the inclusion of a change tracking [5] expert system, which would
be fully integrated with the program comprehension component. Another extension would be to widen
the scope of understanding to a collection of programs that share persistent data.

R e f e r e n c e s

[1] Calliss, F.W., Inter-Module Code Analysis Techniques for Softyi'are Maintenance. PhD thesis. Univer
sity of Durham, Computer Science, 1989.

[2] Chen, Y.F., Nishimoto, M., and Ramamoonhy, C.V., "The C Information Abstraction System," IEEE
Transactions on Software Engineering, vol. 16, no. 3, pp. 325-334, March 1990.

[3] Dietrich, S.W. and Calliss, F.W., "The Application of Deductive Databases to Inter-Module Code
Analysis," in Proceedings of the Conference on Software Maintenance —1991, (Sorrento, Italy), p-
p. 120-129, IEEE Computer Society Press, October 1991.

[4] Dietrich, S.W. and Calliss, F.W., "A Conceptual Design for a Code Analysis Knowledge Base,"
Journal of Software Maintenance—Research and Practice, vol. 4, no. 1, pp. 19-36, March 1992.

[5] Garland, J.K. and Calliss, F.W., "Improved Change Tracking for Software Maintenance," in Confer
ence on Software Maintenance —1991, (Sorrento, Italy), pp. 32-41, IEEE Computer Society Press,
November 1991 .

I I

[6] Johnson, W.L. and Soloway, E., "PROUST: Knowledge-Based Program Understanding," in Proceed
ings of the 7^̂ International Conference on Software Engineering, (Washington, D.C.), PP- 369-380,
TF.F.F. Computer Society Press, November 1985. Also in 'Readings in Artificial Intelligence and
Software Engineering', eds. Rich, C. and Waters, R.C.

[7] Rich, C., "A Formal Representation for Plans in the Programmer's Apprentice," in Proceedings of the
Seventh InternationalJoint Conference on Artificial Intelligence, (Vancouver), pp. 1044-1053, DCAl,
August 1981. Also in 'Readings in Artificial Intelligence and Software Engineering', eds. Rich, C.
and Waters, R.C.

1 2

VAPS: Visual Aids for Pascal Software Comprehension

(Position Paper)

G. Canfora, A. Cimitile and U. De Carlini
DIS — Dep. of "Informatica e Sistemistica"

University of Naples "Federico II"
via Claudio 21, 80125, Naples Italy

This position statement, is intended to present Visual Aids for Pascal Software comprehension (VAPS) a
prototype environment to support the program understanding and design recovery activities in the maintenance
and reuse re-engineering processes.

Understanding programs is one of the most complex, time consuming and expensive activities in the processes
of the engineering of existing software systems.

The activity of understanding a software system benefits from the availability of documents that describe the
software system at higher levels of abstraction than code. Unfortunately experience shows that these documents,
that should typically be produced in the system specification and design phases, are rarely available. Even when
these documents are available, their degree of consistency with code is generally very low because of previous
maintenance operations that are not reflecte<l in the system's documentation. In any case the degree of consistency
between documentation and code is very di?^ cult to verify.

The consequence is that quite often the source code is the only item on which the program understanding
activities can be based. But source code is too detailed for human readers and understanding the overall archi
tecture of a large software system by manual code inspection is an almost impossible task. More abstract and
readable representations must be produced from code by reverse engineering.

The number of reverse engineering tools for the production of design level documents proposed by either
research or industrial organisations is constantly growing. Nevertheless, many open problems prevent these tools
from being widely used in the software production environments. These problems are mainly related to the nature
of the documents produced by reverse engineering, which poses more than just a few problems in designing the
user interface for the reverse engineering tools.

Despite the fact that the documents produced by reverse engineering tools are the ones defined by well-known
software development methodologies introduced in the 1970s, these documents tend to be much more specific
and rich in details than the documents produced in the forward engineering activities. Such a richness provides
the user with information that is relevant to understand the program, although it is not useful in the software
development and therefore is not shown in the corresponding documents.

On the other hand if such information is directly given to the user, he may get lost in the large amount of
details available. In this case the richness of the information available slows down program understanding by
compelling the user to look for the piece of information he needs within a large amount of unnecessary details.

For a reverse engineering tool to be effective in program understanding the interaction with the user must be
as natural and simple as possible and the information recovered must be presented in a highly readable format.

The front end interface should allow the user to select the piece of information he needs for developing his
activity and should provide him with more details as his confidence with the system grows. This may be obtained,
for example, by collecting the documents produced in an hyper-textual fashion and presenting them to the user
i n a g r a p h i c a l f o r m . j j -

Hyper-texts are a good base to develop a tool aimed to support the design recovery and program understanding
activities. A hyper-text system associates windows with objects in the data base of the documents produced by
reverse engineering, thus allowing the user to navigate trough the various levels of documentation of a software
system — from the high level tlesign to the code. In such a way the needed information can be easily retrieved

1 3

and each document can be related to other documents or to pieces of code. Furthermore the use of graphs to
represent the information obtained by reverse engineering can improve the readability of the documents produced,
since graphs are much more intuitive and effective than textual representations.

The readability of a graph greatly depends on the way in which it is displayed, i.e. on the layout adopted.
A graph can be represented by several different layouts, but only few of these are the optimum to express
the information content of the graph in an incisive and intuitive way. As the graphs to be displayed grow in
size the manual production of the optimum layout become more and more difficult and, therefore, automatic
layout algorithms must be used. Automatic layout algorithms reduce the cost to produce and manage graphs by
generating the optimum layout on the basis of the type of the graph to be displayed (i.e. trees, planar graphs,
directed graphs) and of some additional user's requirements (i.e. minimising the edge crossings and/or the area
occupied or preserving the possible symmetries of the graph).

The above considerations acted as a requirement and a guideline in the design of VAPS.
The VAPS environment is being developed in an on-going project jointly by the DIS (Dep. of 'Informatica

e Sistemistica") of the University of Naples and the DIS of the University of Rome. VAPS consists of a reverse
engineering subsystem and a visual environment. The reverse engineering subsystem produces information and
documents by static analysis of Pascal code, while the visual environment interacts with the user. Both graphical
and textual documents are used to provide the user with the information abstracted by reverse engineering. All
the documents produced are linked together in an hyper-text fashion and a multi-window environment is used to
show them. These documents describe a software system according to three different levels of abstractions: high
level design, low level design and code.

The first level describes the relationships existing among the procedures and/or functions of a Pascal software
system, while the second one describes the relationships existing among the components of the control flow of a
procedure or a function.

In the current implementation the documents produced for the first level are the declaration tree (a tree showing
the declaration nesting of procedures and/or functions) and the structure chart. The documents produced for the
second level are the nesting tree (showing the nesting relationships among the 1-in/l-out control structures), the
exemplar-path tree (describing the equivalence clas.ses defined in the set of the potential execution of a procedure
and/or function) and the control flow graph. All these documents are presented to the user in a graphical form.

VAPS is provided with a library of automatic layout algorithms: all the graphs are automatically displayed
by one of the algorithms in the library. The most suitable layout algorithm for a given graph is automatically
selected on the basis of the characteristics of the graph. Editing operations are also provided in order to allow
the user to tailor the layout.

Passing from a level of abstraction to the one above and displaying one or more documents requires simple
mouse pointing and clicking operations. For example a window showing the nesting tree of a procedure can be
opened by clicking the related node of the structure chart; in a similar way the code of a control structure can be
displayed by clicking the related node in the nesting tree. The declarative section of a procedure or function and
comments, if any, describing its general meaning can also be displayed by icon selection and clicking operations.

The current version of VAPS runs in the MS-DOS/Microsoft-Windows environment and analyses both standard
Pascal and TurboPciscal programs. A new version is being designed for the Unix/X environment.

1 4

Next Steps for Literate Programming
R. Clayton

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
clayton®CO.gatech.edu

I n t r o d u c t i o n

Code comments have long been recognized as a treacherous form of program documentation,
either because they don't exist or they bear at best a passing resemblance to the code they're
supposed to describe. Literate programming is Donald Knuth's attempt to restore the value of
code comments as program documentation by tightly intertwining the code and comments, and
by making comment writing the leading component of program development [Knu84].

The layout of a system supporting literate programming system is shown in figure 1; the term
"WEB" refers to a general literate programming system. The literate programmer writes a WEB
document consisting of both the program code and the documentation for the program. The
program code syntax is more or less that of the programming language being used; WEB defines
some syntax extensions of its own and allows the programmer to extend the syntax with macros.
The documentation text is written in the style required by the text, formatter used in WEB; in
almost all cases this is T]eX. The literate programmer writes simultaneously in two worlds: that
of the code and that of the documentation. The two worlds can be mixed to allow both snippets
of formatted code in the documentation and well-formatted comments in the code.

Figure 1: The WEB system

The two major programs in a WEB system are teoigle and weave, tangle takes a WEB document
and strips out all the documentation, leaving the program text, which is rearranged in a form
correct for the programming language's syntax. The result is a file containing program code,
weave takes a WEB document and produces the documentation source in a form suitable for the
text processor. Figure 2 shows a fragment of a WEB document (from weave itself) after it has been
run through weave and formatted with TfeX.

Since literate programming is an unusual method of system development, it would be com
forting to have some indication that it has any value at all. Developing rigorous indications of
value is a research topic, but two literate programs have been published in book form ([Knu86a]
and [Knu86b]), so at least one person has used literate programming to develop systems of signif
icant size. Other reports ([RM91], [RS89]) indicate that people other than Knuth can use literate
programming to develop systems.

1 5

1. To insert, token-list p into the output, the pusliJevel subroutine is called; it saves the old level
of output and gets a new one going. The value of cur.modc is not changed.
procedure pushJevclip : 1cxi-poinier)\ {suspends the current level)

beg in
if siack-pir = stacksize then overflow{'sta.ck')
e l s e

begin if siack^ptr > 0 then s1ack[siack_pi.r] ^ cursiaie', {save cur^end .. .cur-mode }
incr(siack-pir)\ slai
if stack.ptr > maxsiack-ptr then maxsiack-pir f— stack-pir; iais
curJok — iok.siarl\p]\ cur.end iok-siari\p1];
end ;
end ;

Figure 2: A literate programming fragment

N e x t S t e p s
Soon after Knuth published [Knu84], the ongoing process of revising WEB began [Lec85]. I consider
most revisions to be in one of two categories: general system enhancements or change of medium.

General system enhancements include work to extend the programming languages covered by
a WEB system (e.g., C-WEB) or creating a meta-level WEB (SPIDER) as well as all of the usual bell
and whistle development (e.g., the ability to write several program code files or controlling the
format of program text in the documentation); see [Sew89] for details.

Changing the medium involves moving WEB from paper to a computer-based medium, which
is almost always some form of hypermedia. The move to hypermedia involves both the process of
creating a WEB document and the process of reading it; see [SP92] for an example.

What follows are my suggestions for further enhancements to WEB. They are a result by my
exî eriences with literate programming and are ones that I find particularly interesting or impor
t a n t :

Multi-liiigual programming The ability to describe a system written in several languages.
Even if a system is written in just one language, it usually ends up being multi-lingual due
to things like make files or other forms of job control languages. In any case, WEB should be
able to deal cleanly and consistently with whatever set of languages are used to implement
a system.

Generic literate programming A current trend in text processing is to cleanly and completely
separate a documents logical structure from its physical representation in print. The prime
exemplar of this trend is the Standard Generic Markup Language (SGML, [G0I86]). Al
though literate programming is not quite the same as regular document writing, the difficul
ties in defining an SGML-derived markup language for literate programming are probably
far smaller then the benefits of using the language in literate programs. In addition to
text-formatter indei)endence, SGML would impose (though its document type description)
a database-like organization on literate programs, raising the possibility of all sorts of inter
esting program retrieval operations.

History A program's history comes from two sources: planed changes due to versions and un
planned changes due to error repair. The value of being able to track a program's develop
ment though its versions is well known. Knuth has argued that, keeping track of a program's

1 6

history through its error maintenance is also valuable [Knu89]. WEB should be able to cap
ture all forms of a program's variant representation and present in which ever way the reader
fi n d s c o n v e n i e n t .

Tailored dociimeiits A WEB document currently generates one type of system documentation.
As WEB documents cover more of a program's design and development history, they will
interest a wider range of readers, who will begin to express a preference for one type of
information over another. WEB should be able to both extract and present information
according to reader specifications.

Program typography Desi)ite other possible audiences, programs are always designed to be
read by compilers, and as such are full of syntactical and lexical decorations to help the
compiler in its reading. At best, however, decorations like line ending semi-colons and
begin/end bracketing are of marginal help to the human reader and are most likely just
noise. WEB provides the opportunity to redesign program typography for humans. Note the
motivation here is "perfection is the state in which there's nothing left to remove" and not
its opposite ("... when there is nothing left to add").

The combination of multi-lingual and historical literate programming combine to provide a
important feature in program comprehension: the ability to capture a program's design history
and intertwine the history with the program's development. This feature is particularly useful
when formal methods are a part of a program's development.

R e f e r e n c e s

[G0I86] C. F. Goldfarb. The Standard Generalized Markup Language (ISO 8879). International
Organization for Standardization, Geneva, 1986.

[Knu84] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-lll, May
1 9 8 4 .

[Knu86a] Donald E. Knuth. Tp)X: The Program, volume B of Computers & Typesetting. Addison-
Wesley, Reading, Mass., 1986.

[Knu86b] Donald E. Knuth. METAFONT: The Program, volume D of Computers & Typesetting.
Addison-Wesley, Reading, Mass., 1986.

[Knu89] Donald E. Knuth. The errors of TgX. Software—Practice and Experience, 19(7):607-
685, July 1989.

[Lec85] O. Lecarme. Literate programming. ACM Computing Reviews, 26(1):75, January 1985.
[RM91] Norman Ram.sey and C. Marceau. Literate programming on a team project. Software—

Practice and Experience, 24(6):52-61, June 1991.

[RS89] T. Reen.skaug and A. L. Skaar. An environment for literate Smalltalk programming. In
Norman Meyrowitz, editor. Proceedings of the Conference on Object-Oriented Program
ming: Systems, Languages, and Applications, pages 337-45, New Orleans, Louisiana,
October 1989. SIGPLAN, ACM Press.

[Sew89] Wayne Sewell. Weaving a Program. Van Nostrand Reinhold, New York, 1989.
[SP92] J. Sametinger and G. Pomberger. A hypertext system for literate C++ programming.

Journal of Object-Oriented Programming, 4(8):24-29, Jan 1992.

1 7

P o s i t i o n S t a t e m e n t —
Program Comprehension Workshop

B i l l C u r t i s
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7619
cur t is@sei .cmu.edu

I would like to participate In the Program Comprehension Workshop. As a
position paper I offer the text of a cognitive model of program
comprehension I published in the Journal of Systems and Software in the
February 1989 issue. This model was developed in conjunction with an
experiment on how documentation formats affected software
comprehension. This model led to some explicit hypotheses about the
effects o f documentat ion formats , some of which were cons is tent w i th
the data my coauthors and I collected.

3 . E X P E R I M E N T 1 — C O M P R E H E N S I O N

3.1 A Model of Program Comprehension
The comprehension of a program or its design is a
central component of many larger software tasks such as
coding, debugging, and modification. Based on observa
tions from our previous research [50], and reports such
as that by Basili and Mills [5], we propose a simple
model of program comprehension from which to derive
our dependent variables and operational hypotheses for
this experiment. The model will be limited to the
{performance of tasks involving a single module rather
than to tasks involving several modules. The structure of

1 8

61

13A31-J3q3jq B SuiirupsuoD siuauiSas 13A31-is3moi aqj joj
payusA U33q 3abi| sasaqiodXq 3qi Jayv 'SisaqiaXs

'p3yU3A
aq jsniu qoiqM uiBjSojd aqj jo uoiucxi jeqi jo 3do3S oqj

•>oq j3uniiBJ§ojd aqj diaq jBqi swo pnsiA aqj aptAOjd
ABUi)U3U133UBUB [B3iq3JBJ3iq JO 3un{ouBjq y urejSojd
puy aq) jo di3o| jBuucj jaqjp ui painossjdaj aq pinoM
Xsqj SB S)U3U131B1S 01 33UBiqUI3S3J JOSOJO Slf JO SSOBO
-3q '3spj3X3 siqj Suyonpuoo joj /OoioquiXs 3Ari33jj3
isoui 3qj /Ciqsqojd si 39Bn3tiB[pautBJjsuoD y uofiBinuiis
JO uuoj 3UIOS JO oiSoi peuLioj J3qji3 3uisn orejSojdqns
3qi q3nojq) 3up(J0M sdjinboj uoiiB3yu3A sisaipodXH

"[59 *5ll ssaoojd uoisuaqsjduioo
s,J3UJuiBj3ojd 3qi UI juduiSas sqj oi punoq s} sisdqjodXq
3qi 'U0IIB0IJIJ3A UOdn UOIlBJapiSUOD J3pUn 3U0 3qi
UBqj J3ip0 sju3ui33s jnoqe apBui sosaqKxlXq jsjfB Xbui
qoiqM pauuoj 3q isnui sssaqjodXq fBuoijippB 'psyuoA
3q jouuBD sisaqjodXq aqj jj -uoijDury JBinDiyfed 3qi 3ui
-uuojJ3d SB 3ziu3o33j Xsqj ujdWBd B qojBui 01 sanuyuoD
ji 'uoijoadsui j3sop uo 'ji iu3ui33s B JO uoijouiy
3qi puBisjdpun Xaqj jBqj paysiiBS 3jb sJduiuiBjSojd
iaqiO *JUdui33s aqj jo uoipunj aqj 3jB[nuiis puBq oi si
sJ3uiuiBj3ojd XuBui JO qoBOjddB [B3|dX) aqj, 'ssauiaajjoo
Jiaqj SuiAOjd Xq siu3ui33s uiBj3ojd payuaA XyBuupj [5]
SUM PUB !I!SBa lOdJJOO si sisaqiodXq aqj jBqj /̂usa 01
SI dajs IX3U 3qi *s3op apoo jo juauiSas jBinoiyBd b jBqM
jnoqB sisaqjodXq b pddopAsp Suiabh 'oojiBDijuâ

•UUOJ siqj S3iqui3S3J Xpsop isoui sSbhSubi
pauiBJlSUOO pUB 'UIBj3ojd p3JU3UJ3[dmi UB jo IX31U0D
aqj ui p3UJBa| XipaidX) 3jb Xaqj asoBoaq 'sano asaqi
3uriq3iiq3|q joj XSopquiXs jsoq aqi si 33Bn3uBi P̂uibjjs
-uoa iBqi aAai[3q aM 'jaAaMOH *siuauia3uBUB pijBds
JO sadXj [p UI papiAOjd aq ubd sana jo sad.Xj asaqj. anpA
s.aiqBiJBA B jaip pqj siuauiajejs puB saureu apBUBA
omouiauui sb qons sana UB|d XBidstp iBqi sjbuuoj
uoijBjuauinaop Xq papjB aq yiM uoijBjauaS sisaqiodXpf

•pajnduioa Sujaq si
UBaui B iBqi sisaqiodXq aqi 3uijsa33ns sana ajB puB
'iNflOO 'WnS sauiBu apBiJBA amouiauui aqi 'aauBjsui
JOJ uofiaury s,iuaui3as aqj aanpap 01 uiaqj 3uisn
puB ([51] S3(oojg 01 3u!pjoaaB ..suoaBaq,,) iuaui3as
uiBj3ojd aqi ui sana uB[d 3uiziu3oaaj uo pasBq si ssaaojd
sfqi '3poa aqi ui ([5^] qaqjqj puB Xbmo[os oi HuipjoaaB
..UBid,,) ujaiiBd JBinaiyBd b 3u|ziu3oaaj uo paseq
aq UBa jo ujBj3ojd aqi uj pappaquia siuaunuoa uiojj
UAVBJp aq UBa sisaqiodXq siqi saop apoa jo luauiSas
JBjnajUBd B iBq.w jo uoyou b sdo|aAap jauiuiBjSojd aqi
•uoyBjauaS sisaqiodXq uj 'uoiiBjauaS sisaqiodXH

'suonauiy
pAai-jaMO] 3uipuaqajduioa uiojj pazisaqiuXs ajB ujbj3

-OJd aqi JO suoiioBJisqB [aAai-jaqSiq sb anJi Xjpiaadsa
S! siqx 'apXa aAtiEjai| ub sb uayo inq 'aauanbas
lauis ui pauuojjad X[UBSsaaau lou ajB sassaaojd asaqx
•sfsaqiuXs puB 'uoiiBayuaA 'uoii8jaua3 sisaqiodXq jo
sassaaojd aqi isBaf ib sapnpui uoiianjisuoaaj ayuBuias
■[5ll sifoojg Xq pasodojd ppoui b 01 JBipuis si ppoui
aqi JO UBd siqx li lanjisuoaaj XipayuBuias 01 sui3aq
jaunuBj3ojd aqi *uiBj3ojd aqi paiuaui3as 3uiabh

•ajnianjis pjiuoa
aqi iq3i[q3iq 01 pasn si 3uijuapui 'suuoj pyuanbas uj
•ajniaiuis pjiuoa aqi iqSipjSiq siuauia3uBJJB pjiBds pa
-iqajBjaiq puB 3uiqauBjq jo asn aqj, urejSojd aqi jo ajni
-anjis pjiuoa aqi iq3iiq3iq iBqi uoiieiuauinaop jo suuoj
asoqi Xq papp aq yiM ssaaojd uoiiBiuauiSas siqx

"fWl 3uiai]s
uiBj3ojd s.jasfayVi si uoiiBiuauifas jo aidiuBxa luayaaxa
iry -[55] JOiABqaq SoiunuBjSojd jo siaadsB apuBuias puB
ayaeiuXs uaaAvjaq uoiiauiisip s.jaXBĵ puB uBuuappuqg
01 JBpuiis SI sassaaojd uoisuaqajduioa jaqio uiojj uoiibi
-uauiSas jo uoiiBJBdas aqj, *uiBj3ojd aqi jo saiiuBuias aqi
lanJisuoaaj 01 ui3aq uBa sassaaojd jaqio iBqi os uiapojd
aqi sapiAip Xfajaui uoyBiuauiSag *uiBj3ojd aqi jo uoysi
-uaui3as b uioy luajBddB XpiBipauiuii aq lou ppoM puB
ajiqanjis pJiuoa aqi q3nojqi papBajqi jo ui pappaquia
sail XipaidXi '([gg] qayjqj puB-XBi^iops) aimaiuis
UB|d aqi 'saop XipniaB uiBjSojd aqi iBqm saquasap
iBqi uoiiBuuoju; aqi 'jaAaMOH [QEJ iuBj3ojd aqi jo uoy
-isoduioaap auiud b ui qnsaj uBa ajnioiuis pjiuoa aqi uo
pasBq uoiiBiuauiSas 'ajnianJis pjiuoa aqi Suyuasajdaj
XBiuXs uiBj3ojd pAai-qSiq aqi XyBiaadsa 'uiBj3ojd
aqi JO ajnianJis aiiaeiuXs aqi qiiM sui3aq Xpuanbajj
ssaaojd uoiiBiuaui3as siqi iBqi an3jB [gjj p la siyno

•uoiiauiy aiqBziu3oaaj 8 sainaaxa
pqi apoa JO uoipas jo 'luqiuoSp piuBd jo apqAV b 'UBjd
JB[naiuBd B 3uiiuauia[duii sb aziu3oaaj uBa jauiuiBjSojd
B iBqi uiBjSojd aqi jo ŝpnqa aq p[noM siuaui3as asaqi
IBqi paisa33ns [ggj qaiijqj puB XsMops jo ifJOAv aqi
sujBjSojd auiijd punojB paziusSjo aq ppoqs ssaaojd

uoijBiuauiSas siqi iBqi isa33ns [gj snijq puB niSBg -uois
-uaqajduioa joj saaaid a[qBa3BUBUi oiui uiBjSojd aqi 8ui
-jjBajq JO ssaaojd b si uoiiBiuauiSas 'ao{iB}uaui3as

•piiuanbas Xpauis lou
ajB puB SuposBaj dn-uiouoq puB UMOp-doi qioq aAiOAUi
sassaaojd asaqi 'Jaqunj ssaaojd aqi 01 anbran si iBqi
uoiiBuuojui auios iSBOj IB sXoiduia sassaaojd asaqi jo
qaBj sjs^qiuXs puB 'uouBaijuaA 'uoiibuuoj sisaqiodXq
'uoyBiuaiu3as tsassaaojd jnoj isBa[ib oiui pasoduioaap
aq UBa uiBj3ojd JB|npoui b Suipuaqajduioa jo ssa
-aojd aqi 'sjauiiuBjSojd luajadiuoa 'paauauadxa joj

uoiiOBJisqB uiBjSojd jo pAai jaqSiq b ib
sassaaojd joj paJopBi aq ppoM inq 'ajaq pasodojd auo
aqi 01 JBiiuiis aq jqSjui sqsBi a[npoujiJiniu joj ppoiu b

Sof tware Documen ta t i on Fo rmats

segment of the program, the programmer synthesizes the
higher-level function from the functions now bound to
the segments. This process is also probably cue-driven,
since programmers attempt to use the lower-level
functions they have recognized as cues to identify
higher-level functions.

These higher level functions will be represented as a
schema in long-term memory. A schema is a template
against which lower-level pieces of the fitnction are
matched, much as in putting together a jigsaw puzzle
when one can look at the picture on the cover of the box.
When there is a sufficient match between the lower-level
functions and the slots in the schema, the programmer
can represent the combination of the lower-level fiinc-
tions by the label of the higher-level function and think
about the program in more powerful ways [24].

This synthesis process can be aided by embedded
comments at appropriate levels in the program. Unfortu
nately, many programmers systematically disregard
such comments [42], because they believe from experi
ence that comments are typically not updated with
subsequent changes to the code. The function of one
portion of the program may be synthesized before an
attempt is made to generate hypotheses for another
section of the code. This process is repeated iteratively
until the highest-level function of the program has been
synthesized.

Synthesis may be enhanced by documentation pre
sented in natural language. A novice perusing the
computer science literature will quickly conclude that
information about computer programs is largely verbal
rather th^ pictorial. Even material referred to as
graphic information about computer programs consists
of verbal material encased in boxes that are connected by
lines. Paivio [45] has argued for a dual encoding scheme
for mental representation that consists of both verbal and
imaginal components. The verbal representation of
programs would appear to result in the cognitive
processing of primarily verbal information. The low
imagery words characteristic of the verbal descriptions
of most programs would not appear to stimulate proces-
ing in Paivio^s proposed imaginal system that would be
as strong or complete as the verbal processing already
underway [7]. Thus, without better evidence to the
contrary, it seems reasonable to conclude that the
primary processing of programming information is
verbal/linguistic. When comprehending a specification,
a programmer is trying to compile the function of the
program into a form more like the verbal/linguistic form
most typical of its cognitive representation and process
ing. Thus, there will be less translation to this form from
information presented in natural language than from a
constrained language or ideograms.

From the above discussion, we can deduce the

following hypotheses:

Hypothesis I. Comprehending computer programs is
aided most by documentation presented in a con
strained language during those tasks that involve
decomposing the program and performing microlevel
tasks on~the module.

Hypothesis 2. Natural language is more efficient for
synthesis tasks.

Hypothesis 3. On tasks where control flow information
is important, such as segmentation and hypothesis
verification, branching and hierarchical arrangements
wi l l be the most benefic ia l .

2 0

Using Program Slicing for Software Comprehension

Filippo Cutillo (♦) Filippo Lanubile (♦*) Giuseppe Visaggio (*♦)

(*) F o r m a t i c a s . r . l . (*♦) D i p a r t i m e n t o d i I n f o r m a t i c a
Via Amendola 162/1, 70126 Ban, Italy University of Baii

Via Amendola 173, 70126 Ban, Italy
fax: +39-80-263196 email:giuvis®vm.csata.it

1 . I n t roduc t i on^

Comprehending a program is ahead of a number
of activities in the software life cycle. In fact, you
must necessarily achieve a clear understanding to
test, modify or reuse a program. This is a crucial
problem when you must deal with a large program
which lacks for the quali ty characterist ic of
understandability.

Program comprehension requires the capacity of
recognizing the domain functions into a program
which could be foreign to the occasional maintainer.
This is a complex task because the domain functions
are often spread over the source code, as shown in
[9]. In [7], the recovery of function abstraction was
based on a structured approach, called stepwise
abstraction, which iteratively rewrites a program into
a design language, starting from elementary one-
in/one-out structures until to arrive to the higher
abstractions which explain the program behavior.

From a cognitive point of view, the stepwise
abstraction is coherent with the bottom-up theory of
program understanding [5], where programmers
build chunks of information which expand the limited
capacity of the short-term memory. On the other
hand die top-down theory [4] says that program
understanding is expectation-driven, i.e. it is based
on the expectation of domain concepts in the program
which can be confirmed, refined or rejected. This
approach is mostly applied by expert programmers
when they learn an unknown program, because their
experience suggests a num r̂ of hypotheses to
verify. On the contrary, novice programmers tend to
concentrate first on details because their expectations
are too many few [1].

We propose program slicing as a technique of
software comprehension which is coherent with the
top-down theory. Program sl ic ing has been
previously applied to various activities such as

'This work has been supported by "Progetto Finalizzato Sistemi
Informat ic i and Calco lo Para l le lo" o f CNR under grant
no .90 .00785 .PF69 .

debugging [12], parallel processing [13], module
integration [8], evaluation of module cohesion [10],
testing [6] and modification [6]. Our objective is to
use program slicing to extract conceptual functions
from an imfamiliar program. In order to achieve this
goal we use a partial knowledge of the application
derived from both the maintainer expertise and the
reverse engineering of data.

This paper moves from a real experience,
described in [3], where design recovery was applied
to a banking application system. Design recovery [2]
is a reverse engineering process which takes
information not only from source code but also from
other external sources, like the domain knowledge or
the programmer expertise. Our approach divided the
process in two phases. The former, data analysis,
focused on the recovery of data abstraction until to
reconstruct a full data model. The second phase,
procedure analysis, focused on the recovery of
function abstraction. The information sources to the
procedure analysis phase come from the source code,
the maintenance programmer expertise, and the
knowledge acquired from the data analysis phase
which suggests the probable presence of a number of
functions in the application. For example, if a file
contains the account balances and the program
accesses the file to put information, then the
program must be examined by looking for the
function which computes the account balance.

The procedure analysis phase was based on the
stepwise abstraction. Although the technique was
successfully applied to a limited portion of source
code, the process was greatly manual. Since too
much time was spent, we looked for an alternative
way of recovering the function abstraction which
could much more exploit the expectations derived
from experiencing the program and from the analysis
of data. In fact, we believe that the information
which results from the data analysis phase allows a
novice progranuner to acquire enough knowledge to
become expert for that application because the
r e c o n s t r u c t e d d a t a m o d e l c o n t a i n a l l t h e i n f o r m a t i o n

for describing the input and output of the business
f u n c t i o n s .

The following section briefly summarizes the
program slicing technique, the third section describes
the extraction criteria and the last section suggests
some conclusions and describes the future work.

2. Program slicing

Program slicing is a deconq>osition method
introduced by Weiser [11], [13]. It is based on the
observation that we are often interested to only a
portion of the program behavior, as in the debugging
and modification tasks. So, program slicing isolates
that portion, by analyzing the data flow and the
control flow of the program. In order to make
automatic this capacity of projection, the behavior of
interest is formally specified. The specification,
called slicing criterion^ takes the form </, V>,
where i is a statement and V is a subset of the
program variables. A slice S of a program P, defined
on a slicing criterion C=<i,V>, is an executable
subset of P containing all the statements which
contribute to the values of Vjust before statement i is
executed. In [12] is reported an experiment which
shows that programmers implicitly use slices when
debugging unknown programs. The problem is that
slices are often scattered through the entire program,
making difficult the task.

In order to capture all the computation which is
relevant for a given variable, the concept of program
slicing has been extended in [6]. A decomposition
slice, S(v), is defined as the union of all the program
slices on the variable v starting from the output
statements and the last program instruction. So, while
a program slice depends on a variable and a statement
number, a decomposition slice depends only on a
variable. Decomposition slices form a lattice based
on the definition of the binary relation strong
dependence. Impact analysis can be done by
exploiting the algebraic properties of the lattice of
decomposition slices.

3. Application to the recovery of function
a b s t r a c t i o n

We make the following assumptions:
a. There is a working program which is part of the

application portfolio of a given organization.
b. There is a knowledge about problem and

application domain which makes it possible to
î e hypotheses on the existence of functions
inside the program.

c. The data analysis phase has produced a data model
which describes the entity types, the relationships
among them, and the entity attributes. There is

also a traceability matrix betwera data model and
source code.
The extraction criteria which we propose aim to

intercept the conceptual functions, hiddra inside the
source code.

3.1 Function extraction

For each expected functiony -̂:
1) Give it a meaningful name.
2) Define the input data IN^ = (w/ji, id-^t ...» id-^^

which the fimction nee ,̂ and the output data
OVTi = (odii, odi2, ..., odjn,), which it yields.
It is reasonable expecting that the data would be in
the data model obtained from the data analysis
phase. In the opposite case, you must locate the
data as intemd variables of the program or
complete the data model with the missing data.

3) Extract from the source code the decomposition
slice S(Ol/7/). It contains all the program
statements which influence, both directly and
indirectly, the output production.

4) Extract from the source code the decomposition
slice S(7 /̂)' It contains all the program statements
which influence, both directly and indirectly, the
input production.

5) Prune all the statements from 8(01/7/), which
contribute only indirectly to yielding the output of
the function, because they are dedicated only to
obtain the necessary input. A first hypothesis for
cutting away the unnecessary statements assumes
that the function can be obtained by deleting from
the output slice the statements which belong also
to the input slice: y/ = 8(01/7/) — 8(/N/).

3.2 Subfunction extraction

A funct ion could contain other funct ions, at a
lower abstraction degree, which are bound by a
composi t ion relat ion: fi= Vin ' I f *he
function is complex then the nested subfunctions
must be recovered.

The process of subfunction extraction must be
preceded by a preliminary data analysis so that the
following hypo&eses can be made: (1) the codomain
of the subf^ction is strictly contained into the
codomain of the compound function, (2) the
codomain of the subfunction is equal to the codomain
of the compound function, or (3) both the
subfimction domain and codomain are equal to those
of a subfunction which was previously recovered.

Case I: OUTy C 01/7/
1) Give a meaningful name to the subfunction.
2) Extract from the source code the decomposition

slice SiOUTy). It contains all the program
2 2

statements which influence, both directly and
indirectly, the subfunction output.

3) Make an hypothesis on the subfunction input. It
could be a proper subset or be equal to that offf.
INij £ INi.4) Extract from the source code the decomposition
slice S(INjs). It contains all the program statements
which inftuence, both directly and indirectly, the
subfunction input.

5) Prune all the statements from S(OUTfj)j which are
not essential for the subfunction ̂ y. Also in this
case there is a slice subtraction: fy = S(OUTy) —

Case 2: OUTy = Ol/I/
1) Give a meaningful name to the subfunction.
2) Make an hypothesis on the subfunction input.

Since the codomains are equal to one another, it is
reasonable to expect that the domain of the
subfunction is strictly contained in that of

INy C INi.
3) Extract from the source code the decomposition

slice S(7Â -)- It contains all the program statements
which influence, both directly and indirectly, the
subfunction input.

4) Prune all the statements from S(07/ry), which are
not esŝ tial for the subfunction fy:
fy = SiOUTi)-S{INy).

C a s e 3 : I N : INfnn
This case must be preceded by the application of
either case 1 or case 2 to isolate the subfunction̂ jy :
1) Verify if the subfunction fy is equal to a

subfunction which was previously recover̂ . In
accordance with the mathematical definition, we
regard functions as static relations between
arguments and results. So, two functions can be
equal if they contain the same ordered pairs, even
though the algorithms for computing the result
from argument are different. Since the question is
undecidable, the verification must be manual.

2) If the subfunctions are equal there is a duplication
of function. The problem must be recorded so that
other programmers can recognize the redundancy
in the code.

4. Conclusions and future research

At the current date, the use of program slicing for
recovering the function abstraction has been
successfully applied only on programs written by
students .

The observed times for extracting functions have
encouraged us to conduct an empirical evaluation, in
the form of a pilot experiment in the banking
domain. The samples will be two COBOL programs:
the former is a TP program of 22000 LOCs which

manages information about clients; the latter is a
batch program of 15000 LOCs which builds a report
containing the history of the transactions between the
clients and the bank.

In order to support slicing, we intend to use a
commercial tool, VIA/Renaissance of VIASOFT,
which makes it possible to analyze COBOL systems
on MVS/XA operating systems.

References

[1] B.Adelson, "Problem Solving and the Development of
Abstract Categories in Programming Languages",
Memory & Cognition, vol.9,1981, pp.422-433.

[2] T.J.Biggerstaff, "Design Recovery for Maintenance
and Reuse", IEEE Computer, July 1989.

[3] G.Como, F.Lanubilc, G.Visaggio, "Design Recovery
of a Data-Strong Application", in Proceedings of the
Third International Conference on Software
Engineering and Knowledge Engineering, 1991,
pp.205-212.

[4] T.A.Coibi, "Program understanding: Challenge for
the 1990s", IBM Systems Journal, vol.28, no.2,
1989, pp.294-306.

[5] B.Curtis, "Cognitive Issues in Reusing Software
Artifacts", in Software ReusabiUty, vol.11:
AppUcations and Experience, T.J.BiggcrstafF, and
A.J.Perlis (Eds), Addison-Wcsley, Reading, MA,
1 9 8 9 .

[6] K.B.Gallagher and J.R.Lyle, "Using Program Slicing
in Software Maintenance", IEEE Transactions on
Software Engineering, vol.17, no.8, August 1991.

[7] P.A.Hausler, M.G.Pleszkoch, R.C.Linger, and
A.R.Hevncr, "Using Function Abstraction to
Understand Program Behavior", IEEE Software,
January 1990, pp.55-63.

[8] S.Horwitz, T.Reps, and D.Binkley, "Inteiprocedural
Slicing Using Dependence Graphs", in Proceedings of
the SIGPLAN'88 Conference on Programming
Language Design and Implementation, 1988, pp.35-
4 6 .

[9] S.Letovski, and E.Soloway, "Delocalized Plans and
Program Comprehension", IEEE Software, May
1986, pp.41-49.

[10] L.Ott, and J.Thuss, "The Relationship Between Slices
and Module Cohesion", in Proceedings of the 11th
International Conference on Software Engineering,
1989, pp.198-204.

[11] M.Weiser, "Program Slicing", in Proceedings of the
Fifth International Conference on Software
Engineering, 1981, pp.439-449.

[12] M.Weiser, "Programmers Uses Slices When
Debugging", Communications of ACM, vol.25, no.27,
July 1982, pp.446-452.

[13] M.Weiser, "Program Slicing", IEEE Transactions on
Software Engineering, vol.SE-10, no.4, July 1984,
pp.352-357.

A U T O M A T E D S O F T W A R E M A I N T E N A N C E U S I N G C O M P R E H E N S I O N A N D S P E C I F I C A T I O N

David A. Dampier
Luqi

Naval Postgraduate School
Monterey, California 93943

A B S T R A C T

As software becomes more complex, more sophisticated software development and maintenance methods are
necessary. These methods can also be used when dealing with old software systems. J*rogram comprehension methods
are used to extract a specification from an old software system, and our methods are then be used in forward
engineering of the new software system. In the Computer-Aided Prototyping System (CAPS), quickly built and
iteratively updated prototypes of the intended system are demonstrated to the user. As these updates occur, a formal
mechanism must be developed to automatically integrate these changes into the existing prototype. This paper
formalizes the update/change integration process and extends the idea to multiple changes to the same base prototype.
Applications of this technology include: automatic updating of different versions of existing software with changes
made to the base system; integrating changes made by different design teams during development; and performing
consistency checking after integration of seemingly disjoint changes to the same software system.

I . I N T R O D U C T I O N

Maintaining sophisticated software is difficult Maintaining old software is more difficult. In many cases,
there is software in the field performing valuable tasks for which there is no written documentation. These pieces of
software are prime candidates for reengineering. Reengineering consists of three activities; reverse engineering,
restructuring and forward engineering. This research deals with the last of these activities, forward engineering.
Reverse engineering uses program comprehension methods to produce a domain model, requirements and a
specification. Given a domain model, the change-merge model outlined in this paper can be used in developing the
new system.

Rapid Prototyping with automated tools makes the requirements conform more closely to the real needs of
the users. An appreciable part of the maintenance activity is carried out in terms of changing and updating the prototype
rather than the production code for the intended system. This is useful because the prototype description could be
significantly simpler than the production code if the prototype is expressed in a notation tailored to support
modifications, and the software tools in the computer-aided prototyping environment can help carry out the required
modifications rapidly[3]. Prototyping software using tools decreases forward engineering time and increases foture
maintainability, because it reduces customer dissatisfaction with the delivered system. The designers construct/change
prototypes of the intended systems quickly to meet the customer's desires during the requirements phase. The
designers need automated tools which will allow these changes to be made to a base version of a software prototype
as well as automatically propagated through multiple versions of the prototypes and automatically combine changes
made to different versions of the system possibly by different people. Formal models are the keys and foundations for
building such automated tools. Current technology provides form̂ models for tools which allow this only on a limited
scalefl] .

The goal of our research is to develop a tool for the CAPS [3] system which will support automatic merging
of different versions of a prototype. We have already developed a model which shows that it is possible to correctly
perform a merge operation in most cases[2]. This paper formalizes the change process for the Prototyping System
Design Language (PSDL), a design based language written specifically for CAPS, and uses this formalization to
strengthen our merging model.

n . CHANGING PROTOTYPES IN PSDL

The Prototype System Description Language (PSDL) is the prototyping language associated with CAPS. It
was created to provide the designer with a simple way to abstractly specify software systems and produce an
executable prototype of the system. A PSDL program is a set of PSDL operators and data types, containing zero or

IS research was supported in part by the Mation
and in part by the Army Research Office under grant number ARO-145-91.

c ience rounaanon under grant numoer

2 4

more of each. P*SDL operators and types consist of a specification and an implementation. The specification defines
the external interfaces of each operator through a series of interface declarations, provides timing constraints, and
describes the functionality of the operator through the use of formal and informal descriptions. The implementation
can either be in PSDL or Ada. PSDL implementations are data flow diagrams augmented with a set of data stream
definitions and a set of control constraints.

A current focus of our research is formalization of the change process in PSDL. In order to discuss the
merging of changes made to a prototype, we must first provide a model for changes to PSDL prototypes.

PSDL prototypes are iterative approximations to a software system. If S is the intended final version of the
software system, then each successive iteration of the prototype can be viewed as an element of a sequence 5| where

lim Sj = S. Each prototype S| is modelled as a graph G| = (V|, Ei, Q), where:
I —> oo

A. Vj is a set of vertices. Each vertex can be an atomic operator or a composite operator modelled as another
graph.
B. E| is a set of data streams. Each edge is labelled with the associated variable name. There can be more than
one edge between two vertices. There can also be edges from an operator to itself, representing state variable
data streams.
C. C| is a set of timing and control constraints imposed on the operators in version i of the prototype.

The prototype designer repeatedly demonstrates versions of the prototype to users, and designs the next
version based on user comments. The change from the graph representing the Ith version of the prototype to the graph
representing the (i+l)st version can be described in terms of graph operations by the following equations:

(1) 5 u i = S , + A 5 ,

The change A 5j = (VAj, V/?j, EAi, ER ,̂ CA|, Ci?|) is a set of subsets where:

r. ̂ J — r. = TA j : The set of components to be added to 5|.
r. — r. ̂ ̂ = rj? J : The set of components to be removed from Sj,

r can represent V, E or C.

The + operation in (1) above is defined as follows:

r , u r A . - r i f .
The following example illustrates a change to the vertex set of a composite operator:

V , = { A , B , C , D) V A p { E } V K | = { C }

''i + 1 ° = {A,B, C, D} U {e} - {C} ={A,B,D,E}
IV. MERGING PSDL PROTOTYPES

♦

Merging different variations of a program is useful in performing automatic maintenance of software systems.
In very large software systems, it is common for diffo^nt variations to evolve finom the base system. If the system
designer discovers a fault in the base version of the system, it would be desirable to have the capability to automatically
apply that change to all of the variations currently in use. The merging process must be able to apply the change to the
common parts of each variation without affecting the functionality peculiar to each one.

In [10], a definition of merging two compatible extensions of a software system was given as follows:

If the software systems are represented using sets, then the result of meiging two extensions, A & C
of a base version B is defined as:

2 5

M = A[B]C= (A-B) U (AOC) U (C-B)
Consider a version, 5|, which has been changed in two different ways, via and Ag . The result of these

two changes is and 5b respectively. Now let us define the (i + l)st iteration as

(2) s, ^, =Sa[s,]Sb = (sA - Si) u (s^ n s„) u - s.)
The components of 5| +1; V| +1, i and Q +1 can be defined similarly.

The following example illustrates merging the vertex sets of two different variations:
V, = { A , B , C , D } Va = { A , B , D , E } V g = { A , C , D , F)
V,^,= (V^ - V.) u (v^ n Vg) u (v„- Vj) =

({ A, B, D, E} - {A, B, C, D}) U ({A, B, D, E} O {A, C, D, F}) U
({A, C, D, F} - {A, B, C, D}) ={A,D,E,F}

This simple example illustrates the merging of two changes which do not conflict with one another. The result
of merging two conflicting changes could be an inconsistent program, causing a conflict which has to be resolved
either automatically or manually by the designs.

V. C o n fl i c t R e s o l u t i o n

Conflicts arise when two changes affect the same portion of the prototype in different ways. Some examples
of conflicts are as fol lows:

1. One change adds an output edge to a vertex A, while another change removes vertex A from the prototype.
In this case, automatic resolution of the conflict is not yet possible, so the system would have to notify the designer
that a conflict has occurred and give him/her the opportunity to resolve it.

2. Two changes assign different timing constraint values to the same operator, i.e., (max_exec_time, F, 50ms)
and (max_exec_time, F, 40ms). In this case, the conflict can be handled automatically, as any operator which executes
in under 40ms would certainly execute in under 50ms. In situations where different maximum execution times have
been assigned, the minimum value can be chosen. This is also true for the latency, maximum response time and finish
within timing constraints. The minimum calling period timing constraint can be merged using the maximum of the two
values. Different periods for the same operator result in a conflict which has to be resolved by the designer. Different
control constraints for the same part of the prototype in different changes can also result in a conflict. Some of these
conflicts can be resolved automatically. Current work is addressing methods for automatic resolution of conflicts.

V I . C o n c l u s i o i i s

Tool support for manipulating and combining specifications is especially impoitant for rapid prototyping. We
are currently implementing the method presented here to evaluate its effectiveness in practical contexts. We are also
conducting theoretical studies to evaluate its limitations and to discover improvements. The method described here
works correctly whenever the functions computed by the operators are one to one. In the general case, a global analysis
of the system may be necessary to ensure that the functions computed by the operators do not interfere. For a more
detailed discussion of the reasons for this, see [4]. Some issues to be considered in future woik are treatment of data
types and component specifications, and the detection/diagnosis of semantic interference between modifications.

L IST OF REFERENCES

1. . Horwitz, S., Prins, J., and Reps, T., "Integrating Non- Interfering Versions of Programs", Conference Record
of the Fifteenth ACM Symposium on Principles of Programming Languages, Association for Computing Machinery,
New York, New York, 13 -15 January 1988.
2. DampierJ)., A Model for Merging Different Versions of a PSDL Program, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1990.
3. Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer, May 1989.
4. Berzins, V. "Software Merge: Semantics of Combining Changes to Programs", Submitted for publication in
ACM Transactions on Programming Languages and Systems, 1990.

2 6

An Integrated Representation for Program Comprehension^
(Position paper on program comprehension)

Mary Jean Harrold and Brian Malloy
Department of Computer Science

Qemson University
Qemson, SC 29634-1906

(803) 656-0809
harrold@cs.clemson.edu

Program maintenance is an expensive process where an existing program is modified for a variety of
reasons, including correcting errors, adapting to different data or processing environments, enhancing to
add functionality and altering to improve efficiency. The problem is especially difficult since the main-
tainer is rarely the author of the code. Thus, an important goal of maintenance tools is to assist the main-
tainer in understanding different aspects of a program. To provide efficient tools for program mainte
nance, an integrated program representation that contains the required information is needed. We support
other researchers'[6] claims that a language-independent program representation, the program depen
dence graph (PDG)[1,5,7] is extremely useful for program understanding. The PDG unifies both con
trol- and data-dependence uniformly since it contains both a control dependence subgraph and a data
dependence subgraph, and techniques such as slicing can be performed on it. The main problem with the
PDG is that is contains no control- or data-flow information and thus, another representation, the control
flow graph is required. The control flow grafdi is used to construct the PDG, and it is continually
accessed whenever control- or data-flow information is required. Thus, for large programs, this technique
is expensive in both space and time since both a PDG and a control flow graph are required for each pro
cedure.

Our approach is to develop an integrated program representation and use it to provide many differ
ent maintenance tools to assist in program understanding. Previously, we presented our unified interpro-
cedural grcq?h[2,4] that integrates control- and data-flow along with control- and data-dependency infor
mation into a single representation. However, to get this inteiprocedural information, we require both the
control flow graphs and the PDG's of each procedure involved. We have extended this research to pro
vide a single integrated representation for each procedure [3] that contains the data- and control- flow
information provided by the individual graphs. Our integrated representation is an extension of the PDG
that eliminates the need for the control flow graph of a procedure in most cases. Thus, we use our
extended PDG as our only procedure representation from which we abstract information to construct the
unified interprocedural graph and for tools assist in program understanding.

We have extended the PDG so that it contains control-flow, data-flow, control-dependence and data-
dependence in a single representatioa For program without GOTO statements, we efficiently build our
extended PDG from the abstract syntax tree produced by the compiler[3], without requiring the program's
control flow graph. For programs without GOTO statements, the structure is recognizable by the parser.
Thus, we compute the exact control dependencies for the program. Additionally, we order the nodes in
t This woik was paitiaUy supported by NSF under grant CGt-9109S31 to Clenison University.

2 7

the PDG so that we can always identify the control flow predecessore of any node in the PDG. Thus, we
perform data flow analysis directly on the PDG. In preliminary studies of over 2000 functions found in
the X Consortium source distribution, only 23 functions actually contain GOTO statements. Thus, this
technique for constructing the extended PDG will be widely applicable. For programs with GOTO state
ments, we construct a partial PDG and use the control flow graph to complete construction. However, we
still order the nodes according to source code statements and perform the data flow analysis directly on
the extended PDG. Building the extended PDG at this stage of compilation provides significant savings
over previous methods that require the intermediate code, the control flow graph, and the post-dominator
tree to finally construct the PDG.

With our extended PDG, we provide powerful tools for program understanding. Along with previ
ously developed tools, such as slicing, we can efficiently display multiple views of the program. For
example, with our single representation, we can iUustrate the program's control flow, data flow, data flow
sets and control dependencies to the user. Other previous techniques that provide multiple views includ
ing, control- and data-flow[8], use several program representations. We also provide new tools for pro
gram understanding such as automatic recognition of a program's control structures that are not obvious
by code inspection. Additionally, once we recognize these control structures, we transform them to rec
ognizable constructs such as while loops and if-then statements. We developed a set of templates that
identify subgraphs of the extended PDG representing while loops, if-then statements and if-then-else
s t a t e m e n t s .

References

1. J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program dependence graph and its use in opti
mization," ACM Transactions on Programming Languages and Systems, vol. 9, no. 3, pp 319-349
July 1987.

2. M. J. Harrold and B. A. Malloy, "A unified interprocedural program representation for a mainte
nance environment," IEEE Transactions on Software Engineering, to appear.

3. M. J. Harrold and B. A. Malloy, "Performing data flow analysis on the PDG," Technical Report
#92-108 Qemson University, March 1992.

4. M. J. Harrold and B. A. Malloy, "A unified interprocedural program representation for a mainte
nance environment," Proceedings of Conference on Software Maintenance 1991, pp. 138-147
October 1991.

5. S. Horwitz, J. Piins, ̂ d T. Reps, "Integrating non-interfering versions of programs," ACM Trans
actions on Programming Languages and Systems, vol. 11, no. 3, pp. 345-387, July 1989.

6. S. Horwitz and T. Reps, "The use of program dependence graphs in software engineering," Pro
ceedings of 14th International Conference on Software Engineering, pp. 392-411, May 1992.

7. D. J. Kuck, R. H. Kuhn, B. Leasure, D. A. Padua, and M. Wolfe, "Dependence graphs and compiler
optimizations," Eighth Annual ACM Symposium on Principles of Programming Languages, pp
208-218, January 1981.

8. M. Platofif, M. Wagner, and J. Camaratta, "An integrated representation and toolkit for the mainte
nance of C programs," Proceedings of the Conference on Stftware Maintenance-1991, pp 129-137
October 1991.

2 8

Automating Program Comprehension by Concept Recognition

Wojtek Kozaczynski and Jim Ning
Center for Strategic Technology Research (CSTaR), Andersen Consulting

100 South Wacker Drive, Chicago, Illinois 60606, U.S.A.

1. Program Comprehension
Program comprehension, the understanding of program source code, is essential to many software engi

neering and re-engineering activities such as maintenance, debugging, verification, renovation, migration,
and design recovery.

Many tools have been developed to facilitate program understanding. With few exceptions, however,
these tools are little more than browsers that present different text and graphical views of the code. For
example, VIFOR (Raj90] graphically displays the calling and cross reference relations in FORTRAN pro
grams. ES W, a COBOL re-engineering toolset developed by VIASOFT, extracts structure charts from PER
FORM statements and produces condensed source listings to highlight "structurally significant" parts of
programs. The program understanding tool prototyped at IBM [OeSS] supports cross referencing, calling
relation, and control flow and data flow presentations. More recently, LaSSIE [DBSB91] demonstrated the
need for capturing architectural and conceptual information (in addition to code-level information) to sup
port program understanding. LaSSIE provides a classification-based representation and retrieval framework
for the user to encode, browse, and query the information about high-level concepts; but these concepts must
be obtained and encoded manually.

Browsing-based tools may assist the user in exploring hidden properties of programs. It remains still the
user's responsibility, however, to reason about the meaning of the program under analysis. Moreover, as the
user builds understanding of individual concepts, existing tools don't help generalize the knowledge to auto
mate the understanding of similar concepts in the ftiture. In order to provide this type of assistance to pro
gram maintainors, it is necessary to automate the program comprehension process.

2. Concept Recognition
What does it mean to comprehend a program? Syntactically, a program is a sequence of text strings.

Semantically, however, it contains many language and abstract concepts. Language concepts are variables,
declarations, modules, statements, etc., and are defined by the coding language. Abstract concepts represent
language-independent ideas of computation and problem solving methods. Abstract concepts can be further
classified into:

•programming concepts that include general coding strategies, data structures, and algorithms;• architectural concepts that are associated with interfaces to execution architecture components such as
operating systems, transaction monitors, networics, databases, etc.; and• domain concepts that are application or business logic functions implemented in the code.

Language concepts can be "recognized" automatically by parsing. A parser generator takes a language
model and a language gratnmar and generate a parser for the language. This parser can then be used to pro
cess program text and produce program abstract syntax trees (ASTs). Nodes in an AST can be seen as lan
guage concepts recognized by the parser.

2 9

Abstract concepts arc not equally easy to recognize. TWo questions must be addressed in order to recog
nize them, namely, -what types of concepts to recognize and how they should be recognized. A concept clas
sification hierarchy, called a concept model, answers the what question. Like a language model, it
establishes the ISA hierarchy between concept classes for which instances are expected in the target pro
grams.

The how question cannot be answered with a purely syntactic approach because the abstract concepts are
not tightly related by syntactic structures. Instead, they are connected by semantic relationships such as:
control-flow relationships, data-flow relationships, calling relationships, etc. For example, a READ-AND-
PROCESS concept that represents a function that sequentially reads and processes records in a sequential
file would require two of its component concepts (sub-concepts), the READ-RECORD concept and the PRO
CESS-RECORD, to follow each other on a control flow path. We call these semantic relationships and other
requirements on the sub-concepts of abstract concepts constraints.

A specification of how to recognize an abstract concept must, therefore, contain information about: 1)
components or sub-concepts of the concept, and 2) constraints on and among the sub-concepts. We encode
this information in the form of concept recognition rules. For historical reasons [Wil87, JS85, Let88, Nin89,
Hai91), we also use the term plans to refer to recognition rules. The following is the structure of a recogni
tion mle/plan:

p l a n c
c o n s i s t s o f S i , $ 2 , S n ,
s u c h t h a t E l , E 2 , . . . , E n

where C describes the abstract concept to be recognized by this plan; Si, $2,.... $„, describe the sub-con
cepts; and El, E2,.... En are logical expressions (constraints). Both C and $1, 82,..., are called pattern
descriptions of concepts.

Assume that Ci, C2 C^, are language and abstract concepts already recognized in a program P. Let us
also define a, called a set of bindings. Each binding in o is a mapping from a pattern variable v to a value /,
represented by a tuple <v, />; a(v) = /. More generally, we use a(S) to describe the instantiation of all the
pattem variables in a pattern description S to values defined by a.

With these definitions, we say that a plan is applicable to P at Ci, C2,.... iff there exists a a, such that:
1) V i: 1 < i < m Ci s a(Si); and
2) a(Ei) & o(E2) & ... & o(En) = TRUE i.e. logical expressions instantiated by a can be evaluated

to truth values.

When these two conditions are met, the plan will be applied to P on top of Ci, C2,.... 0,̂ to create a new
concept instance C' = o(C).

To illustrate the above in some detail, let us consider how we could specify a concept of adding new cop
ies of a book in a hypothetical book inventory system. The top-level concept, ADD-NEW-COPIES, can be
written as follows:

plan ADD-NEW-COPIES(ADD-TO-BOOK : Grec, QUANTITY : Gnew-copies)
c o n s i s t s o f b o o k - r e c : B O O K - R E C O R D (R E C O R D - N A M E : G r e c ,

I N - S T O C K : G a m o u n t)
t e s t : E Q U A L - O P (O P l : G t r a n s - t y p e , 0 P 2 : 1)
add-copies : ACCUMULATE(TO : Gamount , FROM ; Gnew-copies)
upda te : WRITE-F ILE(FROM : Grec)

s u c h t h a t C O N T R O L - D E P (a d d - c o p i e s , t e s t)
D A T A - D E P (u p d a t e , a d d - c o p i e s , G a m o u n t)

In this plan, Grec, Gnew-copies, and etc., are pattem variables, and 1 (in the second sub-concept
following 0P2) is a constant. The plan states that the add-new-copies concept has four sub-concepts:

3 0

book-rec, test, add-copies, and update. book-rec is an abstract, problem domain concept of
type BOOK-RECORD. This record contains information about the book such as the amount of copies in stock
(amount). The Other three sub-concepts are programming concepts: test checks whether the current trans
action is an add new copy transaction; add-copies adds the number of new copies to the existing amount;
and update writes the record into the book inventory file. In addition, the constraints require add-copies
to be control dependent on test and update to be data dependent on add-copies with respect to data
item amount. If instances of sub-concepts can be found in the program and they satisfy the constraints, an
instance of add-new-copies concept is created:

a(ADD-NEW-COPIES(ADD-TO-BOOK : 0rec, QUANTITY ; enew-copies)
= ADD-NEW-COPIES (ADD-TO-BOOK : a(0rec) , QUANTITY : a(0new-cop±es))

Notice that the recognition of an add-new-copies concept requires other plans to recognize its sub-
concepts .

3. Status

For the last few years we have developed two prototype program concept recognition systems. The
works has been completed as a part of the software re-engineering program at Andersen Consulting's Center
for Strategic Technology Research (CSTaR). Currently, we are developing a next layer of re-engineering
functionality such as: program tran^ormation, program segmentation, and concept browsing. All of these
tools use the concept recognition engine and aim at increasing the practical utility of the software under
standing systems.

Re fe rences

[A1I90] Allemang, D., Understanding Programs as Devices, Ph.D. thesis, Ohio State University, 1990.
[BHW89] Biggerstaff, B., Hoskins, J., and Webster, D., "DESIRE, A System for Design Recoveiy," MCC Technical

Report STP-081-89, April 1989.
[Cle88] Cleveland, L., "A User Interface for an Environment to Support Program Understanding," Conference on

Software Maintenance, Phoenix, Arizona, October 1988.
[DBSB91] Devanbu, P., Brachman, R-, Selfridge, P., and Ballard, B., **LaSSIE: A Knowledge-Based Software Infor

mation System," Communications of the ACM, May 1991.
[EKN91] Engberts, A., Kozaczynski, W., and Ning, J. Q., "Concept Recognition-Based Program Transformatiwi,"

Corference on Software Maintenance, Sorrento, Italy, October 1991.
[Har91] Hartman, J., Automatic Control Understanding fcH* Natural Programs, Ph.D. thesis. University of Texas at

Austin, May 1991.
[HN90] Harandi, M. T., and Ning, J. Q., "Knowledge-Based Program Analysis,"/£££ Software, January 1990.
(JS85] Johnson, W. L., and Soloway, E., "PROUST: Knowledge-Based Program Understanding," IEEE Trans, on

Software Engineering, 11(3), 19S5.
[KLN91b) Kozaczynski, W., Leiovsky, S., and Ning, J., "A Knowledge-Based Approach to Software System Under

standing," Sixth KBSE Conference, September 1991.
[KNS92] Kozaczynski, W., Ning, J., and Sarver, T., "Program Concept Recognition," Seventh KBSE Conference,

September 1992.
[Let88] Leiovsky, S., Plan Analysis of Programs, Ph.D. thesis, Yale University, December 1988.
[Nin89] Ning, J. Q., A Knowledge-Based Approach to Automatic Program Analysis, Ph.D. thesis. University of Illi

nois at Urbana-Campaign, October 1989.
[Raj90] Rajlich, V., "VIFOR: A Tool for Software Maintenance," Software - Practical and Experience, January 1990.
[Ric81] Rich, C., "A Formal Representation of Plans in the Programmer's Apprentice," Seventh IJCAI Conference,

1 9 8 1 .

[Wil87] Wills, L., Automated Program Recognition, Master's thesis, MIT AI Lab, February 1987.

3 1

C o n f e r e n c e o n S o f t n a r c M a i n t c i i a n c e 1 9 9 2
Position I'a(Ki': Tools I'acilifating Soflnarc Omprcliension

David P. Olshcfski

P. O . B o x 7 0 4
Yorklown Heights, NY 10598

C l a i i n s

Our recent work has involved the development of a prototype program understanding system. Its function is
to .seiA'c as a vehicle for exploring and testing ideas in the area of program understanding. 'The system,
named PUNDIT, combines the use of statically collected semantic information with debugging capabilities
in an attempt to help the programmer understand both the static nature ami dynamic behavior of a program.
Our experience has led us to the following conclusions concerning program comprehension systems:

1. Static and dynamic information should be integrated and presented t(^getlicr.
2. Presenting large amounts of data to the user in a useful manner is a more dilTicult problem than source

code analysis.
3. Integration into current build processes and libraiy systems is imporlatit.
4. Program comprehension systems should take advantage of existing compiler technology.
5. Performance is a key to user acceptance and this means, for now at least, that the use of a database to

contain analysis information is unacceptable.

A r c l i i l c c t i i r e

The goal for PUNDIT was to design a responsive, lightweight, highly interactive tool for analyzing source
code. After trial and error we came to the approach depicted iji the accoirtpanying figure.

The PUNDIT system is composed of two execulables, the C semantic analyzer and the user interface. The
C semantic analyzer, PCC, is simply a compiler front end designed to generate extended debug information.
This extended debug information takes the form of a binary- file and is thought of as a supplement to the
debug information contained in the object module file. 'The binary file contains two types of information.
The first is scmajitic information about control flow and data use and the second is information u.scd by the
u.ser interface for display purposes (such as column position of a variable on a particular line). Although the
current analyzer only siippoiis C analysis, the formal of the. binary file is language independent. 'The
binary-file produced by PCX!! is about the .same size as the object module. P(X' itself was written using a
parser generator.

Although the analysis is not incremental, it's fast enough for the user to run as often as he would a compiler
and, as expected, it is faster than the compiler since PCC only generates semantic information, not
executable code. A slight modification to the make file alUnvs a source file to be analyzed by PCC whenever
it is recompiled, a process which should fit well with most existing librarj' systems and environments that
currently manage compilation and object files.

The user interface is a multi-threaded, multi-windowed OS/2 Presentation Manager application which
presents both textual and graphical views. It gathers all existing information from the binary files, object
modules, and executable files and attempts to present that information to the user in a useful manner.
Inter-module information is resolved by the user interface In a manner similiar to the way a linker resolves
external references between object modules. Therefore, one C source file can be modified and re-analyzed by
PCC independently of any other source file.

The major advantage to the approach of storing information in flat files is that it eliminates the need for
installing and using a database. Our experience has shown that .semantic analysis of source code can
generate a great deal of highly interrelated, light-weight information. Available database managers are not

3 2

G€

iiojinooxo uiB.i3oid 3uijnp opoo oojnos puu i|dBj3 a\ojj jojiuoo aip oibuuuy •
iiojpunj B joj i|dBj3 A\ou (OJiuon aip Moqs •

3ui33nqop 3uunp qduaS |jb3 oniiBii/(p b o]boj3 •
IJBip aanpnJis pAOj n3ji[XBjdsjQ .

:oDBjJo;ui .losn oqi Xq pajjoddns suojpunj jofuiu oqj jo ouios jo pq b si 3iaA\0|ioj aqq

LlGMad P^piAOJd suoipunj jo[b(/\[

•papjBosip aq ubd j.lClMfld
JO juoiioduioo 33J oqj '3|qB(iB/\B uoipuuGjiu Sjqi oqBiu XjiBniuoAa sJ3[idLUOD j(uoiiblujojui oijubiuos
/tiBSsooau oqi//2? apiAOjd jou op sjopduioo iuo.uno anuis A]jssoo3U b so Xjuo uoos si dais sis/{[Bub apuBdas aq^
•ia|idiuoa oqi Kq papo|[oo XpBaqB uoiibuijojui aqijo asn soqBUi \i iBqi si qoBOJddB sup jo oSBiUBApB jaqjouv

X/SM Wai 3i|l O Z Z/SO Japun sunj iiCINHd 1 aJnSlJ

• Texlually display the type definitions for all types used in a souree file
• Grapliically display the sialic rclalionships helwccn type struclurcs
• Allow the user to graphically layout data structures during debugging
• Display a textual list of the functions contained in each source file
• rextually display the header file include Jiesting
• Display a static program slice
• Show symbol cross-reference information
• Set break points, view registers and storage

The above functions are realized in PUNDI T via a set of windows, or views. Pach view has its own set of
functions that operate on the data in its window. T'ach view is also tied to other views, usually by functions
which link the data in one window to corresponding data in another. A user action in one view results in
appropriate changes to other views. Typically, the user may click on anything that is visible and perform
some function. It seemed important not to impose a particular mode of navigation on the user but rather
leave the user interface flexible enough to allow the user to navigate in any direction he or she so chooses.

Not surprisingly, not all of the above views appear to be of equal benefit to the user. As is usually the case,
tiiose functions which pciform something the user cannot do in a reasonable time arc valuable. The high
level structure chart is one example. It provides the user with a high level picture of the calling structure
and global use within the program. Also of value are those functions performed by hand which can be
automated. An example would be the graphical layout of data structures during debugging.

Although important for u.sc in compiler construction and data (low analysis, the control flow graph, in and
of itself, is not viewed by our users as very important. If a programmer wants to know the internals of a
particular function, he or she will simply read the source code. In most cases, the user can determine the
function's control flow on his or her own, thus the control flow graph view provides little in addition to the
users own mental capabilities. It does provide benefit though, during debugging. The control flow graph
can be set to animate program execution which allows the user to sit and watch how the program behaves
with live data. It can also track which statements have been executed during a particular run thereby
providing an automated test coverage capability, lloth are functions which would require much work if
done manually.

In general, it seems that the static views which are most valuable are lh(>se providing information at a higher
level and the dynamic views which arc most valuable arc thc>se providing more dctriilcd information
concerning the internals of a data structure or function.

r r c s c n l a t l o n r r o b l c m s

Unlike a compiler writer who is attempting to perform deep analysis for purposes of optimization, we found
that source analysis was not the major hurdle. Our difficulties arose when attempting to display large
amounts of information to the user in a meaningful way. An example is displaying a large call graph, with
hundreds of nodes. If some way is not found to simplify and summarize the graph, it can end up baffling
and confusing the user. Our approach is to provide the user with extensive filtering and graph editing
capabilities. The user can edit, trim and build the view to display only those nodes of interest.

In order to do this, graph displays had to be very fast and highly interactive. The graph display toolkit we
used was developed by our colleague Vance Waddle and performs both graph layout and presentation. The
quality of the PUNDI T user interface is due largely in part to u.sing this full function graph display toolkit.

Whether PUNDI T is considered a debugger with static analysis cap.abilities or a program understanding
system with debugging capabilities is irrelevant. We found that either one without the other is still only half
the solution. Integrating static and dynamic information into one tool provides a much richer set of
functions than having both in separate tools.

3 4

Recovering Application Knowledge from Imperative Code

Stephen B. Ornburn and Richard J. LeBlanc
College of Computing

Georgia Institute of Technology
Atlanta, OA 30332-0280

A model relating rule-based representations of ap
plication knowledge and imperative programs encoding
IS introduced. This model, developed over the course
of several experiments in reverse engineering, pro
vides insight into the technical problems which must
be solved when making explicit the conditions under
which operations are performed. This model is partic
ularly useful in its ability to distinguish between code
supporting the program's functional behavior from code
responsible for ensuring that various safety and live-
ness constraints are satisfied.

Introduction: Software generation can be viewed
as the process of producing an imperative program by
combining application knowledge, including business
rules, with program control. The goals of a reverse en
gineering project often include reconstructing the ap
plication knowledge used in developing the program.
This goal is difficult to achieve because much of this
application knowledge is not explicitly represented in
the implementation code. Furthermore, that knowl
edge which is explicitly in the code is organized so as
to facilitate execution rather than comprehension. In
other words, the knowledge is organized according to
where and how it is to be used in the computation.

Any program's control mechanisms apply applica
tion knowledge to effect a computation. For example,
in rule-based programs, including logic programs, an
inference engine effects the computation by selecting
and applying rules from a rule base. While imper
ative programs integrate application knowledge and
program control into a single structure, a rule-based
model can still provide useful insight into the pro
gram and its operation. More specifically, the impera
tive program can be related to a hypothetical "smart"
rule-based system which does not waste time back
tracking, recomputing values, or searching. Instead,
the "smart" system picks the right rules, remembers
the relevant portions of its own history, and represents
i n f o r m a t i o n i n c o n v e n i e n t d a t a s t r u c t u r e s .

The "smart" system tailors the control strategy to
a particular computing problem. Some of the control
decisions can be made at design time, while others are
deferred until run time. Generally, those control de
cisions requiring the greatest intelligence are made at

design time by the software engineer, who then inte
grates the results of those decisions into the implemen
tation. At the same time, the software engineer also
integrates into the implementation both the decision
logic required for the residual control decisions and
suitable knowledge representations. The set of resid
ual program control mechanisms defines a software ar
chitecture and includes mechanisms for sequence con
trol, data control, and memory management.

In many rule-based systems every rule potentially
applies in every context, and complex guards can be
required to ensure that rules are applied appropriately.
An alternate approach, based on finite state program
control, can be used to limit a priori the contexts in
which a rule applies. Restricting the context in this
way allows the guards to be simplified and, in turn,
reduces the amount of data which must be maintained
as part of program state.

Structuring application knowledge: A rule-
based representation of application knowledge is more
easily understood if the rules are organized in accor
dance with a state transition model. Even if the ini
tially hypothesized state transition model only names
the states and events without specifying them in de
tail, it can still guide subsequent reverse engineering.
Reverse engineering can confirm or revise the initial
hypotheses and then can go on to discover the ad
ditional detail need to complete the state and event
d e fi n i t i o n s .

A typical specification provides a software engineer
with a large volume of information; some of this in
formation is explicitly included in the specification,
but most of it is background information. This back
ground information includes the definitions, assump
tions, and domain theory needed to understand the
specification, but may not be explicitly referenced by
the specification. Often, much of this background in
formation is assumed to already be in the possession
of the software engineer.

When a specification is to be formalized, several
types of formulae are required. For example, the spec
ification will generally include a formula describing
the function of the system by relating its inputs to
its outputs. In addition, the specification can include

3 5

formulae relating the abstract values of the functional
specification to lower-level interpretations, including
program state. Also, the specification can include
various temporal constraints limiting the run-time be
havior of the computation. Temporal constraints are
used to define various safety and liveness properties.
For example, requirement that a user must supply the
correct password before modifying a file is an example
of a temporal constraint. The stipulation that a par
ticular resource is not to be shared among processes is
another example of a behavior which can be formalized
in terms of temporal constraints. In principle, a set of
production rules, formalized as a set of Horn clauses,
can be derived from this specification and its support
ing definitions. To be comprehensible, however, this
rule base must be structured in some way.

One approach to structuring this rule base employs
a state transition model. The state transition diagram
is used to control the sequence of operations on a set of
auxiliary variables and objects. A state in the model
denotes an equivalence classes of states and is defined
by an invariant. Events are also defined by invariants
and can denote a combination of external and internal
software events. Some application rules become tran
sition rules describing how the system moves from one
state to another in response to events. Other rules are
classified as repair rules and are regarded as derived
from a state invariant. Repair rules operate at a lower
level than do transition rules and are responsible for
modifying the program's actual state to ensure that
it actually satisfies the invariant of the newly entered
state. Further structure can be imposed on the rule
base by dividing state among objects and limiting the
application of a repair rule to a particular object. Yet
even more structure can be imposed by introducing
hierarchical, communicating state machines similar to
those used in s ta te char ts .

A state transition model provides sequence control
and, as a consequence, satisfies a number of temporal
constrains but certain types of temporal constraints
are hard to accommodate in this way. An alternative
approach to the difficult constraints introduces com
municating state machines: one machine proposes an
initial schedule of events, a second modifies that sched
ule, and a third implements the modified schedule,
possibly by dispatching commands to yet other ma
chines. A simple example of such a model controls a
pipeline of functional components. The synchroniza
tion of these functional components is controlled by
an additional component which schedules operations
and dispatching commands to the components of the
pipeline, ensuring that they fire in the appropriate se
quence. This type of control can be used for more
complex constraints such as ensuring that a compo
nent releases all acquired resources even in the event
of a fault which prematurely terminates the compu
t a t i o n . W h i l e s t a t e m a c h i n e m o d e l s o f t h i s s o r t c a n

depend on future knowledge and cannot always be di
rectly implemented, they can provide a comprehensi
ble model of the program.

Recovering application rules: Considerable code
level analysis is required to recover application rules
and organize them in terms of a state transition model.
This type of reverse engineering effort must be guided
by a strong set of expectations as to the structure
of the model to be recovered. This expected model
should identify the set of hierarchical, communicating
state machines which the engineer expects to use use
in structuring the rule base, and, as discussed above,
these machines can negotiate the sequence in which
operations are executed. The ability to model the par
ties to this "negotiation" as parallel, communicating
state machines allows rules governing resource sharing,
deadlock avoidance, or fault tolerance to be separated
from the underlying functional behavior. These ex
pectations provide important guidance to the reverse
engineering process, and the software engineer should
make conjectures as to the states, events, and transi
t i ons ou t o f wh i ch t hese mach ines w i l l be bu i l t even i f

they will be revised in light of code-level analysis.
Once the state-machine model has been hypothe

sized, the software engineer can begin to reconstruct
the application knowledge used in the imperative pro
gram. Because of the design time evaluation of se
lected control components, information determining
which operations are to performed and in which se
quence is spread throughout the program text.

There are several important examples of "informa
tion spreading" which must be considered in future
research. For example, software designs frequently
fuse conceptually separate computational functions in
order to eliminate large intermediate data structures
or eliminate redundant computation. Similarly, a de
sign will ignore the natural parallelism among a set of
computational activities, replacing them with a single
sequential program in which a schedule interleaving
t h e i r e x e c u t i o n h a s b e e n h a r d w i r e d . M o s t d i f fi c u l t o f
all to recognize, functional components will be textu-
ally interleaved with other code responsible for ensur
ing various safety and liveness constraints. Informa
tion spreading results from the integration of applica
tion knowledge and program control, but regardless of
the types of information which have been interleaved,
the recurring and difficult problem is that of recog
nizing and distinguishing among transition and repair
rules; a task which we believe cannot be completed
based on textual cues alone but also requires a prior
understanding of the application domain.

As discussed above, limiting the context in which
rules can be applied allows their guards to be sim
plified and also allows corresponding simplification of
the program's state. This interleaving and simplifi
cation must be "undone" as part of recovering appli-

3 6

cation rules. These optimizations are troublesome to
the reverse engineering effort because they obscure the
global conditions under which a particular operation
is executed. As part of reconstructing the rules, the
software engineer must recognize the state transition
models representing the various " parallel" computa
tional activities and must associate operations with
these various models. As has been discussed above,
these parallel activities can relate not only to the
software's functional behavior, but to nonfunctional
aspects, including operation scheduling, data control
and memory management, of it's behavior as well.
This is an important modeling capability because in
some situations, e.g., fault avoidance, fault handling,
and synchronization, the decision logic can be come
quite complex.

Because of interleaving, textually adjacent opera
tions can be assigned to different models in a set of
parallel models. When decomposing a block of code
in this way, the software engineer must reconstructing
the guards associated with the individual operations
by first recognizing the local conditions under which
the operation is executed and then proceeding to rec
ognize progressively more global conditions.

The hardest part of reconstructing application rules
is that of determining the implicit conditions repre
sented by the program counter. The conditions under
which an operation is performed include both relation
ships satisfied by the program's variables at the time
the operation is executed and conditions which held at
earlier times in the program execution thus allowing
the program counter to reach the operation. While de
signing the program so that the program counter can
implicitly represent complex conditions greatly sim
plifies the residual problems in program control and
reduces the amount of information which must be ex
plicitly represented in the program's data structures,
the identity of the application rules is correspondingly
o b s c u r e d .

One approach to reconstructing application model
transforms the imperative program into a set of iter
ative guarded commands, and the iterative guarded
command can be used for finite state machines of the
sort we have been discussing.

As we use them a t rans i t ion ru le has the form
S,- A Ej transition(Sib). The guard in this rule
has two components, Sj and E,-, the first denoting an
invariant defining an equivalence classes of states and
the second an equivalence class of events. The transi
tion transition(Sfc) "repairs" the program state so that
it satisfies the invariant Sk instead of S,-, which had
characterized the state preceding the transition.^

In principle just one set of repair rules is needed for
a state, and this set fires whenever the state is enter,

' A set of repair rules responsible for ensuring a state invari
a n t c a n b e s t r u c t u r e d i n t e r m s o f a l o w e r - l e v e l s t a t e t r a n s i t i o n
m o d e l .

thereby ensuring the state invariant is satisfied. In
practice, however, a set of repair rules is specialized to
a particular transition. This specialization is possible
because the invar ian ts fo r the source s ta tes and events

serve as preconditions for the associated set of repair
r u l e s .

The basic analytical problem is that of replacing
a sequence of statements with an iterative guarded
command. This requires that each operation in the
sequence be associated with a guard and that the pro
gram state be correspondingly enriched to ensure that
the operations will still be performed in the correct
sequence. In imperative code, explicit operation se
quencing may be used either to implement a transi
tion rule or to control chaining of repair rules. The
software engineer has considerable latitude as to how
a sequence of operations is to be viewed, and his deci
sion depends on the expected model guiding the work.
A similar problem arises in decomposing conditionals,
but at least with them some of the conditions under
which an operation is performed are already explicitly
represented.

In developing the state machine based model, it
is important to distinguish between those conditions
related to state from those which describe an event
triggering a transition. Since there can be consider
able latitude in the definition of an event (e.g., rec
ognizing input to the program or an event external
to the system, a "parallel activity" enters or leaves a
state, or an operation returned a result within a desig
nated range), this decision must also be driven by the
structure of the expected model, typically consisting
of several communicating, hierarchical state machines.

This abstract has introduced a model for structur
ing application rules, and has described a related pro
cess for recovering these rules from application code.
We have developed over the course of our experiments
in reverse engineering, and appears to be especially
useful when studying code which must coordinate the
operation of several hardware devices. Accounts of
our experiments are available in [1], [2] and [3]. In
the near future, the model described here is to be ap
plied to a real-time component having extensive fault
diagnosis and fault handling responsibilities.

R e f e r e n c e s :

[1] B. Johnson, S.Ombum and S. Rugaber, "A Quick Tools
Strategy for Program Analysis and Software Maintenance,"
Proceedings of ike Software Maintenance Conference, to ap
pear, 1992.

[2] S.Ombum and S. Rugaber, "Reverse Engineering: Re
solving Conflicts between Expected and Actual Software De
signs," Proceedings of the Software Maintenance Conference,
to appear, 1992.

[3l S. Rugaber, S. Ombum, and R. LeBIanc, "Recognizing
Design Decisions in Programs," IEEE Software, 7(1), January,
1 9 9 0 .

3 7

Program Understanding Through Ad Hoc, Interactive Query Facilities
On A Reverse Engineering Repository

Gary Ostrolenk
Lloyd's Register, 29 Wellesley Rd, Croydon, CRO 2AJ, UK

A b s t r a c t
In any reverse engineering ioolkit, facilities for the

maintenance engineer to query its repository directly
are essential for program comprehension. Along with
structured source code browsers and static analysis
tools, they enable the engineer to gain an initial un
derstanding of the code and they support the engineer
in abstracting to higher level descriptions of the appli
cation. This paper outlines some of the requirements
such query facilities should satisfy.

1 I n t r o d u c t i o n
The European Esprit project REDO established the

utility of building a reverse engineering toolkit on top
of a central repository shared by all its tools [6]. The
repository, the System Description DataBase (SDDB),
contains a fine grain model of the semantics of the
code of the application under maintenance [4]. This
is populated initially by a collection of parsers for the
programming language, job control language, DBMS
DDL and DML etc. in which the application is writ
ten. Other tools subsequently browse, analyse, ma
nipulate, restructure, annotate and abstract from this
representation of the application.

The SDDB is built using a PCTE-compliant soft
ware engineering database, the IPSYS Tool Builder's
Kit (TBK), which provides direct support for an
Entity-Relationship-Attribute (ERA) data model with
entity type inheritance, 1:1, 1:M and M:M relation
ships, Unix-like path specifications treated as func
tional compositions and some of the features of the
SQL SELECT statement [1].

One serious limitation of software engineering
databases identified during the REDO project is their
lack of a high level interface through which users (in
our case, maintenance engineers) can make interactive
and ad hoc queries and updates. Existing interfaces
are implemented either as library functions embedded
within a compiled programming language or as inter
preted procedural scripts.

[5] identifies three different approaches to reverse
engineering: user-directed search and transformation techniques, transformational approaches, and
knowledge-based approaches. The REDO project con
centrated on transformational approaches. Provision
of a Query Tool embodying a high level database inter
face significantly enhances the REDO toolkit, enabling
it to support user-directed search and transformation
techniques.

In addition to providing a valuable interactive, ad

hoc data interrogation facility in its own right, the
Query Tool gives added value to the existing REDO
tools and exploits their synergy as a toolkit. The
Query Tool enables users to specify selection condi
tions for the entities to be manipulated by other tools.
It can be used for simple static analysis, and to retrieve
information required as parameters for the invocation
of other tools, such as the names of application pro
cedures. The REDO structure and diagram editors
provide a user-friendly interface for the Query Tool.
2 Deta i led Requi rements

The detailed requirements for the Query Tool can
be grouped into successively higher-level categories
of facilities for the user: hiding physical details of
the TBK DataBase Interface (DBI), logical enhance
ments to the TBK DBI, ergonomic enhancements to
the TBK user interface, and hiding logical details of
the SDDB schema. For brevity, this paper discusses
only logical enhancements to the TBK DBI, focussing
on features of SQL not available in the TBK DBI.

Queries on a TBK database are evaluations of at
tributes applied to entities. Attributes are either
entity-valued (i.e. links) or printable (i.e. scalar).

It is possible to express some complex queries by
composing attributes. Consider a database record
ing information about a college's departments, tu
tors and students. To find out the locat ion of the
department to which the tutor of Jones belongs, a
user might first evaluate the attribute, tutoredJay,
applied to Jones, and then in a separate query eval
uate the attribute, belongsjto, applied to the tu
tor returned by the first query. Finally, the user
would evaluate the attribute, locatedjat, applied to
the department returned by the second query. The
T B K D B I a l l o w s t h e t h r e e a t t r i b u t e s t o b e c o m
posed. The user can evaluate the single complex
attr ibute, tutored_by/belongs_to/ locatedjat , ap
plied to Jones.

This is equivalent to the following SQL query:

SELECT DEPARTMENT.LOCATED.AT
FROM DEPARTMENT, TUTOR, STUDENT
WHERE STUDENT.NAME = ' JONES'
AND STUDENT.TUTORED_BY = TUTOR.NAME AND
TUTOR.BELONGS.TO = DEPARTMENT.NAME

Composition of attributes is valuable not only be
cause it can make queries more concise, but also be
cause it enables the user to specify the sequence in

3 8

which the joins of the query are evaluated. The
SQL expression of the query above does not indicate
whether the database should: fl) retrieve all the tu
tors and the locations of their aepartments, and then
select the one who tutors Jones, or (2) retrieve the stu
dent called Jones, then retrieve the tutor who tutors
her, and finally retrieve the location of the department
to which that tutor belongs. The sequence of evalua
tion of the joins of a query can significantly affect its
performance. In some ways, it is an advantage of SQL
that it abstracts from such procedural considerations.
Query optimisation is the concern of the DBMS, not of
the user. Often, however, the optimum expression of
the query is intuitively clear to the user, reflecting the
logic of the query itself. This is particularly the case
in domains such as software engineering which lend
themselves to representation in network data models
(c.f. Section 19.3 of [6]).

However, there are a number of features of SQL
which enable complex queries not expressible in the
TBK DBI as single declarative attributes. Currently,
to make such queries involves embedding more than
one query within procedural code. Provision of such
features in a Query Tool would make ad hoc querying
of the SDDB significantly easier.

Appl icat ion Of An At t r ibute To The Members
Of A Sequence
One common form of database query is to retrieve the
value of an attribute applied to all the entities of a
certain type. For instance, and continuing the college
example, a user might want to know the names of all
the tutors in the college. In SQL, this query is simply
expressed as SELECT TUTOR.NAME FROM TUTOR.

The TBK DBI does not support such a single
query because it distinguishes single and multiple-
valued attributes. The attribute, ! TUTOR, retrieves a
sequence of tutors. Each composition of attributes,
say attl/att2, applies att2 to the result of evalu
ating attl. The attribute, name, characterises in
dividual tutors, not sequences of tutors. Therefore,
!TUTOR/name is an invalid attribute composition.

To achieve the same result using the TBK DBI,
the user must first evaluate the keyed bag attribute,
!TUTOR " name, which returns a sequence of tutors
keyed by name, and then iterate through the members
of the sequence evaluating each of their names.

Jo in ing A t t r i bu tes Of More Than One En t i t y
T y p e
Another common form of database query is to join
attributes of more than one entity type. For instance,
a user might want to retrieve Jones' home address and
the address of her hall of residence. Suppose that each
student's home address is stored as an attribute of the
student, and that information about college halls of
residence is stored centrally. In SQL, the query could
be expressed as:

SELECT STUDENT.HOME.ADDRESS, HALL.ADDRESS
FROM STUDENT, HALL
WHERE STUDENT.NAME = ' JONES'

AND STUDENT.LODGES_IN = HALL.NAME

The TBK DBI does not support such single queries
because functional composition is linear. Although
the tuple construct can be used to retrieve two print
able attributes of the same entity, the attributes of
a tuple cannot themselves be composed. Hence,
[home^ddress; lodges_in/address] is not a valid
tuple attribute and cannot be applied in a single query
to Jones .

To achieve the same result using the TBK DBI, the
user must first evaluate the attribute, home_address,
applied to Jones, and then in a separate query evaluate
the attribute, lodges_in/address, again applied to
Jones .

Boolean Logic
Support for boolean operators within attributes is
minimal in the TBK DBI. Alternate values (or value
ranges) can be specified for a printable key attribute.
If a key is a tuple of several attributes, values or value
ranges can be specified for each of them. Hence the
TBK DBI provides disjunction for key values of a sin
gle attribute, and conjunction of key values for differ
ent attributes of tuples.

Continuing with the college database illustration, a
user might want to know the name, funding authority
and age of all mature students from Yorkshire or Kent.
The following SQL query could be used:

SELECT NAME, AGE, FINANCED.BY FROM STUDENT
WHERE AGE > 26 AND (FINANCED.BY = 'Kent'

OR F INANCED.BY = 'Yo rksh i re ')

Using the TBK DBI, the user could evaluate the
attribute,
! [* ;>26;Yorkshire,Kent] .STUDENT- [NAME;AGE.-FINANCED^BY]

and then iterate through the sequence of students re
turned evaluating their key values.

However, a user might also want to know the names
and funding authorities of all students who do not
come from Yorkshire or Kent. This query can be ex
pressed using the following SQL command:

SELECT NAME, FINANCED.BY FROM STUDENT
WHERE NOT (FINANCED.BY = 'Kent'

OR F INANCED.BY = 'Yorksh i re ')

It cannot be expressed as a single query using the
TBK DBI because negation is not supported.

A user might also want to know the name, age and
funding authority of all students who are mature or
are self-financing. This can be expressed using the
following SQL query:

SELECT NAME, AGE, FINANCED.BY FROM STUDENT
WHERE AGE > 26 OR FINANCED.BY = 'self

It cannot be expressed as a single query using the
TBK DBI because disjunction between values of dif
ferent key attributes is not supported.

3 9

Embedding Queries Within Queries
SQL enables queries to be nested. Often this facility is
a convenience, and equivalent ■'flat" queries can be for
mulated using joins. However, there are some queries
which can only be expressed using nested constructs.
The TBK DBI does not support any nested queries
in this sense. Several examples of nested queries are
presented below:

1. Get the names of all students funded by Scottish
l o c a l a u t h o r i t i e s .

SELECT STUDENT.NAME FROM STUDENT
WHERE F INANCED.BY IN

(SELECT AUTHORITY.NAME FROM AUTHORITY
WHERE COUNTRY = 'Scotland')

2. Get the names of all students who have research
ass i s tan t s as t u to r s .

SELECT STUDENT.NAME FROM STUDENT
W H E R E E X I S T S

(SELECT * FROM TUTOR
WHERE STUDENT.TUTORED_BY = TUTOR.NAME
A N D T U TO R . S TAT U S = ' r e s e a r c h . a s s i s t a n t ')

3. Get the names and addresses of all students who
have gained an ">1" grade in all subjects.

SELECT STUDENT.NAME, STUDENT.ADDRESS
F R O M S T U D E N T W H E R E N O T E X I S T S

(SELECT ♦ FROM SUBJECT WHERE NOT EXISTS
(SELECT * FROM EXAM

WHERE EXAM.SUBJECT = SUBJECT.NAME
AND EXAM.EXAMINEE = STUDENT.NAME
AND EXAM.GRADE = 'A'))

Queries 1 and 2 can be expressed as flat joins. For
instance. Query 1 can be reformulated as:
SELECT STUDENT.NAME FROM STUDENT. AUTHORITY
WHERE STUDENT.FINANCED.BY = AUTHORITY.NAME
A N D C O U N T R Y = ' S c o t l a n d '

Similarly, queries involving one existential quantification (i.e. one SELECT ... WHERE [NOT] EXISTS
...) can be reformulated as flat queries. However,
Query 3 cannot be flattened. Its double nesting of
negated existential quantification, equivalent to uni
versal quantification, captures an important feature
of queries.

D e fi n i t i o n O f V i e w s
To minimise data redundancy, and hence to minimise
the need for application source code to maintain in
tegrity in the database, SQL enables views to be defined
onto the base relations of a schema. These views ap
pear to the user as relations, and are tailored to the
needs of particular users. However, they are not stored
directly on the database but are derived at the time
of query from the base relations. Each view is defined
a s a S E L E C T . . . s t a t e m e n t .

As an example, a view might be defined for Query 3
above, called PERFECT^TUDENT:

CREATE VIEW PERFECT.STUDENT (NAME, ADDRESS)
AS SELECT STUDENT.NAME, STUDENT.ADDRESS

F R O M S T U D E N T W H E R E N O T E X I S T S
(SELECT * FROM SUBJECT WHERE NOT EXISTS

(SELECT * FROM EXAM
WHERE EXAM.SUBJECT = SUBJECT.NAME
AND EXAM.EXAMINEE = STUDENT.NAME
AND EXAM.GRADE = 'A'))

It is then possible for an inexperienced user to
make use of this complex query simply by using the
PERFECTJ5TUDENT view. For instance, to find out
which mature students have "A" grades in all sub
jects, the following three line query can be used:

SELECT STUDENT.NAME FROM PERFECT_STUDENT
W H E R E S T U D E N T . A G E > 2 6

The definition of views is not supported by the TBK
D B I .

E n t i t y I d e n t i t y
The Relational Model [2] treats all data as relations
(tables), i.e. as sets of tuples (records) of attribute
values. Entity types are modelled as relations. Each
individual entity is represented by a tuple of attribute
values in the relation modelling its entity type. There
are two important consequences of this representation:
it is not possible to have two entities of the same type
with identical attribute values, and each entity type
must have a unique key identified for it in the schema.

The Extended Relational Model [3] and most OMSs
support the concept of entity identity independently
of the attributes which are defined for the entity type
in the schema. This has enabled OMSs to provide a
means of referring to particular entities through the
use of variables whose domain is the class of entities.
These variables are, in effect, pointers to entities.

The TBK DBI supports such entity identity
through the use of entity tokens, which are variables
within the environment within which the query is
made. They can be the subject of queries (i.e. that to
which an attribute is applied) but they cannot be used
within attributes. Different entity tokens can be com
pared for identity using the function, same-entity.
Entity tokens are relative to the process in which they
are created, and cannot be used for entity identifica
tion over several processes.

The TBK DBI also provides a system-defined at
tribute, $ID, for all entities. In effect, this is a unique
key for all entities whose value is assigned and main
tained by the system, but which can be read by
users. Hence it can be evaluated and compared within
queries to establish identity between entities.

It is essential that any software engineering query
language satisfying the requirements outlined in this
paper retains the ability to refer to entities using en
tity tokens within the query, rather than performing
explicit joins on the $ID attribute.

4 0

Acknowledgement
T h e a u t h o r w o u l d l i k e t o t h a n k K e v i n L a n o a n d

Mary Tobin for their helpful comments on this paper,
and the Committee at Lloyd's Register for permission
to publish it. The views expressed in the paper are
the opinions of the author and are not necessarily the
views of Lloyd's Register.

R e f e r e n c e s
[1] John Cartmell and Albert Alderson. The Eclipse

Two-Tier Database. In Frank Bot t , ed i tor,
ECLIPSE: An Integrated Project Support Environ
ment. Peter Peregrinus Limited, 1989.

[2] E F Codd. A relational model of data for large
shared data banks. CACM 13 NO.6, June 1970.

[3] E F Codd. Extending the database relational
model to capture more meaning. ACM Transac
tions on Database Systems, 4(4):397-434, Decem
b e r 1 9 7 9 .

[4] Gary Ostrolenk and Mary Tobin. The REDO
SDDB: A repository for reverse engineering. Tech
nical report, Lloyd's Register, Lloyd's Register
House, 29, Wellesley Road, Croydon CRO 2AJ,
England, 1992.

[5] Mary Tobin (editor). Reverse engineering; A review. Technical Report SREDM\TP01\01.010,
Lloyd's Register, Lloyd's Register House, 29,
Wellesley Road, Croydon CRO 2AJ, England, Oc
t o b e r 1 9 9 2 .

[6] Henk van Zuylen, editor. The REDO Compendium
of Reverse Engineering for Software Maintenance.
Wiley, 1992.

41

Program Comprehension As A Cooperative Process
Position Statement - 1992 Workshop on Program Comprehension

Alex Quilici
University of Hawaii at Manoa

2540 Dole St, Holmes 483
Honolulu, HI 96822

alex@wiliki.eng.hawaii.edu

We've been exploring approaches to automated program understanding of realistic
C and Fortran programs. Our experience in this endeavor have led to us to the belief
that automated program understanding is doomed unless it's designed as part of a
complete environment to assist programmers in understanding software.

Current systems view program understanding as the problem of recognizing in
stances of programming cliches. Roughly speaking, there are three classes of cliches:

1. Domain-independent programming structures (such as a read-process loop).
2. Domain-independent programming plans (such as a bubble sort).
3. Domain-dependent programming plans (such as computing the distance between

a pair of satellites).

Most program understanders focus on the first two categories. The underlying
assumption is that a significant portion of many programs is composed of some rea
sonably sized set of domain-independent cliches.

But is this assumption valid? We recently studied two large classes of programs to
find out. The first class involved a set of small C textbook programs. Since these pro
grams should be highly filled with domain-independent cliches, our guess is that they
can provide a rough upper bound on the percentage of real-life code that's composed
from these sorts of cliches. Unfortunately, over half of these programs consisted of
either domain-dependent cliches or code that seemed too unique to classify as a cliche.
Our guess was that real-world software systems would be much worse. Furthermore,
in examining textbook and student explanations of program behavior, we found that
it's the domain-dependent cliches that are often the key to understanding a program's
behavior. Just consider the difference between describing a code fragment solely in
terms of domain-independent cliches (generates pairs of array subscripts, does some
computation involving the paired elements of the array, and saves the smallest re
sult) rather than in terms of domain-dependent cliches (find the distance between the
closest points in a set of points).

The second class we studied involved a set of real-world Fortran simulation pro
grams. These tend to solve domain-specific modeling problems, so we would expect
that a significant fraction of their code would be domain-dependent. Not surpris
ingly, we would wound up finding that these programs were so domain-dependent

4 2

that making any progress on understanding these programs required the help of a do
main expert. While close to half of these programs consisted of domain-independent
cliches, those cliches contributed little to understanding what the program was actu
ally doing. In fact, for these simulation programs the vast amount of understanding
involved recognizing how a piece of code contributed to modeling the objects and
ac t ions i n the doma in .

So it seems that automated program understanders aren't going to be able to
tackle realistic software systems any time soon. To do so, they would require vast
numbers of domain-dependent cliches. That means they would have to scale up to
orders of magnitude more cliches than current program understanders can deal with,
and that they would need a mechanism for forming these large libraries of domain-
dependent cliches. And on top of that they would have to deal with plenty of code
that doesn't seem to be cl iched at al l .

Our approach has been to view program understanding as a cooperative process
between system and programmer. This view suggests several duties for the system,
all of which we have been exploring in the context of programs that make heavy use
of geometric objects.

The first duty is to record as much of the current combined system and program
mer understanding of the program as possible. This means it's necessary to provide a
mechanism by which programmers can record their understanding of a program. The
programmer, for example, should be able to record that a particular pair of variables
represent the X and Y coordinates of a point, and that a particular code fragment
is computing the distance between two points. Similarly, it's necessary to allow the
programmer to interactively indicate new cliches, as weU as new variants of existing
cliches. This suggests one way to gradually construct a library of domain-dependent
cliches. Both tasks require an explicit representation of the domain model, as well as
an explicit, programmer understandable and providable representation of cliches and
the constraints used to recognize them.

Our approach has been to let the programmer build a detailed type hierarchy of
the objects and actions in the domain, and to provide links between the code in a
particular program and the domain objects and actions. For example, in the simplest
case a variable may correspond directly to a particular attribute of a given domain
object, and a section of code may correspond to the computation of another attribute
of that object or a relationship between a pair of objects. The idea is that as various
programmers record their understanding of the code, the system gradually builds up
a domain model and an explicit mapping of that model to program code. In addition,
when the programmer link a code fragment to a domain action, the programmer
specifies the constraints the programmer used to recognize that relationship. This
provide information that the system can use to automatically recognize that cliche in
t h e f u t u r e .

The second duty is to suggest to the programmer what a particular piece of code
might be doing when the system can't confirm it. The system, for example, might
point out that one code fragment appeared to be computing a distance, but that the
values being subtracted and squared didn't appear to be coordinates. This requires
extending current program understanders to use indexing techniques to limit the

4 3

number of cliches considered for any given fragment of code, and to have an explicit
representation of the importance of different components of cliches. Along the same
lines, the system must be able to explain its cliches and reasoning to the programmer.
Ideally, the programmer could be able to query the system about the purpose of a
particular piece of code, or why a particular cliche wasn't recognized in a particular
place where the programmer believes that it's occurring.

Our approach in this area has been to explicitly store indexing information with
each cliche and to explicitly represent certain cliches as specializations of other cliches.
For example, the distance cliche is indexed by the explicit presence of a square root
function or a sum of squares. In addition, each cliche also has a computationally
inexpensive filter associated with it for determining whether it was falsely indexed.
For example, with the distance cliche the filter is whether the values being summed
are both the result of subtractions. The system only scans the code for indexes to
cliches in its library, and tries to fuUy match only those cliches that pass through
the filter. When a particular piece of code doesn't correspond to any cliche, the
system presents the considered cliches and failed constraints to the programmer, so the
programmer can have an idea of what the system thought were relevant possibilities.
The programmer can then create new cliches that are a generalization or specialization
of these existing cliches.

Our work on both these tasks is its early stages. However, we feel our approach of
treating program understanding as a cooperative effort between the programmer and
the system is a promising one, and that the problems of representing, accessing, and
acquiring domain-dependent cliches are crucial to eventually creating useful program
understanding systems.

4 4

Position Paper
Workshop on Program Comprehension

REVERSE ENGINEERING BY S IMULTANEOUS PROGRAM
A N A L Y S I S A N D D O M A I N S Y N T H E S I S

Spencer Rugaber

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

(404) 894-8450

1 . I N T R O D U C T I O N

There is several issues concerning appropriate strategies for analyzing a program. One such issue
concerns whether the program analysis should proceed top-down or bottom-up. For example, Soloway
and his colleagues propose a bottom-up approach involving the detection of patterns or plans in the pro
gram text[9]. Brooks, on the other hand, proposes a scheme whereby analysts are guid̂ by their
expections of a program's content and search for confirming beacons in a top-down fashion[2].

Another issue arises when considering the relative importance of a program's formal content, the
executable statements and declarations in the program's text, and its informal aspects, such as com
ments and mnemonic variable names. Biggerstaff e/ a/.[l] is among the few that concentrate on the
informal information to construct a conceptual hierarchy describing the application domain with which
a program in concerned.

Synchronized Refinement is a reverse engineering methodology that addresses these issues. It
coordinates the bottom-up analysis of the program text with the top-down construction of a description
of the specific application that the program accomplishes.

2 . S Y N C H R O N I Z E D R E F I N E M E N T

Chikofsky and Cross[3] define reverse engineering as "the process of analyzing a subject system
to identify the system's components and their interrelationships and create representations of the system
in another form or at a higher level of abstraction". Typically, this includes both a description of what
the system does, but also how it goes about doing it.

Synchronized Refinement consists of the parallel analysis of the source code and synthesis of a
functional description. The process is driven by the detection of design decisions in the source code.
Each decision is annotated in the functional description. The annotation states how the decision contri
butes to the function accomplished by the corresponding code. After each decision is detected and
annotated, the corresponding part of the source code is replaced by an abbreviated description. In this
way, the source code continually grows shorter while the functional description grows more complete.

Design decisions are structural decisions made by the original designer or programmer. Typical
design decisions include the decomposition of a function into its subfunctions, the handling of special
cases, and the use of one data structure to represent another that is not directly provided by the pro
gramming language. Other decisions include the encapsulation of a set of procedures into a module

45

and the introduction of a data item to save the result of a computation for later use. A more detailed
description of design decisions is given in[8].

The synthesis process begins with a high-level description of the overall program as obtained
from a review of the documentation, possibly augmented with comments from the source code. This
description leads to certain expectations in the reverse engineer's mind. For example, if a sorted report
is to produced, it is expected that part of the code will be responsible for the sort (or preparing data
for an external sort), and there is likely to be a section controlling the pagination of the report. Note
that the expectations need not be complete nor even entirely accurate at this stage.

A dynamic list of expectations is constructed. As the analysis process proceeds, decisions are
detected that relate to an expectation. For example, in the case of the pagination expectation, a section
of code is found that keeps a counter that resets after reaching the length of a page. The annotation for
the detected decision is placed together with the relevant expectation, specifying the type of the deci
sion and the corresponding sections of the program. During the process, certain expectations will be
confirmed and others may be refuted. A confirmed expectation engenders others. Gradually, a
hierarchical description of the structure of the program emerges. As the program source code shrinks,
the functional description expands. An alternative procedure, based on control flow analysis and pro
gram slicing, is described in a paper by Hausler et al[4].

3 . E X P E R I E N C E

Synchronized Refinement has now been used successfully on several projects. Besides the exer
cize described in[8] that involved its use on a short numerical program written in FORTRAN, it has
been used on two other substantial systems. Papers in this year's Software Maintenance Confer-
ence[6,7] describe its use in understanding a large (> 1(X)KL0C) real-time, embedded system written in
a systems programming language. The reverse engineering resulted in both the detection of several
bugs and in enabling a redesign that significantly improved the maintainability of the system. Syn
chronized Refinement has also been used to reverse engineer a moderate-sized (~ lOKLOC) COBOL
information system. The reverse engineering enabled an object-oriented re-engineering into Ada[5].

4 . I S S U E S R A I S E D

Synchronized Refinement is a labor-intensive process. In principle, it is capable of guiding a
reverse engineering activity to any degree of resolution. However, in doing this, the point may be
reached where the cost of the reverse engineering approaches the cost of complete redevelopment.
Thus the challenge becomes to guide the reverse engineering process to those aspects of the program
that will yield the highest payback, for example, the capture of reusable components or the codification
of business rules.

An issue also arises of how to represent the information derived from the reverse engineering pro
cess. The use of an integrated representation makes possible internal consistency checks, supports the
production of documentation in a variety of formats, and may be useful in a later redesign effort

R e f e r e n c e s

1. Ted J. Biggerstaff, Josiah Hoskins, and Dallas Webster, "DESIRE: A System for Design
Recovery," MCC STP-08I-89, April 1989.

2. Ruven Brooks, "Towards a Theory of the Comprehension of Computer Programs," International
Journal of Man-Machine Studies^ vol. 18, pp. 543-554, 1983.

3. Elliot J. Chikofsky and James H. Cross II, "Reverse Engineering and Design Recovery: A Tax
onomy," IEEE Software, vol. 7, no. 1, pp. 13-17, January 1990.

4. Philip A. Hausler, Mark G. Pleszkoch, Richard C, Linger, and Alan R. Hevner, "Using Function
Abstraction to Understand Program Behavior," IEEE Software, vol. 7, no. 1, pp. 55-63, January
1 9 9 0 .

4 6

5. Reginald L. Hobbs, John R. Mitchell, Glenn E. Racine, and Richard Wassmath, "Re-engineering
Old Production Systems: A Case Study of Systems Re-development and Evaluation of Success,"
Emerging Iirformation Technologies for Competitive Advantage and Economic Development:
Proceedings of the 1992 Information Resources Management Association International Confer
ence, pp. 29-37, Harrisburg, Pennsylvania, May 1992.

6. Bret Johnson, Steve Ombum, and Spencer Rugaber, "A Quick Tools Strategy for Program
Analysis and Software Maintenance," Proceedings of the Conference on Software Maintenance,
Orlando, Horida, November 1992.

7. Stephen B. Ombum and Spencer Rugaber, "Reverse Engineering: Resolving Conflicts between
Expected and Actual Software Designs," Proceedings of the Corference on Software Mainte
nance, Orlando, Florida, November 1992.

8. Spencer Rugaber, Stephen B. Ombum, and Richard J. LeBlanc, Jr., "Recognizing Design Deci
sions in Programs," IEEE Software, vol. 7, no. 1, pp. 46-54, January 1990.

9. E. Soloway and K. Ehrlich, "Empirical Studies of Programming Knowledge," IEEE Transactions
on Software Engineering, vol. SE-10, no. 5, pp. 595-609, September, 1984.

4 7

I m p r o v i n g P r o g r a m C o m p r e h e n s i o n o f
O b j e c t - O r i e n t e d S o f t w a r e S y s t e m s

w i t h O b j e c t - O r i e n t e d d o c u m e n t a t i o n

Johannes Sametinger

I n s d t u t fi i r W i r t s c h a f t s i n f o n n a t i k
CD Laboratory for Software Engineering

Johannes Kepler University of Linz
A-4040 Linz, Austria

Object-oriented programming has brought many advantages to the software engineering
community. Especially, the reuse of existing software components and application
frameworks has improved the productivity in software development considerably. Now,
the object-oriented programming paradigm has advanced in years and increasingly ob
ject-oriented software systems have to be maintained. Projgram comprehension plays a
major role in software maintenance. Additionally, the increased reuse of software com
ponents, which is propagated and supported by object-oriented programming, necessi
tates the understanding of existing software during development and, thus, program
comprehension becomes even more important

Very often the only information a maintenance programmer can trust is the source code.
It is the only accurate, complete and up-to-date representation of a program. However,
source code listings are hardly suited to representing design decisions, the global system
structure, or the interactions among different system components. System documenta
tion is necessary to enable reuse and maintenance of software components. It should re
main valid as long as the software is being used. Nevertheless, system documentation is
often inadequate and out of date, and therefore unreliable and misleading.

Good (system) documentation should be complete, current, and consistent in style. We
apply object-oriented technology to documentation in order to improve its quality by
better reflecting the logical structure of a system. This way of organizing software doc
umentation eases program comprehension of object-oriented systems.

Class Libraries and Application Frameworks

Typically, object-oriented software systems are extensions to class libraries or applica
tion frameworks. This characterization should become true for the documentation as
well. Hence, such documentation should not describe an entire system from scratch; in
stead, it should contain a description of all extensions and modifications of the reused
components and describe all system-specific parts as well. It is assumed that separate li-

4 8

Improving Program Comprehension of Object-Oriented Software Systems... Johannes Sametinger

-should build the base forbrary documentation is available which—similar to the code-
the entire documentation.

With the object-oriented concepts of inheritance, information hiding, polymorphism,
and dynamic binding software components have become reusable and extensible without
the need to make any changes in the source code of these components. The reuse of
whole collections of classes, called class libraries is a major step in increasing the pro
ductivity of software engineers. However, class libraries and application frameworks
have strong impacts on the comprehension process. Comprehension of a software sys
tem being based on a class library depends on the documentation of the class library it
self and the documentation of the application specific source code. In order to guarantee
complete and consistent documentation of the whole software system, the documenta
tion—similar to the code—has to be easily extended and modified without making
changes to the original documentation.

I n h e r i t a n c e o f D o c u m e n t a t i o n

Inheritance can be viewed as both extension and specialization (see Pvley88]). A class X
inherits from one or more superclasses A,B,C. The features of the superclasses are a
subset of the features of class X, i.e., X heirs and thus provides whatever A, B, and C
provide plus its own (extension). On the other hand, inheritance is used to realize an is-
a relation. For example, a rectar.gle (X) is a special visual object (A) with the features of
a visual object but specialized behavior (specialization). Inheritance is a means of better
organizing the source code of a software system, because the logical structure of the
software is getting closer to the structure of the part of the real world to be modeled.

In order to apply the inheritance mechanism to documentation, we divide the description
of classes into subsections that can be modified and extended in subclasses. Thus, the
documentation of a class is a combination of class specific descriptions plus the inherited
subsections of the superclasses.

d o c u m e n t a t i o n o f c l a s s D

c l a s s D
c lass C
class B
c l a s s A

sect ion 1 s e c t i o n 2 sec t ion 3 sec t ion 4 sec t ion 5

Fig. 1: Inheritance in the documentation of a class

Figure I contains the structure of the documentation of classes A, B, C, and D. The
documentation of class A consists of 3 sections, and classes B, C and D have five docu
mentation sections. Class D inherits section 1 from class A, sections 3 and 5 from class
B, and has sections 2 and 4 of its own. Please note that the documentation of class C
consists of five parts, though not an extra line of documentation has been written for this
c l a s s .

4 9

Improving Program Comprehension of Object-Oriented Software Systems... Johannes Sametinger

The documentation of methods is organized the same way as that of classes. It is worth
mentioning that there might be classes that do not implement a certain method.
Naturally, they do not contain any documentation for this method. However, both the
method and its documentation are available in these classes through inheritance.

C o n c l u s i o n

In our research projects we use the public domain application framework ET-h- (see
[Wei89]). Detailed documentation for the most important classes and methods of this
class library is available. Unfortunately, it is rather cumbersome to get relevant informa
tion because the data is usually spread over the descriptions of several classes
(superclasses). Therefore, we divided the documentation into sections (e.g., short de
scription, instance variables, methods, example) to be used with our programming envi
ronment DOgMA, that supports object-oriented documentation (see [Sam92]).

Although the documentation of ET-h- had not been written with inheritance in mind, the
benefits of applying this mechanism has been enormous. The possibility to get the part
of the documentation that is relevant for using a special class or method, even when it is
spread over many superclasses, made reusing a complex class library much easier, and
was especially esteemed by our students.

R e f e r e n c e s

[Mey88] Meyer Bertrand: Object-oriented Software Construction, Prentice Hall,
1988 .

[Sam92] Sametinger J.: Object-oriented Documentation, submitted for publication,
1992.

[Wei89] Weinand A., Gamma E., Marty R.: Design and Implementation of ET-h-, a
Seamless Object-Oriented Application Framework. Structured Programming
Vol. 10, No. 2, 1989.

5 0

Reengineering for Porting Transaction
Processing Applications

Larry Van Sickle and Michael Ballantyne
EDS Research, Austin Laboratory

1601 Rio Grande, Suite 500
Austin, Texas 78701

l v s @ a u s t i n . e d s . c o m a m b @ a u s t i n . e d s . c o m

A b s t r a c t

The Reverse Engineering group at EDS Research has been
developing representations and software tools to
mechanically assist in understanding and reengineering
transaction processing applications written in COBOL. A
division of EDS approached us to help them convert a very
large minicomputer application to run under GIGS on an
IBM mainframe. These two platforms provide very
d i f f e r e n t e n v i r o n m e n t s . T h e u s e r i n t e r a c t s w i t h t h e

minicomputer one field at a time, but interacts with GIGS a
full screen at a time. This and other major differences
between the two environments demand that any successful
mechanical conversion strategy employ sophisticated
feature extraction and restructuring techniques. In the
remainder of this paper we describe in more detail the
nature of this large commercial problem and the tools and
techniques being applied to solve it.

Background
The Reverse Engineering group at EDS Research has for
the last several years been developing tools with the goal of
extracting "high level" descriptions of existing applications
from the source code. Examples of high level descriptions
include data models, data integrity constraints, and
standard daLi processing paradigms such as "update a file"
or "sum a column".

Tools and Representations
A GOBOL program is first uanslated to a set of Prolog
clauses. The Prolog representation provides an abstiact
syntax tree which can be manipulated for program
restructuring and also provides direct access to every
GOBOL statement using Prolog's indexing mechanisms.
A Prolog program computes a control flow graph and some
data flow information. Prolog rules for extracting high
level descriptions, or plans [APU, Hartman], refer to the
abstract syntax tree, the control paths, and the data flow
information. Plans tliat are recognized are condensed to
Prolog terms. The toolset also contains a symbolic
evaluator used for slicing [Weiser] and generating weakest
preconditions.

Project Description
EDS has a contract with a federal agency to consolidate
many applications onto an IBM mainframe. Several large

applications comprising over two million lines of GOBOL
m u s t b e m o v e d t o t h e m a i n f r a m e u n d e r G I G S . T h e
converted applications must appear as unchanged as
possible to the end user. As part of the acceptance criteria,
EDS must provide test data which will force execution of
70%+ of the basic blocks in each program. For the sake of
efficiency it is important to minimize the degree of
"conversational" as opposed to "pseudo-conversational"
programming. In the following sections we describe the
main differences between the source and target
environments and the difficulties these difficulties impose
on the conversion.

User In te r face
A minicomputer application program interacts with the
user one field at a time. The program can display a prompt
string at any location on the screen and can display
multiple strings at multiple locations with a single
operation. The program can then place the cursor at any
location on the screen and accept v̂ ues typed by the user.
The program can respond to each value that the user types.
The program could, for example, use a value that user
typed in to look up a record and display the contents of the
record before the user types any other values. Each value
that the user types in can be checked for validity
immediately, and the user can be forced to type a valid
value before going on to any other fields.

On the mainframe using GIGS, in contrast, the program
in te rac ts w i th the user a fu l l sc reen a t a t ime . The user

types in all the values in all the fields, then transmits the
entire screen contents to the program. The program then
checks the values for validity. The program can report
errors to the user in a number of ways, but a common
method is to highlight all fields that are in error and display
a message describing the first error.

Program Control Structure
The minicomputer program begins execution and continues
execution until final program tennination. Gonceptually
the program is always executing, although in reality it may
be interrupted and swapped out while waiting for input.
During an interruption for user input the variables retain
their values. Figure 1 shows a fragment of minicomputer
GOBOL code that accepts user input.

Mainframe programs are written in what is called
pseudo-conversational style. A pseudo-conversational
program exits completely whenever it interacts with the
user. Pseudo-conversational programming is the

5 1

recommended style for mainframe transaction processing
applications because it allows tlie most efficient use of the
mainframe and therefore t l ie largest number of
simultaneous users. When a pseudo-conversational
program stops execution to accept user input, the values of
variables are losL When tJie user transmits a screen full of
data, the pseudo-conversational program begins execution
with initial values for all variables. The program can store
a block of values before it stops execution and can recover
that block of values when it starts up execution again.
Figure 2 shows in pseudo-code the usual structure of a
pseudo-conversational program.

Restructuring
The differences in user interface and control structure of
the two types of programs preclude any simple syntactic or
local translation of the COBOL code. Instead, automated
tools must recognize tiie function of large pieces of the
minicomputer program, U^nslate the recognized pieces, and
place the translated pieces in the proper place in the new
program. In some cases a recognized piece of the
minicomputer program must be split into sepai'ate pieces
and this requires a control restructuring of the pieces.

1 A - I N .
2 D I S P L A Y A .
3 A C C E P T A O N E S C A P E G O T O E N D - P G M .
4 I F A < 1 O R A > 1 0
5 D I S P L A Y E R R O R - M S G - A - 1
6 G O T O A - I N .
7 B - I N .
8 D I S P L A Y B .
9 A C C E P T B O N E S C A P E G O T O E N D - P G M .

1 0 I F B < 1 O R B > 1 0
1 1 D I S P L A Y E R R O R - M S G - B - 1
1 2 G O T O B - I N .
1 3 C O M P U T E C = A * B + 3 .
1 4 C - I N .
1 5 D I S P L A Y C .
1 6 A C C E P T C O N E S C A P E G O T O E N D - P G M .

Figure 1 Fragment of minicomputer COBOL program

Creating screens
One problem in porting the minicomputer program is
determining the format of the screen for tlie mainframe
program. The minicomputer program can display any
string at any location on the screen, and can determine at
run time which strings to display, as in Figure 3. In this
example the string displayed in line 5 overlaps the two
strings displayed in lines 8 and 10, so the mainframe
program would require two full screens or else the original
fields must be rearranged.

The tools must determine what full screens are needed in
the mainframe version of the program. To do this, tlie tools
must analyze the control paths that display prompts.

determine which prompts and input fields physically
overlap, and determine how many unique screen images
can actually be generated by the program.

1 I F F I R S T - T I M E
2 P E R F O R M I N I T I A L I Z A T I O N
3 E L S E
4 R E C E I V E S C R E E N F R O M U S E R
5 R E S T O R E S A V E D V A R I A B L E S
6 S W I T C H (S A V E D - S T A T E)
7 C A S E 1 :
8 P E R F O R M C A S E - 1 - P R O C E S S I N G
9 M O V E 2 T O S A V E D - S T A T E

1 0 G O T O S E N D - S C R E E N
1 1 C A S E n :
1 2 P E R F O R M C A S E - n - P R O C E S S I N G
1 3 M O V E m T O S A V E D - S T A T E
1 4 G O T O S E N D - S C R E E N
1 5 E N D - S W I T C H
1 6 E N D - I F .
1 5 S E N D - S C R E E N .
1 6 S A V E S E L E C T E D V A R I A B L E S
1 7 S E N D S C R E E N T O U S E R .
1 8 G O B A C K .

Figure 2 Pseudo-code generic mainframe program

1 D I S P L A Y " N A M E ; " A T L I N E 3 C O L 2 .
2 D I S P L A Y " S S N : " A T L I N E 4 C O L 2 .
3 D I S P L A Y " A D D R : " A T L I N E 5 C O L 2 .
4 I F C O U N T R Y = " U S A "

5 D I S P L A Y " S T : Z I P : "
6 A T L I N E 6 C O L 2
7 E L S E
8 D I S P L A Y " P R O V I N C E : "
9 A T L I N E 6 C O L 2

1 0 D I S P L A Y " P O S T A L C O D E : "
1 1 A T L I N E 6 C O L 1 8
1 2 E N D - I F .

Figure 3 Fragment of minicomputer COBOL program

Analyzing control paths through a typical program with
several thousand statements is combinatorially explosive.
We have developed techniques for extracting a control
subgraph consisting only of those statements that affect the
screen. We then analyze this reduced graph. The
techniques are similar to slicing [Weiser].

Recognizing User Interaction
Identifying blocks of statements in the minicomputer
program that interact with the user is an important
recognition task. For efficiency, the mainframe program
should have the minimum number of sends and receives of
screens. We need to identify the largest block of user
interactions in the minicomputer program that can be

5 2

combined into a single send and receive of a screen in the
mainframe program. This requires recognizing blocks of
code tliat validate values typed by tlie user, and recognizing
when a data dependency or control dependency requires
that a send and receive be executed.

Determining Variables to be Saved
T h e v a l u e s o f a l l v a r i a b l e s a r e r e i n i t i a l i z e d w h e n t h e
mainframe program receives a screen of data from the user.
The mainframe program can store a block of values before
it stops execution and can recover tliat block of values
when it starts up execution again. The porting tools must
determine which variables to save. We accomplish this
with a form of live variable analysis.

C o n c l u s i o n
Many of the application programs to be converted are quite
simple. Some, however, are very complicated. Several
application programs have over 500 conflicting pairs of
screens. Analyzing these conflicts without any mechanical
aid would be a daunting challenge. It would be similarly
difficult to determine solely by manual inspection which
variables must be saved across program invocations.

The tools we have developed have proved to be
adaptable and effective in attacking the conversion problem
described here. The conversion problem has, in turn,
driven the development of more refined tools to understand
and analyze source code. A knowledge-based approach to
recognition and analysis has proved vital to success in this
project.

R e f e r e n c e s

[APU] Van Sickle, Larry and Hartman, John E., 1992.
Introduct ion to the First Workshop on Art ificial
Intelligence and Automated Program Understanding, Notes
of the Workshop on Artificial Intelligence and Automated
Program Understanding, Tenth National Conference on
Artificial Intelligence, San Jose, CA.

[Hartman] Hartman, John E. 1990. Automatic Control
Understanding for Natural Programs. Ph.D. dissertation,
Dept of Computer Sciences, University of Texas at Austin.

[Weiser] Weiser, Mark, July 1984. Program Slicing, IEEE
Transactions on Software Engineering SE-10:352-357.

5 3

From Code Comprehension Model to Tool Capabilities

A. von Mayrhauser
A. M. Vans

Department of Computer Science
Colorado State University

Fort Collins, Co 80524

5 4

1 In t roduc t ion

A major part of the maintenance effort is understanding the existing code. If we can define and
present the maintenance programmer with information that best helps to understand the code, we
can significantly improve quality and efficiency of program understanding and thus maintenance.
Our research goal is to develop a tool capability model based on an integrated code comprehension
model. This will lead to tools that support maintenance tasks more effectively.

2 Integrated Code Comprehension Model

Our integrated code comprehension model consists of four major components, (1.) Program model,
(2.) Top-down model, (3.) Situation model, and (4.) Knowledge base. The first three reflect com
prehension processes. The fourth is necessary for successfully building the other three models.
Program, situation, and top-down model building are the three processes that together construct
an understanding of code. Each component represents both the internal representation of the pro
gram being understood (or short-term memory) as well as a strategy used to build this internal
representation. The knowledge base either furnishes the process with information related to the
comprehension task or stores any new and inferred knowledge.

Opportunistic
Top-Down

/ StructuTBS \
Prognmmuig Plaitf \

A. Strategic Flaw
B . T u t i c a l P l a n a
C. Inplementation Plana i

O o o t O H o b a C e d i

/ \ i m p i e m e n i a H

<C!<̂ogran\<"" Knowledge)
Rules of Diacourae

f atuat ton>
M o d e l

S t r u c t u r e s

P X P r o n a m \'VDomain Knowledge \
^ Tbztr-Stnicture \

Knowledge)
1 . C o n t r o l P r i m e a

B. Plan Knowledge
1.AIgorithma2. Control Seqneooe
5 . D a t a - S t r u c t u i e a
4. Data-Flow (slices)
6. Syntax

C. Rules of Discourse

f Problem Domain \
Knowledge

(Real World Knowledge)
A.Pnoc t iooa l

Knowledge

/ t b l c f c X✓ CvBpn- X
\ btadoo X

r t o a
1bp-Oo«

? r w » P n t n m Y
Mcdri j

S h o r t - l V n :

\ M a p p i a n

Pncnm Systematic
Bot tom-up

Figure 1. Code Comprehension Model (Level 0)

Opportunistic orl
B o t t o m - u p f

1 Systematic

5 5

The Top Down model of program understanding is based on [2]. This process is typically invoked
during the comprehension process if the code or type of code is familiar. When code is completely
new to the programmer, Pennington found that the first mental representation programmers build
is a program model consisting of a control flow abstraction of the program [1]. Once the program
model representation is constructed, a situation model is developed. This representation, also built
from the bottom up, uses the program model to create a data-flow/functional abstraction. The
knowledge base , also known as long-term memory, is usually organized into schemas. Schemas are
grouped into partitions specifically related to the comprehension processes. For example, knowl
edge of distinctive algorithms is used by the program model building process.

As Figure 1 illustrates, any of the three sub-models may become active at any time during the
comprehension process. For example, during program model construction a programmer may rec
ognize a beacon indicating a common task such as sorting. This leads to the hypothesis that the
code sorts something, causing a jump to the top down model. The programmer then generates sub-
goals (e.g. I need to find out whether the sort is in ascending or descending order) and searches the
code for clues to support these sub-goals. If, during the search, he finds a section of unrecognized
code, he may jump back to program model building. Structures built by any of the three model
components are accessible by any other; however. Figure 1 shows that each model component has
its own preferred types of knowledge.

3 Tool Capabilities

While a comprehension model allows us to understand how programmers go about comprehending
code, it does nothing to make this process more productive. Only tools that support and help to
speed up the process would. Obviously, such tools must quickly and succinctly answer programmer
questions, extract information the programmer asks for without extraneous clutter, and represent
the information at the level at which the programmer currently thinks [3]. Above we have identi
fied three such levels. Thus tool information should be available at the program model, situation
model, and top-down model level. Tool information should accommodate the relevant knowledge
structures as weU. In addition, tools should cdd in switching between components of the code
comprehension model.

Unfortunately, our current tools faU far short in these respects. They either emphasize code
analysis capabilities like control and data flow (components useful for the program model), or stay
at higher levels of abstraction (some of our CASE tools). Even for each single modeling component,
we frequently do not see all relevant aspects tool supported (such as defining hypotheses about the
code, or identify a strategy on how to recognize code). Nor is the information represented succinctly
as an answer to a specific question (e. g. a full dataflow table as compared to a showing dataflow of
a specific variable through code highlighting and/or code elision). Connections between the three
models of code comprehension are not commonly tool supported.

In ongoing research at CSU, we developed an integrated code comprehension model that
unifies aU three existing approaches. Now we are using it to derive tool capabilities that high
quality maintenance tools should have. Several experiments with industry-strength code support
the validity of our integrated model. With the information gained from the model and from the
experiments we have started to develop a tool capability matrix. It relates comprehension tasks to
individual tool capabilities. Figure 2 shows some of our preliminary results. We plan to use these
insights in several ways:

5 6

• define and develop extensions to the AMT Maintenance Toolkit [4]. In particular we will use
our findings to develop cognition focused user interfaces and new tools that support program
understanding such ways to represent hypotheses and cognitive strategies, and connections
between program model, situation model, and the top-down model along with the information
they use.

• define and develop an assessment procedure for tools that identify which aspects of code
understanding they support and how well.

M a s t e r G o a l Sub-goal Sub-goal Sub-goal T o o l
Leve l 1 L e v e l 2 Leve l S

Develop B u i l d R e a d I n t r o & Read pieces that O n - l i n e

Program M i c r o - R e l a t e d are physically d o c u m e n t a t i o n

M o d e l S t r u c t u r e D o c u m e n t s separated in w i t h w i n d o w s

(Systematic t h e s a m e d o c u m e n t

Strategy) L o o k f o r r e f e r e n c e s Cross re fe rence
t o m o d u l e i n o t h e r m o d u l e s t o o t h e r
d o c u m e n t s . D o c u m e n t s

D e t e r m i n e Systematic Search F u s i o n
N e x t M o d u l e through code Book Paradigm
t o E x a m i n e
E x a m i n e N e x t Understand syntax Syntax querying
M o d u l e i n o f c o n s t r u c t s On-line programming
Sequence language manuals

Annotate listing Annotation editing/reporting
w i t h l e a r n e d i n f o r m a t i o n capabilities
Highlight Begin..ends Customizable reformatting

Figure 2: Paradigm Utilization Table(Partial)

R e f e r e n c e s

[1] Nancy Pennington, Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs, In: Cognitive Psychology , 19(1987), pp.
2 9 5 - 3 4 1 .

[2] Elliot Soloway, Beth Adelson, and Kate Ehrlich, Knowledge and Processes in the
Comprehension of Computer Programs, In: The Nature of Expertise , Eds. M. Chi,
R. Glaser, and M.Farr, 01988, ALawrence Erlbaum Associates, Publishers, pp. 129-152.

[3] von Mayrhauser, Should CASE Care about Software Maintenance or Why We
Need Code Processing, Proas. CASE 90, Dec. 1990, Irvine, OA, p. 20-22.

4] von Mayrhauser, AMT - The Ada Maintenance Tool Chest, Proas. Triada 91, Oct
21-25, San Jose, CA, p. 294-303.

5 7

N o r m a n V S ^ l d e P o s i t i o n S t a t e m e n t

Research In Program Comprehension; Some Analogies and Directions

Norman Wilde, Departmertt of Computer Science
University of West Honda, Pensacola, H 32514

904-474-2548, wilde@cs.uwf.edu

The exploding size and complexity of computer software undoubtedly create unique
problems for its maintainers. Still, software professionals might gain insight by
considering how other professions have managed to progress despite the great
complexity of the systems they deal with. To develop a research agenda, we might
consider some interesting analogies from the practice of medicine^

Medical doctors also need to diagnose or "understand" each patient, at least well
enough to be able to propose effective treatments for the patient's ailments. The
human body is a physical and chemical system made up of organs that interact in
very complex and imperfectly understood ways. Individual differences are great and
"domain knowledge" about the patient's ancestors, job, life style and mental state
can be very important for diagnosis. The symptoms that the patient presents may
often be confusing or ambiguous and may represent a combination of several
ailments. Yet the medical profession has unquestionably made great progress in the
last 50 years in diagnosis and treatment of many of humanity's ills.

A medical doctor can make use of literally thousands of diagnostic tests or studies:
blood and urine tests. X-rays, electrocardiograms, CAT scans, and so on. Just a few of
these will be selected for any particular patient, based on the symptoms presented
and the results of earlier tests. Each test has its strengths, limitations, and
ambiguities. Given the complexity of medical problems, there is no simple
algorithm for arriving at many diagnosesl

By contrast, the tools available to the software maintainer are limited indeed. While
it may be doubted that Software Engineering should follow slavishly in the tracks of
the medical profession, the differences may provide some insights into productive
research directions in program comprehension. Three notable differences are:

1. The medical doctor knows what he is looking for.

The medical profession has a fairly well established taxonomy of disease. The
purpose of diagnosis is thus to go from "this patient has something wrong with his
stomach" to "this patient has amoebic dysentery." The taxonomy of disease has
several benefits, not least of which is the ability it gives doctors to communicate

' The medical analogy can certainly be carried too far. Many of the requests that maintainers
receive would be the medical equivalent of 'Tlease give this patient an extra arm, and while you are at
it, increase his IQ by 20 points."

® The case studies in Michael Crichton's book Five Patients (Bantam Books) provide interesting
illustrations of the diagnostic process.

5 8

N o r m a n V ^ l d e P o s i t i o n S t a t e m e n t

with each other. By contrast, our vocabulary for describing software is very vague
and incomplete; an experienced maintainer can have very great difficulty
communicating his or her knowledge of a program to a colleague.

As a first research topic I would suggest that we need to identify and classify what it
is about a program that maintainers really need to know. There are very few studies
of how maintainers actually work and what kinds of information they use^
Additional case studies would be most useful, especially if some way can be found to
compile and classify the results.

If we can identify the understanding needs for each kind of maintenance task, we
will be in a stronger position in requesting documentation from developers and we
will be better able to identify needed maintenance tools. As a possible starting point
for discussion I would suggest that, depending on the task at hand, a maintainer
may need to:

Understand system architecture
Understand system functionalities
Understand system algorithms
Understand system data
Understand exception behavior

2. Medical tests are standardized in purpose and interpretation.

A m e d i c a l d o c t o r k n o w s w h a t e a c h t e s t s h o u l d b e a b l e t o d o . T h e t e s t s h a v e b e e n
standardized with respect to the taxonomy of disease so that possible alternative
diagnoses lead to specific tests being ordered which may confirm or negate each of
t h e a l t e r n a t i v e s .

The maintainer has no such guidelines to follow. While many program
understanding tools have been proposed, there is little guidance as to when to
request a call graph, when to take a program slice, how to interpret metrics, and so
on. We have not thought through the way each of these tools should be used.

Thus I suggest that a second research topic should be to evaluate the effectiveness of
different tools in the context of specific maintenance tasks. Just as the doctor knows
the margin for error in each diagnostic test, the limitations of each software tool
shou ld a lso be es tab l ished.

' Notable exceptions are the papers by Soloway and his co-workers and by Koenemann et al
[LET0.86, S0L0.88, KOEN.91]. The author has also ten working on more informal studies focused on
object-oriented programs [WILD.91].

5 9

N o r m a n V ^ l d e Posi t ion Statement

3. The range of medical diagnostic tools is very wide.

Finally, it is clear that the medical profession has a much wider range of diagnostic
aids than the software professional. Instead of the thousands of diagnostic
procedures, in common use we may find cross-referencers, browsers, debuggers, call-
graph or flowchart generators, debuggers, and occasionally data flow analyzers.
Other tools such as slicers, regression test selectors and reverse engineering tools
have appeared in the literature but are only rarely encountered in practice.

We must recognize that, just like medical diagnostic aids, each program
understanding tool will only be usable in a limited range of circumstances.
Normally the maintainer will, like the doctor, have to integrate information
collected from a number of sources. Thus it is important to have a large number of
complementary tools available.

The last research area I would propose is thus the development of new tools, that
complement the information obtainable from the tools we now use. I would
hypothesize that many of the new tools will be quite specialized. A maintainer will
have one tool for analyzing recursive subroutines, another for displaying the
behavior of a particular kind of data structure, a third for identifying a specific kind
of program abstraction, and so on. The expert maintainer of the future will show his
virtuosity by applying a wide range of tools to get each job done quickly and
accurately.

R e f e r e n c e s

[KOEN.91] Koenemann, Jurgen and Robertson, Scott P., "Expert Problem Solving
Strategies for Program Comprehension," Proceedings of the Conference
on Human Factors in Computing Systems, ACM Press, pp. 125-130, May
1991.

[LET0.86] Letovsky, S. and Soloway, E., "Delocalized Plans and Program
Comprehension," IEEE Software, Vol. 3, No. 3, May 1986, pp. 41 - 49

[SGL0.88] Soloway, E.; Pinto, J.; Letovsky, S.; Littman, D.; Lampert, R., "Designing
D o c u m e n t a t i o n t o C o m p e n s a t e f o r D e l o c a l i z e d P l a n s , "
Communications of the ACM, Vol. 31, No. 11, November 1988, pp. 1259 -
1267.

[WILD.91] Wilde, N.; Chapman, A.; Matthews, P.; Huitt, R., "Describing Object-
Or ien ted Sof tware : What Ma in ta iners Need to Know, " So f tware
Engineering Research Center report SERC-TR-54-F, CIS Department,
University of Florida, Gainesville, FL 32611, December 1991.

6 0

Position Paper:

Program Comprehension

Horst Zuse
Technische Universitat Berlin (FR 5-3)

F r a n k l i n s t r a B e 2 8 / 2 9
1 Berlin 10 (Germany)

P h o n e : + 4 9 - 3 0 - 3 1 4 - 7 3 4 3 9
F a x : + 4 9 - 3 0 - 3 1 4 - 2 1 1 0 3

e-mail: BITNET: ZUSE at DB0TUI11
Internet : ZUSE TUBVM.CS.TU-BERLIN.DE

1 I n t r o d u c t i o n

During the last years much attention has been directed toward the comprehension of software.
Program comprehension is close related to software complexity. Software complexity is similar
to program understanding and program comprehension.
We think, one important aspect, among others, is to formaiize the term comprehension. How
ever, the difficulty is that comprehension is an empirical term. Empirical statements cannot be
formalized by mathematics.
The research area of software metrics tries to formalize the empirical term comprehension/com
plexity because the comprehension of programs should be represented by numbers. Measure
ment is a mapping of empirical objects to numerical objects by a homomorphism. However, the
many existing software metrics show that there is no uniform view what programs make compli
cated to understand or to comprehend. In order to select appropriate software metrics for pro
gram comprehension it is necessary to have more clearness about the terms comprehension
and complexity.
For this reason we think that measurement theory can help to get hypothesis about the term
program comprehension. Roberts /ROBE79/ writes in the introduction of his book about mea
surement: ">4 major difference between a "well-developed" science such as physics and some
of the "less well-developed" sciences such as psychology or sociology Is the degree of which
things are measured".
We agree to this statement of Roberts which says that measurement requires a more precise
thinking of empirical statements.
Although program comprehension is an empirical term and cannot be defined mathematically,
measurement theory can help to make hypothesis about reality. Measurement theory deals
with the "connection" of the empirical world with the numerical world. It gives hypotheses about
reality in form of axioms. Axioms are empirical conditions and these conditions are appropriated
to discuss about the term program comprehension in a more precise way.
2 What Is Measurement?

We want to introduce measurement as it is seen by Roberts /ROBE79/, Krantz et al. /KRAN71/
and Luce et al. /LUCE90/ very briefly. Measurement is a mapping of empirical objects to nu
merical objects by a homomorphism. Krantz et al. (/KRAN71/, p.33, line 13) write the following
in the introduction of their book: Here, by contrast, we are concerned almost exclusively with
the qualitative conditions under which a particular representation holds.
That means, measurement is based on a homomorphism between the empirical und numerical
relational systems related to a measure. It gives qualitative (empirical) conditions for the use of
measures. Representation means, that, for example, program comprehension is represented
by a homomorphism into numbers.

6 1

In 1988 Kriz /KRIZ88/ gave a good explanation of the benefits of measurement In general. Kriz
introduced the foliowing picture.

M e a s u r e m e n t ^

I n t e l l i g e n c e S t a t i s t i c s / M a t h e m a t i c s
B A R R I E R

I n t e r p r e t a t i o n

Figure 2.1: The measurement process as presented by Kriz /KRIZ88/. The empirical and
formal relational systems are explained below.
Users want to have relevant empirical results of problems in reality. For example, users want to
have relevant empirical statements about the complexity of programs. However, our human
brain. In many of the cases, Is not able to produce directly relevant empirical results. An excep
tion is, for example, the length of wooden boards. In this case humans can make clear relevant
empirical statements. However, considering the complexity of programs, the human brain Is
very often not able to make such statements. The relevant empirical statements related to soft
ware complexity can change over the time and people have different ideas of complexity. In
many cases the human brain is unable to make relevant empirical decisions. Kriz calls this
problem the "intelligence barrier". That means, in many cases, the human brain is not able to re
duce informations without certain heip.
In order to overcome the problem of the intelligence barrier measurement is introduced. Mea
surement is a mapping of empirical objects ("Empirical relational system") to numer-
ical(mathematical) objects ("Formal relational system") by a homomorphism. Mathematics is
used to process the informations. Doing this we get mathematical results ("Result numerical").
Now, the important step is to give the mathematical results an empirical meaning (empirical in
terpretation). The most Important point of measurement is to give an interpretation of the num
bers. In this case without an interpretation of the numbers it is not possible to make empirical
statements. Measurement theory, as presented by Roberts /ROBE79/, Krantz et al. /KRAN71/
and Luce et al. /LUCE90/ gives the (relevant) empirical interpretation of the numbers by the em
pirical relational system.
In order to give an empirical relevant interpretation of the numerical results, we introduce mea
surement theory.

3 Empirical Conditions for the Term Comprehension
We now present a list of empirical conditions which are discussed in measurement theory
/ROBE79/, /ZUSE91a/. Similar conditions can be also found by Weyuker A/VEYU88/ and
Fenton /FENT91/. Most of the empirical conditions are based on concatenation of objects. For
this reason we introduce a concatenation operation for programs. Weyuker A/VEYU85/, p.2, dis
cusses the concatenation of programs, we cite it:
One way to think of a program Is an object made up smaller programs. Certainly this Is the per
spective used In our definition of a program body, or any recursive definition. Using this point of
view, the basic operation In constructing programs Is composition. Since each of the program
ming language constructs a single entry and single exit. It makes sense to speak of concatena
tion of two program bodies. P;Q Is the program body formed by appending the program body Q
Immediately following the last statement of P. We shall say that P:Q Is composed from P
a n d Q .

We call this type of concatenation of program components BSEQ.
6 2

We now give some empirical rules related to the concatenation operation BSEQ. Let P be the
set of all flowgraph, P,P1,P2,P3,a,b,c,deP, •^an empirical relation like "equal or more com
plex", and 0 the concatenation operation BSEQ (« means equally complex).
C o n d i t i o n 0 1 :

a«b=>aoc«boc, and a « b => c o a = c o b, for all a, b, c e A.
Cond i t i on C2 :

a = b <=> a 0 c » b 0 c <=> c o a « c o b, for all a, b, c e A.
C o n d i t i o n C 3 :

a b => a 0 c b o c, and a b => c o a c o b, for all a, b, c e A.
C o n d i t i o n C 4 :

a b <=> a 0 c b o c <=> c o a c o b, for all a, b, c g A.
Conditions E (Extensive Structure):
A V : (P , » ^) ' s a w e a k o r d e r
A2': PI 0 (P2 0 P3)«(P1 0 P2) 0 P3, axiom of weak associativity
A 3 ' : P I 0 P 2 « P 2 o P I , a x i o m o f w e a k c o m m u t a t i v i t y
A4': PI *2 P2=> PI 0 P3 P2 o P3 axiom of weak monotonicity
A5': If PI •> P2 then for any P3, P4 there exists a natural

number n, such that nPI o P3 •> nP2 o P4, Archlmedian Axiom
The list above is appropriated to talk about the term complexity/comprehension in a more pre
cise way. We will explain this very briefly with the Metric of McCabe.

4 Program Comprehension behind the Metric of McCabe:
We now apply the conditions above to the Measure of McCabe. For example, using the Metric
of McCabe for analyzing program comprehension/complexity, the meaning of the Metric
MCC-V=|E|-|N|+2 of McCabe is the following. P and P' are flowgraphs.
el: If P results from P' by inserting an edge, then P is more complex than P'.
e2: If P results from P' by Inserting an edge and a node, then P and P' are equally complex.
e3: If P results from P* by transfering an edge from one location to another location, then P

and P' are equally complex.
The conditions e1, e2, and e3 describe the ordinal property of the Metric of McCabe related to
the term complexity or comprehension. The are a prerequisite for the conditions CI-04 and E.
That means, using the Measure of McCabe for analyzing program comprehension, the term
comprehension behind the Metric of Mccabe is described by the conditions e1, e2 and e3.
Because the Metric of McCabe is additive related to the concatenation operation BSEQ, the
conditions C1-C4 and E are also assumed by this metric.
This concept shows that the term comprehension or complexity behind the Measure of McCabe
can be described by empirical conditions from measurement theory. More informations about
this approach can be found in /ZUSE91/ and /ZUSE91a/.
5 F u t u r e

We mean that the application of conditions of measurement theory can help to understand the
term program comprehension in a better way. The term program comprehension can be de
scribed by empirical relational systems consisting of axioms.

6 3

<79

'Xn 'zn 61AAS uopuoi 'uopeiqiuiM 'psou
BjpuBxeiv a 'psnoH jeBuuds 'PIT uopuon Oape/v jeaupds 'Jeysiiqnd ieSuuds '2861. idliopo ieedde n|M "s-aaZSl-pw^
N8SI '(BPS Win/̂H pud ultiuHj U VuoO i ̂ '-Xn 'uopuoi 'otuipoj/iod >4iiBa iflnos '1661 S Abw ;(ftjBM«os JOinduioo JO spewv jBuubdJ aoî)|X>M S0Vd-S09 puociBUjeiui em jo s6u!pee30Jd :ii| •ssinsQew 5iied°uuBuini5a"lBlo|̂^

•Bejnftj 861̂ 'soBBd S09 'x-ioxMeN 'uipeg '1661 JeMSijqnd jeĵruQea 'spoi(jew sejnsBew :Aj!xoidaîôraMj|̂
^ 'S do ;oI Jo :d9-60 IsnOnv 'ec-ez-dd '9 'ON 'VZ

'|0A 'seopoN uBjdSiS BOjaeŷ XljxejdujDO eieMijos epeis 1° sejeos pus sepjedojd em eqjJOseQ oi ̂ĵ̂jueuĵnsŝ
6Z6 J 'Ausdiuoo BuiMstiqnd Aeise/M uosippv suopeoiiddv

s)j pus sopeujemBK̂ Jo Btpedojotoua seoueps l®POS 84i Pue '̂ilUn 'BujijBiuuojspea oj sCiopBonadv mi'v̂ ̂O0)4X lueuiwnssei/̂ .'S p8^d syecjou

'99 ides '6 'ON 'frl "lOA euMeeui.Bug ejBMjjos Jo suopoBSUBJi 3331 soinsBew Ajixeidujop bjbmijos BupengAa 'peuf6|3 je^jnAeAA /99nA3/Vv

0661 'sseJd eiujBpeptf 'e ioa 'lueujeinseeM jo suopepunod
:scuiv 'XjjSjeAi :>|3!JiBd '.seddns-'H PIabq 'subjx 'uBounQ 'u '©oni

9881 'MPJeosPti II!H Moipov^ 'senbiuijoei
MOJBeseu eoueps IBjoos iBoptdiua jo sisAjbuv iBoiBoicpomew puB iBDiSoioiueisjijda uv leDUSjOS ppos m

/Bl63snz/

/6L3BOW

saouajdiay g

A N A LY Z I N G A N D C O N T R O L L I N G I N S TA L L E D S O F T W A R E

ANALYZING AND CONTROLLING INSTALLED SOFTWARE
Nicholas Zvegintzov
Software Management News
141 Saint Marks Place, Suite 5F
Staten Island NY 10301 USA
(+ 1-718-816-5522 or fax +1-718-816-9038 or email 72050.570@COMPUSERVE.COM)

Cries for help
Cries for help. That is our name for telephone calls

that come in to our office asking questions about how to
manage real systems.

Sometimes the answers are easy (" '17' is always a good
answer", says Richard Donnelly of the National Security
Agency). But, more seriously, these cries for help often
reveal how difficult managing a real system is, and how this
evolving difficulty stays uncomfortably ahead of the tech
niques and tools that we deploy to deal with it.

Case in point...

Controlling the software of a bank
"I am calling from a medium-sized bank. We have a

centralized IBM mainframe system, with a number of
applications, many built around packaged software. Each
of our functional groups understands its own system fairly
well, but our subsystems are becoming more and more
l i n k e d .

Now we are scared that we don't understand the
system as a whole any more.

Are there CASE tools that can help us? (We have been
thinking of diagramming the data How of our system.)

O r o t h e r t o o l s ? "

A real time system
You are modeling a real time system.
You need to understand that a bank is a real time

system — a network of communicating asynchronous
processes — just as much as an airplane or a telecommu
nications network. Each depositor is a process, making
changes at random times. The bank's own current position
is a process, reflecting the accumulation of currently
completed transactions. You need a model that is
adequate for real time systems.

Real time modeling
There are real time modeling systems, originally aimed

at military and engineering systems.
They describe:

• The processes that make up the system.
• The links between the processes.

• The behavior of the processes, e.g.. Under what circum
stances does process P communicate with Process Q?

Some systems will "play out" the behavior of the
system. The following is from a description of Team-
worJt/SIM from Cadre Technologies Inc.:

SIM executes a token-based symbolic simula
tion, i.e., a token on a data flow represents a data
packet whose structure conforms to the data dictio
nary definition of the flow and a token on a store
represents an instance of a record in the store. As a
simulation proceeds, tokens arrive at processes, and,
depending on the current state of the process and the
number of tokens on other data flows in the process,
tokens are consumed by the process. After a delay
representing the execution of the process, tokens are
produced on some of the output data flows of the
process. The simulation executes interactively, or in
batch, collecting statistics on contention, queue
build-up, performance, etc.

Slow real time systems
Slow real time systems are harder than fast real time

systems.
A bank is a slow real time system — a depositor may

not have a transaction for weeks at a time, but a depositor
may stay around for decades. A telecommunications
system that goes down may lose all its current calls, but itwill be back up with new calls within seconds. A bank that
loses transactions is in trouble.

A slow real time system is also dangerous to update.
Why?
Because many of the elements of its transactions are

locked up (effectively, hidden) in queues ("The ATMs at
Branch XYZ lost contact with the mainframe due to a
telephone failure, so they queued their transactions", etc.).
We would be willing to bet that some of your nervousness
is caused by bad system updates.

(Cold comfort: This is a major research frontier in the
software maintenance field.)

Connectivity, interaction, and implementation
You need to model the connectivity, the interaction,

and the implementation.

TELEPHONE: -H -415 -969 -5522
FAX: +1-415-969-5949

ANALYZING AND CONTROLLING INSTALLED SOFTWARE

You need to understand how the system is connected
("The ATMs feed into the demand deposit accounting
system", etc.), what the interactions are ("Demand deposit
accounting takes messages off the ATM queues under the
following circumstances...", etc.), and how the system is
built ("Demand deposit accounting is built around a
package from PQR, with the following shell modules...",
etc.).

Statemate, from i-Logix Inc., has the right idea in
offering three representations of the system:• Activity-chart — representing control and data flow.
• Statechart — representing state transitions, and allowing

for hierarchical and concurrent connections.
• Module-chart - representing the physical grouping of

the control and data structures represented by the above
c h a r t s .

Able to read real data

Your model must be able to read real data.
Many "CASE" tools have only a graphical representa

tion, as if their only function was to let a human play with a
screen and a mouse.

Warning: A CASE tool that only accepts graphical
representations is no better than a video game. Why?
Because . . .

Collecting real world data
You need to collect real world data.
The good news is that all the information described

above is already "in" the system. The connectivity and the
implementation is available to the system in the programs,
in the data structures, and in the instructions for putting
programs and data together (JCL, scheduling algorithms,
network configurations, etc.).

The bad news is that it is tough to find, tough to read,
and tough to piece together.

Connectivity
How many ways could procedures and/or data be

hooked together?
• Modules compiled and linked to other modules.

—Look at source code.
—Look at compile- and link-time JCL.

• A module writes a file that another module reads.
—Could be explicitly mentioned in JCL.
—Could be visible in data dictionary.
—Could be visible in a scheduling algorithm.
—Could be dynamically accessed.

• A module communicates with another module via the

operating system ("cross memory services", "pipes",
short cuts within the telecommunications handler, etc.).

• Module M thinks it is talking to user Um, module N
thinks it is talking to user Un, but in fact they are talking
to each other.

SOFTWARE: THE i MANUAL

• A module communicates with another module via a
n e t w o r k .
—Could be visible in network directories.
—Could be dynamically linked.

• O t h e r ?

Never underestimate the tricks past programming
gurus may have played!
V e n d o r s

Look to Candle Corporation, Computer Associates
International, Inc., International Business Machines
Corporation, and LEGENT Corporation for help in
finding information on the IBM mainframe. The main
frame usually functions as a ̂ ant network server — has
visibility of distant peripherals and networks.

Novell, Network General, HP, etc., for network moni
toring.

"Operations"
Warning: Many of the above vendors present them

selves as doing business with "Operations", and Opera
tions at your installation may keep a tight lid on its rice-
bowl. You will need support at the management level
above Operations to use these resources.

Parsing technology
Bad news: You may have access to this information,

but can you understand it? It is in multiple formats and
multiple languages.

Therefore you need parsing technology. You need to
be able to read various language formats and bring together
what you read.

Poss ib le resources are
• InterPort Software Corporation
• SEEC, Inc.

Both companies came out of the conversion / language
translation business.

Possible dark horse:
• LBMS Inc and LBMS Pic (swallowed a company called

META Systems that pioneered this kind of creative
reading).

A place to put the information
You need a place to put your information.
You need a large, robust store to keep the information

you have discovered and to inquire on it.
The undisputed champion here is the Maestro II soft

ware management system from Softlab GmbH and Softlab,
Inc., which runs as a network of workstations using an
entity-relation database server.

Second choice: InterPort Software Corporation's PC-
based code management database.

TELEPHONE: -1-1-415-969-5522
F A X : - H - 4 1 5 - 9 6 9 - 5 9 4 9

A N A LY Z I N G A N D C O N T R O L L I N G I N S TA L L E D S O F T W A R E

Configuration management
Control is the last step. In principle, you would like to

control your updates from your model; in practice, if you
are far from an adequate model, you are even further from
c o n t r o l .

Suggestion: Use update queries as tests of the model's
adequacy. As you build the model, query it for update
advice ("If I change this module, what else do I need to
change? What else do I need to freeze?"). After this
advice begins to make sense is the time to begin to link the
model into control.

Summary
• Aim for a real time model.
• Access real data.
• Learn to read real data.

• Store the data and inquire on it.
• Control is the last step.

An engineering problem
Conclusion: You have an engineering problem.
You may say "Isn't all that pretty elaborate to answer

my question?"
But you may have (wild guess) 10 subsystems each with

1,000,000 lines of code and 5,000 modules. Boeing's new
generation passenger transport, the 777, will have 132,500
distinct engineered parts, with about 3,000,000 actual parts
("including rivets, screws, and other fasteners"), and
Boeing has eight IBM mainframes and more than 2,000
workstations to design and track them.

Boeing knows an engineering problem when it sees
one. So should you.

SOFTWARE: THE^'jMANUAL
T E L E P H O N E : + 1 - 4 1 5 - 9 6 9 - 5 5 2 2
FA X : + 1 - 4 1 5 - 9 6 9 - 5 9 4 9

