Proceedings

o e

Proceedings

IEEE Second Workshop on

ngram C@mprehensmh

July 8-9, 1993
Capri, Italy

Sponsored by
IEEE Computer Society
Technical Committee on Software Engineering

In cooperation with
Project SICP-CNR, Consiglio Nazionale delle Ricerche
Consorzio Campano di Ricerca per I'Informatica e I’ Automazione Industriale,
(CRIAD

IEEE Computer Society Press
Los Alamitos, California

Washington . Brussels . Tokyo

The papers in this book comprise the proceedings of the meeting mentioned on
the cover and title page. They reflect the authors’ opinions and, in the interests
of timely dissemination, are published as presented and without change. Their
inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society Press, or the Institute of Electrical and
Electronics Enginegers, Inc.

Published by the
IEEE Computer Society Press
10662 Los Vagueros Circle
.. PO Box3014
Los Alamitos, CA 90720-1284

© 1993 by the Institute of Eiectrical and Electronics Engineers, Inc. All rights reserved.

Gopyright and Reprint Permissions: Abstracting is permitted with credit to the source.

- Libraries are permitted to photocopy beyond the limits of US copyright law, for private
use of patrons, those articles in this volume that carry a code at the bottorn of the first
page, provided that the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 27 Congress Street, Salem, MA 01970. For other copying,
reprint, or republication permission, write to IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331,

IEEE Computer Society Press Order Number 4042-02
Library of Congress Number 83-77033
IEEE Catalog Number 83TH0551-2
ISBN 0-8186-4041-3 (microfiche)
ISBN 0-8188-4042-1 {case)

Additional copies can be ordered from

IEEE Computar Sociaty Press {EEE Service Uenigr IEEE Computer Sociaty IEEE Compuler Soclaty
Customer Servica Center 445 Hoes Lang 13, avenue da FAquiion Coshima Building
10662 Los Vagueros Circle PO Box 1831 B-1200 Bruszels 2-18-1 Minami-Agyama
PO Box 3014 Fiscataway, NJ 08855-1331 BELGIUM Minato-ky, Tokyo 107
Loz Alamitos, CA B0720-1284 JAPAN

Production Editors: Regina Spencer Sipple and Edna Straub
Cover: Joseph Daigle/Schenk-Daigls Studios
Printed in the United States of America by Braun-Brumfield, inc.

The Institute of Electrical and Electronics Engineers, Inc.

iv

Message from the General Co-Chairs

Welcome to the Second Workshop on Program Comprehension!
This is the second workshop dealing with the dynamic new field of program
~ comprehension. The first workshop was held in Orlando, Florida in conjunction

with the IEEE Conference on Software Maintenance. Another one-day| workshop
0N Artificial . Intejlhgence .and..Program..Understanding. was..held under. .the... .

auspices of the American Association of Artificial Intelligence, in conjunction with
AAAT ’92. Based on the favorable response from these workshops, the organizers
decided to hold the Second Workshop on Program Comprehension.

Although very young, the field of program comprehension offers tremendous
potential. The evidence from the “trenches” suggests that . program
comprehension — or lack of it — is a major contributor to the cost of software. On
the one hand, we have the huge legacy systems that have to be maintained, and
program comprehension is a major component of the maintenance cost. On the
other hand, the development of the new systems is more and more dependent on
reuse of software components, which again have to be comprehended in order to
be usable. The fundamental nature of program comprehension is illustrated by
the success of two important software technologies: structured programming and
object-oriented programming. Both were advocated on the grounds that they
improve program comprehension. The Second Workshop on Program
Comprehension presents a comprehensive overview of the current research in the
field. We hope that the participants will find many stimulating ideas in the
papers and the discussions. A tools fair will present state-of-the-art software tools
facilitating program comprehension.

Qur thanks go to all volunteers on both sides of Atlantic who made this
workshop possible. They devoted many hours to the organization and preparation
of the meetings. We also want to thank all cooperating organizations for their
financial support. We want to thank the staff of the IEEE Computer Society for
their support and professional help.

We wish all participants a pleasant stay on the beautiful island of Capri and
an abundance of innovative and exciting new ideas for their future work.

Bruno Fadini Vaclav Rajlich
Co-Chair Co-Chair
Project Information Systems and Wayne State University

Parallel Computation — CNR

Message from the Program Co-Chairs

We take great pleasure in welcoming you to the Second Workshop on
Program Comprehension (WPC °93). Program comprehension has come to be
~ recognized as a fundamental activity in software engineering tasks such as

mamtengnce reuse, and re-engineering that 1nvoive ‘the sti.ldy and adaptatlon of

- existing programs. These. tasks make up a very.large proportion of the work.load of

most software engineers in today’s world. Unfortunately, in spite of the enormous
need for support of a systematic approach to program comprehension, we still find a
lack of theories, models, methods, and techniques in this area. WPC 93 is intended
to contribute t0 overcoming this lack. By providing an environment for fruitful
. discussion- by - those involved - in research -and- experimentation — in-both- the
academic and the industrial worlds — we hope to encourage the exchange of
experiences, ideas, and results in this vital area. We believe that WPC '93 is a
significant step in the evolution of this series of workshops whose success can be
seen from the increasing number of researchers and projects related to program
comprehension. The fact that WPC ’93 is based on the presentation of full papers,
~(rather than position papers as in the past), as well as the introduction of a formal
review process for the selection of papers, is clear}y a sign of thls 1mportant
evolution.

 The Workshcp is structured into six sessions: Models and Methodologlcal
Proposals for Program Comprehension (two sessions), Experiments in Program
Comprehension, Program Representations for Program Comprehension, Integrating
Documents and Code for Program Comprehension, and Tools for Program
Comprehension. A panel discussion will explore the stimulating and innovative
viewpoints on program comprehension by a number of highly qualified experts from
industry. The keynote address by Keith Bennett, “Understanding the Process of
Software Maintenance,” will surely contribute to the success of this dynamic
workshop.

We thank all of the authors who submitted their work to the workshop, the
speakers, the panelists, and the session chairs for their tremendous contributions to
the success of WPC '93. We also wish to thank all of the members of the Program
Committee for their time commitments to carefully review the submissions. Special
thanks are due to Regina Spencer Sipple and Edna Straub of the IEEE Computer
Society Press and Janet Harward-Colopy of the IREE for their assistance with the
proceedings and program.

We wish you an interesting and enjoyable WPC '93!

Aniello Cimitile Norman Wilde
Program Co-Chair Program Co-Chair
University of Naples, lialy University of West Florida, USA

WPC 83 Commitiees

General Co-Chairs

Bruno Fadini
- -Project-SICP-CNR; Italy

N gelav-Rajlichs e

Wayne State University, USA

Program Co-Chairs
Aniello Cimitile
University of Naples, Italy

Norman Wilde
University of West Florida, USA

Tools Exhibition Chair
Guiseppe Visaggio
University of Bari, Italy

Program Committee

Paolo Benedusi (Italy)
Gianluigi Caldiera (USA)
Frank Calliss (USA)
Sylvie Cochinal (France)
Ugo De Carlini (Jtaly)
John Foster (UK)
Daniel Herlemont (France)
Wojtek Kozaczynski (USA)
Paul Layzell (UK)
Panos Livadas (USA)
Loredana Mancini (Italy)
Malcom Munro (UK)
Phil Newcomb (USA)
Alex Quilici (USA)
Harry Sneed (Germany)
Genny Tortora (Italy)
Axel van Lamsweerde (Belgium)
Larry Van Sickle (USA)
Giuseppe Visaggio (Italy)
Horst Zuse (Germany)

Table of Contents

| .Key'note Address: Un&éisféﬁaiﬁg theProcess of Software .M.aix.l:te.né..hc.e

Keith H. Bennett, University of Durham, UK

Session A: Models and Proposals for Program Comprehensmn
Chair: Alex Quzlwl

* Criteria for ngram Comprehensmn Demved from Software Compiemty Metncs

H. Zuse
A Process Algebra Based Pragram and System Representation

for Reverse Engineering ...l ieer st see e eseee s sess e eressesens

E. Merlo, R. DeMori, and K. Koniogiannis

Understanding Lolita: Program Comprehension in anctlonal Lanpuages........... .

J.E. Hazan, S.A. Jarvis, R.G. Morgan, and R. Garigliano

Session B: Experiments in Program Comprehension
Chair: Panes E. Livadas

’ Experiments in Identifying Reusable Abstract Data Types in Program Code

G. Canfora, A. Cimitile, M. Munro, and M. Tortorella

Partial Evaluation as an Aid to the Comprehension of Fortran Programs

S. Blazy and P. Facon

Facilitating the Comprehension of C Programs: An Experimental Study...............

P. Linos, P. Aubet, L. Dumas, Y. Helleboid, P. Lejeune, and P. Tulula

Session C; Experience Report Session
Chair: Norman Wilde

Use of a Program Understanding Taxonomy at Hewlett-Packard oo,

A. Paduia
Recovering User Interface Specifications for Porting Transaction

Processing APPLCALIONS oottt ettt

L. Van Sickle, Z.Y. Liu, and M. Ballantyne

// Extracting Application Domain Functions from Old Code: A Real Experience....................

F. Cutillo, F. Lanubile, and G. Visaggio

Session D: Tools Fair Opening
Chair: Giuseppe Viaggio

Session E: Models and Proposals for Program Comprehension {1
Chair: Vaelav Rajlich

186

From Program Comprehension to Tool Requirements for an Industrial Environment 78

A, von Mayrhauser and A.M. Vans

viii

Model-Based Tools to Record Program Understanding ..o ccriscinecsesessnnrenseseeennns 87
E.J, Younger and K.H. Bennett

A Hybrid Appreach to Recognizing Programming Plans. ... 96
A. Guilici

Session ¥: Panel Discussion — What Does Pragram Comprehensmn
‘Mean for Industrial People? RS :

Loredanna Manczm e L s _ 106 B
e ARSI B T
Sylvie CocRInal. .ottt ee e et e et taa e e e e s e aan s aaaa et e ae e e e reates 108

Session (: Program Representations for Program Comprehension
Chair: Gerardo Canfora

" A Toolset for Program Un@erst@naing o eowoeeeeeoseeoseoseeiesessos e eeeseesesssseeesssesseassoan 110

P.E Livadas and 8.D. Alden

A Combined Representation for the Maintenance of © Programs oo, 119

D, Kinloch and M. Munro

An Integrated and Interactive Reverse Engineering Envirenment for
Existing Software Comprehension (e cecceiieeiiieieeeesrivreeeee s st reveses e avseeenscersoninnee 128

U. De Carlini, A. De Lucia, G.A. Di Lucca, and G. Tortora

Session H: Integrating Documents and Code for Program Comprehension
Chair: Horst Zuse

DOCKET: Program Cemprehensiorin-the-Large......cooveiviicicv e vinecrereieneen e eeeiinns 140
P.J. Layzell, R. Champion, and M.J. Freeman

*Reverse Engineering Programs via Dynamic Analysis
H.M. Sneed

The Role of Testing and Dynamic Analysis in Program Comprehension Support.....ooee 1458
P. Benedusi, V. Benvenuto, and L. Tomacelli

Session I: Tools for Program Comprehension
Chuair: Malcom Munro

Understanding Concurrent Programs Using Program Transformations......oeoccceiverennnnnn, 160
E.J. Younger and M.P. Ward

Charon: A Tool for Code Redocumentation and Re-Engineering....cocervvivvreeevnnnnnninnnneen 168
0. Signore and M. Loffredo

Deriving Path Expressions Recursively ..o e 177

A. Bertolino and M. Marré

PN ET A Lo gl b1 s L=y U OU PP PPN 193

* Paper not received in time for publication in proceedings.

ix

Understanding the Process of Software Maintenance

K.H.Bennett

School of Engineering and Compnter Science, University of Durham, Scuth Read, Dhirham DHE3LE, UK

Abstract

An extensive programme of 1esearch has been in
progress at Durham University for the past seven years
to fnvestigate how formal transformations may be used

“teassist e provess of saltware tiaintenande, particas”

larty addressing the issues of understanding and repre-
senting existing large software systems. In this paper,
the results from the research are drawn together in
order to assess the success and problems of the ap-
proach.

1 Formal Transformations

A formal transformation on a program, design or

specification is an operation which alters the form of

the operand, but not its semantics. As a very simple
exampie, ustng the conventional semantics for assign-
tnenk:

vzl a2

may be transformed by assignment merging and
then addition o

st

The eourept s not only applicable at the program
rode levell An algebraic design for the Tstack’ data
type may he transformed into an implementation, in
terims of an array or linked hist, using an appropri-
ale sequence of transformations, This ilustrates how
formal transformations ray be used to cross levels of
design abstraciion - in the above example, from design
to code, It is necessary to identify a mapping from all
design instances into the equivalent code instances.

This approach may also be used to transform re-
guirements specifications, represented for example in
Zor VDM, to desigus.

The formal transformation moverment has argued
that executable software should bhe developed from
specifications by the application of a sequence of suit-
able semantics preserving {or refining} transforma-
ttons A good survey is inchided in Partsch and Stein-
brugen | }i and in Yanyg [3].

Since transformations are equivalences, the possi-
ity exists at least in principle of using them in the
‘opposite’ direction to obdain designs and specifica-
tions from existing code. This is a problem that has
received hittle attention by those working in program
transformations, but hias been the subject of a major

0-8186-4042-1/93 $03.00 ® 1993 IEEE

“ideas central” totransiormntion theory:

tesearch programme in the Centre {or Software Main-
tenance at the University of Durham.

Reverse engineering is the analysis of existing soft-
ware to obtain representations at the same or higher
levels of abstraction. This definition embodies two
firstly the
choice of suitable representations, and secondly, trans-
formations to enable the software engineer to convert
between representations without change of semantics.

Many existing programs only exist in the form of
gource code which typically has been heavily modi-
fied and extended following vears of corrective, adap-
tive and perfective mainfenance. Where docurpenia-
tion or high level design information is available, it is
typically out of date and inconsistent with the source
code. Software maintainers then have little ronfidence
in softwnie olher than the source code.

Reverse engineering has the objective of taking such
source cade, and producing from it simpler, more un-
derstandable code. More ambifiously, there is the
potential of extracting design and even regnirements
specifications. This can be done by inspection by
skilled soltware engineers, but the problem seems well
stuited to computer based support, and translormation
theory wonld seern Lo provide a sound basis.

At Durham, we have construcied a prototype tool
called the Maintainer’s Assistant to allow us o ex-
plore this problem and this paper draws fogether our
experience of building and nsing this tool.

2 The Maintainer’s Assistant

The Maintainer’'s Assistant uses an internal wide
spectrum language {(WSL} which can be used equally
well to express non-executable specifications and to
express low level program code. All transfermations
are expressed 1o terms of WSL Such an approach is es-
sentinl when moving across levels of abstraction. This
means that there is an initial translation process lo
converl the source language code into the eynivalent
WSL. When a transformation project is complets, it
may be nseful to translate the WSL into a notation
sucli as Z; again this is a once-only activity.

The maintainer procesds by selecting a WSL con-
strict, and then choosing a transformation from a li-
brary of pre-proven transformations. There are over
604 such transformations in the library, but the tool
ouly presents those wlich are applicable to the se-
lected WEL construct, thereby reducing the choice
substantially {(but at the cost of complex patiern
matching invelving unification).

Considerable attention has been paid to providing
a good user interface, and further details of this can
he found in the lterature [7 4]. W5SL and its rationale
is described in [5,6].

3 Results

‘Our description of the tool presents an image of

a maintainer rapidly selecting » series of transforma-

tiong to acquire the design-and-even-the specification s

of an existing, heavily modified software system. The
chjective of this seciion is to assess the extent to which
this has been achieved.

3.1 Initial Translation to WSL

Throughout most of the project, the translation of
source code to WSL was seen as a simple iinplementa-
tion activity of little research interegt. In practice, this
naive view turned out to be wrong for two reasons:

e the correctness of the whole systemn depends crit-
ically on the correctness of the initial translator.

e difficulty was found in deciding to what extent all
the information existing in the source code could
be retained. What would be important for sub-
sequent understanding by the maintainer?

The first 1ssue was addressed by adopting & very
simple table diriven translation process so that the
mapping was available for human inspection, and at
least in principle, proof. The mam test bed has been
IBM 370 Assembler, and the semauntics of a typical
mstruction, in terms of [)()H‘iili«'ll side effects, 15 ofien
complex. As a resilt, the size of WSL emerging from
the translation was E}'p;r&i%y three times that of the
sanrce code. However, this was remedied by writing a
formal Lransformation wlich could remove the consid-
erable redundancy {rom the WSL, bringing the WSL
back to a similar size to the original source,

The second 1ssue has proved much mare serrous. It
ean be argued that even non-functioual properties of
source codes {such as timing in a real time systen)
should be represented. Even 1If only Tuncfional issues
are constdered, programming techniques such as self
modifying rode, complex addressing wmodes and dy-
namic addressing mean that the level of W51 is so low
that 1t s far harder to understand thaw the original
source. This 1s not an atinibute of Assembler only; C
programmers are well know for abusing pointers, using
first class procedure values and so on.

It was realised that this initial stage 15 not really a
translation, but a modelling stage, in which the WSL
models those aspects of the source which are Impor-
tant for the maintainer’s subsequent understanding
and ignores others, For example, most Assembler pro-
grammers do not use self modifying code, and use of
this knowledge leads to a much better {i.e. high level)
madel of the source.

3.2 Abstraction levels

It was a design aim of the tool that when using
it at low levels of abstraction (where the WSL is ai
code level) much of the transformation activity could
he automated, At the other end of the spectrum, a
considerable amount of input and inferaction with the

amser-would be needed -when- transforming at- require-.

ments specifications level.

An practice, this.aim has been met. The general
problem of obtaining a specification from code is nnde-
cidable {there are an infinite number of specifications).
Design decisions are implicit, and no amtomatic sys-
tem can recover them, For example, il is extremely
difficult to envisage a generai system which could take
some code and recognise 1t as e, a “sort” procedure,
or which could take a collection of operations on an
array and recognise the abstract «data type underly-
ing them. At a higher level, recognition of application
domain objects would be even harder,

Cognitive modeliing has provided uselu] input to
thinking about this ssue. Such models show that dur-
ing development, expert software engineers are needed
Lo convert specifications into designs; applications do-
main experts are needed in the first place o capture
the reqiirements specificafions.

In our case study work, it 15 clear that the tool is
most effective in thie liands of such experis, and it is
not very helpful to the inexperienced matntainer. This
adds weight to the view that skilled maintainers need
a high degeee of expertise at all levels of soltware ab-
straction. Al low levels of abstraction, the tool largely
It not campletely sutomates reverse engineering; un-
derstanding by the maintaner has to be minimal. At
higher levels, the maintainer tries out hypotheses to
reinforee the progressive revealing of the understand-
g of the systemn. Bucl hypotheses may turn out to be
dend ends, and as a result the tool provides an undo
and history facility to make exploration easy.

3.3 Reduction in complexity

Typically, heavily maintained code is highly un-
structured. If this is input to the Maintainer’s As-
sistant, then the WSL will be similarly awful.

Reduction in complexity 15 an important technique
in helping humans to understand a system, and al
fow levels of abstraction there are four main areas in
which this may be done: control; data; procedural and
performance.

Technigues for antomatic confrol restruchuring
have been available for some time, bui these tend to
lead to the introduction of new flag variables, and of-
ten the program 1s lengthened considerably. In the
Maintainer’s Assistant, restructuring is achieved by
the maintainer selecting a series of transformations
but he or she is able to use the understanding of what
the program does to avoid both the above piifalls of
automatic restructurers, This has been demonstrated
i all our case studies.

Data type transformation typically involves discov-
ering the most appropriate data type for the problem,
and this is a key step, undertaken after the control

structure has been simplified. If data types are trans-
formed, then changes to the operations on them are
also needed.

The third technique for improving the comprehen-
sibility of a program is to have the appropriate proce-
dural structure. In the Maintainer’s Assistant, a set of
powerful transformations is available to fold and un-
fold procedures, undertake static analysis to convert

a parameterless procedure to one with parameters, to

recognise similar sections of code etc..

The maintainer typically proceeds by unfolding

“procedures, restructuring, folding and then parames
terising. Automation of this would be unlikely to suc-
ceed, but in our tool, human input means that the
process 1s remarkably effective. In a number of case
studies, large unstructired (4000 line) assembler mod-
ules have successfully been reorganised into a small

- matn-program- - whicle- calls- short- single-lexical -level
procedures. This has even been achieved for a real
time programs including a despatcher. This eapabil-
ity alone makes the tool useful for some wsers, but it
dernonstrates the differing capabilities of full automa-
tion against the effectiveness of using human under-
standing at the appropriate points. Another powerful
form of procedural abstraction is to replace Heration
by recursion for problems which are more naturally
expressed In recursive form. Many probleme-solving
fechniques use a “divide and conquer” approach and

recursion. introduction: has been found to be widely.

applicable in most case studies, _

Experiments have been nundertaken to demonstrate
this in a different way. The tool can compute a se-
ries of standard complexity meteies [1] By applyiug
all transformations to all syniaciic copstructs, 1t is
possible to obtain the effect of a fully antomatic sys-
tern. Complexity metrics were used as a character-
istic function. By allowing the syster to run, and
attempt to reduce complexity, it was found that the
reduction could only procesd so far; ot that point, if
further reduction was to be achieved, human input
wis needed. Typically this involved making a tem-
porary sacrifice 1 order to make larger gains Inter,
The final form of abstraction involves removing the
efficiency improvemnents which are typically scattered
through an implementation. This amounts to discard-
ing information about the implementation and gaining
inlormation about the wnderlying design. A mumber
of common techniques are used e.g, loop invartant in-
iroduction and recursion intreduction.

3.4 Data Abstraction

Data abstraction is a powerful reverse engineering
technique, and is central to system understanding.
Much work has been undertaken in recognising candi-
date abstract data types in langnages such as COBOL
and Pascal by several research groups.

Transformations provide a means formally of con-
verting data from one representation to another while
preserving semantics. Pundamentally. this 1s very
similar to data reification technigues used in program
proois. A ‘retrieve’ or ‘abstraction’ function must be
wentified which maps values of one data type into
a value of the other suchi that the semantics of an

operation on both is preserved (the retrieve functi
must therefore equivalently map the results of the &
erations). Identification of suitable retrieve functions
needs human understanding. The choice of a retrieve
function represents increasing human comprehension
of the problem.

More recently, experiments have been undertaken
to iry to extract data designs from data intensive pro-

grams (typically those written in COBOL). The de-

sign representation we chose was the Entity-Relation-
Atiribute diagram. A number of tools have been de-

“scribed which take COBOL data and produce data

design diagrams. Unfortunately, these are little mare
than diagramming tocls. When ERA diagrams are
converted into code, only part of the information is
converted to data; the remainder ends up as code. A
good example is the use of foreign keys to represent re-

Jationships. Design information has thus become dis-

tributed across possibly large sections of program.

If the maimntainer is aware of this, then fransfor-
mations can be used invelving both code and data to
retrieve the ERA model. In our experimenis this as
resulted in an interesting form of abstraction; much of
the coding detail has heen discarded but the foraign

_ key operation itself must be retained.

3.5 Algebraic transformations

The transformations available in the tool library
only involve very linited facilities for algebraie ma-
nipulation. In practice, the aser needs access to the
full range of basic algebraic axioms and rules of infer-
ence, and a nnisber of theorems from mumber theory
have been found to be useful. When analysing loops,
mduction techniyues are important,

This 1zsue represents the most serions shortcoming
of the tool, and will be the subject of futnre research.

3.6 Precision

Many reverse engineering tools are designed as auds
to homan understanding, 1t is often not crucial if they
do not handle “hard” cases, difficull langnage con-
structs ete. It is the hatman that takes final respon-
sibility, and although the tool may well be judged on
its capabilities, 1L may not be essential even for it to
be correct.

This weak approach is not applicable to the Main-
tainer’s Assistant, and the constraints on its design
are henee much more severe. The maintainer expects
the semantics to be preserved and is very tutolerant of
any shiortcomings. For example, it is not acceptable to
support only a source code language suhset. Although
the tool can be used for simple restructuring through
o specification recovery, confidence of the user drains
away rapldly if it does any of these fallibly.

Although the tool is a prototype, the design has
had to take this constraint into consideration 1], as
problems woukd have invalidated any sensible experi-
mentation. In practice the main problem has proved
to he the front end as explained in 3.1.

3.7 Is Reverse Engineering Viable?

Large software systemns are usually derived from
some model of the real world application domain, even
if that model was never explicitly recorded or repre-
sented. By the time such a system needs reverse en-

gineering, or simply comprehending, it has typically
“heen Heavily miodifed abd ektended. s Wence an
open question whether this degraded system repre-

“gepts-any sensible realb-world=model == 1f-1t-does -nat;-eee

this will severely limit the extent to which it can be
understood, let alone reverse engineered.

Our experiments give us some grounds for hope
that heavily modified systems can be reverse engi-
neered to sensible, compact requirements specifica-
tions. Although no real world application demain
madel for a systen may actually exist, m practice the
software reflects a set of changes made in the appli-
cation dornain. For example, a tax program wmay be
heavily medified over the years to reflect the current
tax law. Although the program may be unstructured,
the tax laws it reflects are not necessarily so.

Perhaps a deeper problem lies in the form of design
represenfations chosen during reverse engineering. For
example, a number of researchers are undertaking ex-
periments to reverse engineer COBOL programs to ob-
ject oriented design notations. The age of the source
systemns is such that O0D would not linve been used
in the original design activity. We have undertaken
only very limited experiments on this lssue. There is
danger that 00D may be chosen as il is fashionable,
and other better approaches such as abstract machines
may be rejected. This is a topic for Turiher research.
It would be attractive to refrieve components in this
forrn, as they could potestially lorm rense candidates,
However, the boundaries around such components is
ot immediately obvious.

4 Other Work

Understanding real-time programs involves an ad-
ditional complexiiy of comprehending tinmng relation-
ships and consiraints. Much of this s snplicit in the
source code. Considerable progress has heen made 1o
this area and the results are reported in another paper
at this Conference.

Transformations may alse be used to derive an
efficient executable program from a formal non-
executable specification. This offers the advantage of
a derivation history in which the sequence of trans-
forms used 15 recorded. Perfective maintenance can
then be undertaken not in term of the program rode,
but using specification and design representations.

Work is underway at Durham to explore the ef-
fectiveness of this approach, and early results are en-
couraging. One fruitful approach is to transform the
specification to an executable bat inefficient prograrn
it as few steps as possible. As a second stage, this may
then be transformed to an efficient version. Separat-
ing the issues seems to make perfective maintenance
easler,

5 Conclusions

The development of a prototype formal transforma-
tion method and tool, together with a substantial pro-
gramme of case studies, has demonstrated the prac-
tical feasibility of using this approach to help soft-
ware maintainers. Users must think about software
in & new way, as an operand fo transformation op-
erations. The approach helps users both to discover
and-then represent-their-understanding; progressively
more of the user’s software engineesing and applica-
tion domain knowledge must be employed as levels of
abstraction are crossed.

6 Acknowledgements

The suthor would like to express his thanks to
other members of the formal methods team. Particu-
lar thanks are due to Martin Ward, who undertook the
research which lias led to the theoretical foundations
for the project. My thanks are also due to Tim Bull,
Hongiji Yang, Nigel Scriven, Brendan Hodpgson, Dave
Hinley, Dave Walton, Eddy Younger, Joan Carranca,
and Jenny Newion.

The author would like to acknowledge the financial
contribution of IBM UK, the UK DTI and SERC. He
also thanks the feam members at IBM Hursley for the
contribution, particularly Ron Cain.

References

[1] Bennett, K11, Bull, T. and Yang, I, “4 Trans-
formation System for Maitnlenance - Turninyg
Theory intfo Practice”. Proc. IEEE Conf. on Soft-
ware Maintenance, Orlando, Florida, November
1992,

2] Partsch, H. and Steinbrugen, R., “Program
Transformation Systems”, Computing Surveys,
vol. 15, no. 3, Sept., 1483,

(3] Yang, 0., “How docs the Maintainer’s Assustant
Start?”, Durbam University, Durliam, Technical
Report, 18984

[4] Yang, H., “The Supperting Environment for a
Reverse Engineering System - The Maintainer’s
Assistant”, presented at the IEEE Conference
ot Software Matntenance — 1991, Sorrento, Ialy,
1991

[6] Ward, M., “Transforming a Program info a Speci-
fication”, Durham University, Durham, Techaical
Report, 1988

[6] Ward, M., “4 Catalogue of Program Transfor-
mations”, Durham University, Durtham, Techni-
cal Report, 1988

[7] Bull, T., “An Iniroduction to the WSL Program
Transformer”, presented at the IEEE Conference
on Software Maintenance -~ 1990, San Diego, Cal-
tfornia, 1000

p RS = b CE
~ Comprehension

Chair: Alex Quilici

Criteria for Program Comprehension
Derived from
Software Complexity Metrics

Horst Zuse

Technische Universitat Berlin {FR 5-3)
FranklinstraBe 28/29
1 Berlin 10 (Germany)
Phone: +49-30-314-73439
Fax; +49-30-314-21103

Abstract

Program comprehension is close related to pro-
gram complexity. In order to analyze program
complexity much effort has been spent to

measure the complexity of programs. For this

reason hundreds of software complexity meas-
ures were proposed. In this paper criteria/condi-

- tions for. program coinprehension from. software -

complexily measures are derived. It is also
shown that using measurement theoretic numer-
ical conditions from software complexily measures
can be translated back io empirical conditions,
That means the lerm comprehension can be de-
scribed by empirdcal axioms. This approach
makes it easier o talk about the term program
comprehension.

1 Introduction

During the last years much attention has been di-
recled toward the comprehension of sofiwars.
Program compreghension is close related to soft-
ware complexity. Behind software complexity pro-
gram understanding or program comprehension is
hidden. The term “"software complexity” goes
back ic the sixties and seventies. Mysrs (Myers,
1976} and Yourdon et al. (Yourdon, Constantine,
1979) discuss the term "complexity”. Myers writes
about sofiware complexity (p.37): Complexity,
being a principal underlying cause of transiation
arrors, is one of the major causes of unreliable
software. Complexity is both difficult to define pre-
cisely and fo quantify. However, we can say that
the complexily of an object is some measure of
the mental effort required to understand that ob-
fect.

Myers characterizes complexity as (p.37): In gen-
eral, the complexity of an object is a function of
the relationships among the componenis of the
object. For instance, lo some extent the com-

0-8185-4042-1/83 $03.00 © 1893 IEEE

plexity of an external design of a software product
is a funclion of the relativnships among all of the
external interfaces of the product, for exampie, re-
lationships among user commands and the rela-
tionships established beiween oulpuls. of fthe
systern and inputs to the system. The complexity
of a system architeclure is a function of the rela-
tionships among subsystems. The complexity of

a program design is a function of the relationship

arnong the modules. The complexity of a single
module is a function of the connections among
program instructions within a module.

In Yourdon et ai. (Yourdon, Constantine, 1579} we
also can find statemenis about complexity of soft-
ware or of software designs. Yourdon et al. are
saying thai most of our problems in programming
oecyr because human beings make mistakes and
thal human beings make misiakes because their
limited capacity for complexity. This leads to the
obvious guestion: What is thal humans consider
complex? In specific terms that means, what
aspects of system design and program design do
programmers consider complex? And, by exten-
si}cm, what can we do {o make systems igss com-
plex.

These statements from the seventies and early
gighties show that the discussion of complexity of
software fook place verbally. However, in the
middle of the ssventieth researchers began to
propose software complexity metrics. The most
famous software complexity metric is the Metric of
McCabe (McCabe, 1978}, Behind software com-
plexity metrics empirically ideas of program com-
plexity/comprehension are hidden,

In this paper criteria/conditions for program com-
prehension, which are derived {from scfiware com-
plexity measures, are presented. Measurement
theory is used to translate numerical criteria back

i

to empirical criteria, Wakker (Wakker, 1989) also
describes the advantage of measurement theory
with the following statement: So, representation
theorems ‘translate’ theoretical statements into

empirical statements. They give criteria for verift-
- cation/justification or falsification/criticism,-—-—----
- In detall we discuss the following.. In-Section 2 we.. o
discuss measurement and measurement theory

very briefly. In Section 3 we present an overview
of empirical conditions which are derived from nu-
merical conditions. The independence conditions,
the axioms of the extensive structure, the
Weyuker conditions for program complexity, the
axioms of Bache and the idea of program com-
plexity/comprehension behind the Metric of
McCabe are discussed. In Section 4 conciusions
are given and Section 5 contalns the used list of
literature,

2 Measurement and Program Comprehension

In this Section we want to introduce the central
ideas of measurement and a brief introduction in
measurement theory which deals with the connec-
tion of empirical and numerical conditions by a ho-
momorphism. We present measurement as it is
seen by Roberts (Roberts, 1978), Krantz et al.
{Krantz, Luce, Suppe, Patric, Tversky, 1871) and
Luce et al. (Luce, Krantz, 1990) very briefly. In
{(Zuse, 1991) and (Zuse, 1992) the application of
measurament theory to software metrics is de-
scribed in detail.

2.1 What Is Measurement?

Measurement is a mapping of empirical objects to
numerical objects by a homomorphism. Krantz et
al. ((Krantz, Luce, Suppe, Patric, Tversky, 1971),
p.33, line 13) write the following in the introduction
of their book: Here, by conirast, we are con-
cerned almost exclusively with the qualitative con-
ditions under which a particular representation
hoids. That means, measurement is based on a
homomorphism between the empirical und numer-
ical relational systems related to a measure. It
gives qualitative (empirical) conditions for the use
of measures. As empirical conditions are consid-
ered conditions which can be falsified or verified.
Representation means, that, for example, pro-
gram comprehension is represented by a homo-
morphism into numbers,

In 1988 Kriz (Kriz, 1988) gave a good explanation
of the benefits of measurement in general. Kriz in-
troduced the following picture.

Measurment

Empilzrical Tormal
flelatisnal Ralaticnal
System Systenm

i

‘statiytica/Hathenuzica

Reaule Aesulc
irpirteal thvmericel)
Relevant)

Interprevdtion

Figure 2.1: The measurement process as pre-
sented by Kriz (Kriz, 1988). The empirical and
formal relational systems are explained below.

Users want to have relevant empirical results of
problems in reality. For example, users want to
have relevant empirical statements about the
complexity of pregrams. However, our human
brain, in many of the cases, is not able to produce
directly relevant empirical resuits. An exception
is, for example, the length of wooden boards. In
this case humans can make clear relevant empir-
ical statements. However, considering the com-
plexity of programs, the human brain is very often
not able to make such statemenis. The relevant
empirical statements related to soflware com-
plexity can change over the time and people have
difierent ideas of complexity. In many cases the
human brain is unable to make relevant empirical
decisions. Kriz calls this problem the “intelligence
barrier". That means, in many cases, the human
brain is not able to reduce informations without
certain help.

in order to overcome the problem of the intelli-
gence barrier measurement is introduced. Meas-
urement is a mapping of empirical objects {("Em-
pirical relational system") to numerical
{(mathematical) objects ("Formal relational
system”) by a homomorphism. Mathematics is
used o process the informations. Doing this we
get mathematical results ("Result nurmerical”).
Now, the important step is o give the mathemat-
ical results an empirical meaning (empirical inter-
pretation}. The most important point of measure-
ment is {o give an interpretation of the numbers.
In this case without an interpretation of the num-
bers it is not possible to make empirical state-
ments. Measurement theory, as presented by
Roberts (Roberts, 1978), Krantz et al. (Krantz,
Luce, Suppe, Palric, Tversky, 1971} and Luce et
al. (Luce, Krantz, 1990) gives the (relevant) empir-
ical interpretation of the numbers by the empirical
relational system.

In order to give an empirical relevant interpretation
of the numerical resulls we introduce measurs-
ment theory and translate numerical conditions
back to empirical conditions.

2.2 Baslc Concepts of Measurement Theory
First of ali we want o introduce the notion of an

empirical, a numerical relational system and a
scale. Lat
A=(AR,..R 0.0}

be an empirical relational system, where A is a
non-empty set of empirical objects R, are k-ary
empanaa! relations on A with i=1,. ,n anc! 0}
i=1,..,m, are binary operations on A.

According o buce.et al {Luce, Kraniz, 1390},
p.270, we assume for an empirical relational
system A that there is a well-established empir-
ical interpretation for the elements of A and for
each relation Si of A. We also assume the same
for the binary operations.

Letfurther
B = (8,5,

L JR N

be a formal relational system, where B is a non-
empty set of formal objects, for example numbers
or veciors, 8 i=1,..,n, are k-ary relations on B,
and =, j= 1, ,m are closed banary operations on
B. W4 aso include the case that there are no re-
iations or no operations,

& measure L i3 a mapping wA -> B such that
the following holds for all i=1,..,n; j=1,..,m and for

all aba ﬁ,...,akieA:
Ri(ai,‘..,,akl <=> 5{u{a,l,.... SEEN
ancﬁ’
pao b =pfa }ej n(b)

Then the Triple (A, B, yu} is called a2 scale. Ac-
cording to this definition we see that measurement
assumes a homomorphism. More precisely, we
consider the {ollowing problem in measurement
theory following Kraniz et al.: Let be (A, »= 0) a
relational system, where A is a non-emply set of
objects, == a binary relation on A and o a binary
operation on A. The problem is which conditions
{axioms} have to hold on (A, »=,0) in order to
have a mapping w: A->R, where R are the real
numbers, such for thatforaliab s A

a e2 b <=5 na) 2u(b)
and

1@ ob) = u(a) + uib)

hald,

The answer is given in Krantz et al. {(Kraniz,
Luce, Suppe, Patric, Tversky, 1971),Chapter 3.2)
and Robers {(Roberts, 1979, Chapter 3.2).

18

Given two relational system A and B we can
ask whether there exists a measure i such that
(A, B,) is a scale. This problem is cailed the
representation problem.

2.3 Ordinal Scale

We now introduce the conditions for the use of
software measures as an ordinal scale. In order
to describe 2 measure as an ordinal scale we in-
troduce the weak order which is a binary relation
that is transitive and complete:

Pex P, PezP"=> P 2 P" transitivily,

PexP or P's2P completengss {(connectad-
nessj,

for all P, P, P" eP, where P is the set of flow-

‘graphs and 2 is g binary empirical relation, like

"equal or more complex”.

In {(Roberts, 1979), p. 110, we find the following
theorem which we can apply directly to flow-
graphs.

Theorem 2.1:

Suppose (P, o=) is an empirical relational systemn,
where P is a non-empty countable set of flow-
graphs and where <2 is a binary reiation on P
Then there exisls a function' ! P->R, with

PexP <=> wP) 2 pu(P)

forall P, P'e P,ifi =2 iz 8 weak order.
1 exists, then

Hsuch a

{{P,e2). (%=

iz an ordinal scale.
%

ALY,

2.4 Measurgment Theory and Program Com-
nrehension

As meniioned above measurament theory deals
with the connection of empirical conditions with
numerical conditions via a homomarphism, This is
expressad more formally with the statemnent

as2 b <=> p(a) 2uibl,

where the lefi side describes an empirical ranking
order and the right side the numerical ranking
order. The empirical relation =2 can be inter-
preted as “equal or moe complex” or “equal or
betler o comprehend”. More empirical conditions
can be found If we consider the equation

p{a o b) = pfa) + pu(b)

where o is a concalenation operaiion. in order to
investigate additive measures the exiensive
structure is used. We always assume an ordinal
scale which includes the conditions transilivity and
completeness.

3 Empilrical Conditlons for the Term Program
Comprehension

As shown in Section 2 :t is possnble to g:ve numer-
ical results-an empirical mearung under the condi-
tion that-a homomorphism exists. Tha double im-
plication <=> allows 10 ftranslate numerical
conditions back to empirical conditions.

“erts; 1879), (Zuse, Bofimann, 1992); (Zuse, 1992).
Similar conditions can be aiso found by Weyuker
(Weyuker, 1988) and Fenton (Fenton, 1991).
These empirical conditions describe program
complexity or program comprehension. As an
empirical relation we introduce ez which means
"equal or more complex™ or “"equal or better to
comprehend”. That means, for example, having
two programs P1, P2e P, where P Is the setof all
programs,
P1 ez P2

is interpreted that P1 is equal or more compiex
than P2 or P1 is equal or more compiscated to
comprehend than P2.

3.1 Empirical Conditions Based on Concatena-
tlon of Objects

Many of the empirical conditions are based on
concatenation of programs. In order fo show
these conditions we have to dafine a concaiena-
tion operation. Weyuker, for example, (Weyuker,
1988) p.1359, gives a definition of a concatena-
tion operation: A program can be uniquely de-
composed into a set of disjoint blocks of ordered
statements hawng the property whenever the first
staterment in the block is executed, the other
Statements are executed in the given order. Fur
thermore, the first statemnent of the block is the
only staterent which can be executed directly
after execution of a statement in another block.
Intuitively, a block is a chunk of code which can
be always executed as a unit.

In Bolimann et al. (Bollmann, Zuse, 1985), (Zuse,
Bollmann, 1989) and Zuse (Zuse, 1991) (Zuse,
1892) the sequential concatenation operation for
flowgraphs was introduced and denoted with

BSEQ.
Figure 3.1: Sequentaal corzcatenatnon operataon
BSEQ= P1 o PE

"We now present a“fist “of “empirical conditions
... which are discussed in measurement theory (Rob-

11

Two arbitrary programs P1 and P2 or flowgraphs
are sequentially concatenated with ‘BSEQ. The
arbatrary programs or flowgraphs areso-called
primes because they have only one entry and one
exit. Weyuker calls this chunks or blocks. For
more informations see Fenton et al. (Fen:on Hill,
1883) (Chapter 13).

~ We now consider empirical conditions for program
_______complex:ty/comprehens:on based on ccncatena-:.._..
T ton eperations

3.2 Independence Condition and Program
Comprehension

We now give some empirical conditions rules re-
lated to the concatenation operation BSEQ. Let
P be the set of all flowgraph, a,b,c,deP, == an
empirical relation like "equal or more complex”
(= means equally complex} and o the congatena-
tion operation BSEQ. The conditions €1-C4 are
denoted as independence conditions and are de-
scribed in detail in {Zuse, 1882).

Condition Ci:
a=b=saoc=boc,anda=b=>scoa=cob,

forzlia, b, ceP.
I E LRI
&>

ki

Figure 3.2: Empmcal condition C1

Condition C1 is the weakest empmcai condrt:on
for independence between two components of a
program. Independence means that the com-
plexity of an entire software system can be de-
rived from the complexity of the components.

We formulate this more formally related to soft-
ware complexity measures by the following state-
ment {Zuse, Bolimann 1992). Exists an F such
that .

(P o P = F(u(P), n(P))

holds? This formal statement is not yet discussed
by authors in literature. However, it is discussed
by verbally formuiated statements, for example,
by Fenton (Fenton, 1981), who writes: The comr
plexity of a sequential flowgraph should be
uniquely determined by the complexities of the
components. Generally, we can say that the inde-
pendence condition C1 for program complexity is
not widely aceapted.

P'eP. Weyuker requirgs this axiom here in a
weaker form (= instead of =»).. The idea behind
this axiom is that Weyuker means adding some-
thing to a program makes it more complex or
morg difficult to comprehend.

3.5.2 Rejection of Condition C1

Weyuker rejects the iindependence condition C1

P=Q=>-(RoP=RoQ).

Doing this Weyuker also rejects the conditions
C2-C4 and the exiensive structure as conditions
for program complexily/comprehension.

.. 3.5.3 Rejection of Weak Commutativity.. ..

Weyuker re}écts the axiom of weak commutativity
which is aiso an axiom of the exiensive structure.
~The axiom of weak commulativily is defined as

PoQ=0QoP,
forallP, QeP.
Weyuker requires
PoQ~-=QoP,

Rejeciih'g the axiom of we”ak COmmﬂtaiiviiy means
also rejecting the extensive struciure.

3.5.4 Requiring the Extensive Struciure

Weyuker requires, among olhers, the extensive
structure because she discusses the stalemsn!

n(P1oP2)=p{P1)+pu(F2),

where i1 15 & software complexity measure. With
this statement Weyuker requires the exlensive
structure. And, Weyuker reguires independance
because the conditions C1-C4 are included in the
extensive structure (Zuse, 18%82).

There is a contradiction since Weyuker rejects
weak commutalivity and requires the exlensive
structure. Both is not possible. This shows that
congditions which are derived from sofiware com-
plexity measures can be interpreled from a meas-
urement theoretic view,

3.5 Required Properties by Bache

Bache (Fenton, 1991), p.218, suggests axioms of
program complexity. Bache formulates his
axioms numerical, but using measurement theory
it is possibie to ranslate the numerical conditions
back to empirical conditions by the implication =».
Again, o is the sequential concaienation operation
BSEQ. Bache denotes F, H, G as arbitrary flow-
graphs and P1 as an {rivial flowgraph consisting of
one edge and two nodes. For his considerations
Bache assume that holds

1L {H) > 11 {G) => H «> G.

14

That means flowgraph H is always more compli-
cated or less to comprehend than flowgraph G. p
is a software complexity measure. We always
show the original condition and then the transla-
tion back to an empirical condition by an implica-
tion =,

Axiom 1: . _
F2P1 == u(F) > p(P1)

'
i
H

=>Fos Pl

Figure 3.12: Axiom 1.

Axiom 1 means, that every arbitrary Hlowgraph F is -
more complex than a trivial flowgraph P1.

Axiom 2: o :
wFo Gy > max WFLuWG)) => FoG > max
(F.G) o -

Axiom 2 says that a sequence is more complex
than the maximal single componeant.

Axiom 3
WMFoG)=p{GoFi==FoG=GoF,

%6

Flgure 3.14: Axiom 3.

f> wind

Figurs 3.713: Axiom2,

Axiom 3 is the weak axiom of commutativity. i is
required by Bache,

strongest condition for concatenation operations.
Wae show the conditions of the extensive structure
in the next Section.

3.4 Conditlons for Program Comprehension
from the Extensive Structure

In measurement theory (Krantz, Luce, Suppe, Pa-

_tric, Tversky, 1971}, p.74, (Zuse, 1991}, (duse,

Boilmann, 1892), {Zuse, 1992) we can find empir-

___ical conditions which are denoted asthe extensive CF
~ struciure. They also can be interpreted as condi-

tions for program comprehension. The extensive
structure consists of the following axioms:

A1 (P,ez }is a weak order

A2 P1 o (P2 o P8)=(P1 o P2) ¢ P3, axiom ot

weak associativity

A3 P1 o P2 =P2 o P1, axiom of weak commuta-
tivity

A4 P1 o2 P2=s> P1 o0 P3 «2P2 o P3 axiom of

weak monotonicity

A5 li P1 > P2 then for any P3, P4 there exists a

naturai

number n, such that nP1 o P3 e> nP2 o P4, Ar-

chimedian Axiom

We now consider the empirical conditions A1'-AS'
in detail. The weak order (At1') describes the
ranking order of objects (See Section 2.3). The
prerequisites for the weak order are the axioms of
transitivity and completeness.

T

Figure 3.8: Axiom of weak assaciativity.

The axiom weak associativity is not discussed in
literature as a condition for program comprehen-
sion/complexity. This empirical condition is not
questionable because both flowgraphs are iden-

tical
) Pz
O

Figure 3.9: Axiom of weak commutativity.
This empirical condition is questionable because

many author require this condition and other au-
thors reject this condition for program complexity/
comprehension (Zuse, 1981), pn.534.

->ﬂ> =)

Figure 3.10: Axiom of weak monotonicity.
This empirical condition is similar to C3.

i a z w-times
P3y > m

Flgure 3.11: Archimedian axiom.

The axioms of the extensive structure are very
strong axioms. As shown in Figure 3.7 the axioms
of the extensive structure include the conditions
C1-C4.

3.5 Weyuker's View of Program Comprehen-
slon

in this Section it is shown that there are more
ideas of program complexity or program compre-
hension. Weyuker (Weyuker, 1988) discusses
desireable properties for software complexity
measures. Following our approach {Zuse, Boll-
mann, 1992}, {Zuse, 1992) we translate most of
the Weyuker properties back into empirical prop-
erties by an implication =», where o is again the
sequential concatenation operation. We only dis-
cuss the four most important requirements of
Wayuker,

3.5.1 Weak Positivity
Weyuker requires weak positivity. It is defined as
P=sPoQ,
and
Q<sPoQ.

Positivity is defined as (Krantz, Luce, Suppe, Pa-
tric, Tversky, 1971} (p.73): Po P > P, for all P,

P'eP. Weyuker requires this axiom here in a
weaker form (e instead of »>). The idea behind
this axiom is that Weyuker means adding some-
thing to a program makes it more complex or
more difficult to comprehend.

3.5.2 Rejection of Conditlon C1

Wayukar rejects the :ndependence condition C1
and requires :

P~Q=>~(RoP=RoQ).

Doing this Weyuker also rejects the conditions
C2-C4 and the extensive structure as conditions
for program complaxity/comprehension.

3.5.3 Hejection of Weak Commutativity

Weyuker rejects the axiom of weak commutativity
which is also an axiom of the exiensive structure.
The axiom of weak commutativity is defined as

PoQ=0GoP,
foraliP, QeP.
Weyukér ?eduirés |
PoQ-=QoP,

Rejecting the axiom of weak commutativity means

also rejecting the extensive struicture.
' 3.5.4 Requiring the Extensive Structure

Weyuker requires, among others, the exiensive
struciure because she discusses the siatement

B{P10P2) = (P1) +1 (P2),

where 1 I5 a sofiware complexily measure. With
this statement Weyuker requires the exiensive
structure. And, Weyuker requires independance
because the conditions C1-C4 are included in the
exiensive structure (Zuse, 19923,

There is a coniradiction since Weyuker rejects
weak commutativity and requires the extensive
siructure. Both s not possible. This shows that
conditions which are derived from soltware com-
plexity measures can be interpreted from a meas-
urement theoretic view.

3.5 Required Properiles by Bache

Bache (Fenton, 1991}, p.218, suggests axioms of
program complexity. Bache formulates his
axiomns numerical, but using measurement theory
it Is possible 1o translate the numaerical condilions
back to empirical conditions by the implication =>.
Again, o is the sequential concatenation operation
BSEQ. Bache denotes F, H, G as arbitrary flow-
graphs and P1 as an trivial flowgraph consisting of
one edge and two nedes. For his considerations
Bache assurne that holds

p{H) > 1 (G) => H e G,

14

That means flowgraph H is always more compli-
cated or less to comprehend than flowgraph G. p
is a software complexity measure. We always
show the original condition and then the transia-
tion back o an empirical condition by an implica-
tion =,

Axiom 1: .
F#P 1 = LF) » p(P1) => F o> P1

Figure 3.12: Axiom 1.

Axiom 1 means, that every arbilrary flowgraph Fis -
more complex than a trivial flowgraph P1.

Axiom 2: - S :
KFo Gy > max (wF),E)) = FoG
(F.G) :

o> Max

Figure 3.13: Axiom2.

Axiom 2 says that a sequence is more complex
than the maximal single component.

Axiom 3:
pFoG) = p(GoF)==FoG=GoF.

Fligure 3.14: Axiom 3.

Axiom 3 is the weak axiom of commutativity. It is
required by Bache,

Axlom 4:
pFoMi>pn{FoG)=>FoHe=FoG.

Figure 3.15: Axiom 4.

Axiom 4 is another type of the axiom of monoton-
icity than the axiom of weak monotonicity as de-
fined in the extensive structure. Bache requires
here > but does not consider the case of =.

Axiom 5:

u(F{F1 on a)) = p
F(F1 on b), where
in F on node b.

@w@g

Figure 3.16: Axiom 5.

Axiom 6;

w(F{H,F2,...,Fn)) > WF(G,F2,..,Fn))=>
(F(H.F2,..,Fn}) o> {F(G,F2,..,Fn)),

where F(G......) means G is nested in F.

W
F@ <

Figure 3.17: Axiom 8.

Axiom 6 says that the complexity/comprehension
of a program is independent of the node where a
flowgraph is nested in another one.

Axiom 7:

HH(F)>{G(F))=> (H(F)) » > (G(F)),

where H(F) means that F is nested in H on an ar-
bitrary node.

(F{F1 on b)} => F(F1 on a) =
F(F1 on b) means F1 is nested

15

Figure 3.18: Axiom 7.

With axioms & and 7 Bache discusses nesting
properties.

Axiom 8:
WF(G) > p (Fo G}, that immediately implies
WF(G)) > max (u(F},u{G))=> (F(G)) > max (F,G}

o wmaX C
Figure 3.19: Axiom 8.

Axiom 8 says that a nested flowgraph is more
complex than the maximum of the single parts.

Axiom 9:
H{H(G)) > p(G(H)) => H(G) > G(H).

®-©

Figure 3.20: Axiom 8.
Axiom 9 is also a condition for nested structures.

Tne Axioms 1-8@ show that program complexity
can be described by empirical axioms. Bache
(Fenton, 1991) presents the VINAP measures
which fuifil the axioms above. !t is important to no-
tice that the VINAP measures also assume the
extensive structure. This shows again that in the
area of software metrics many empirical condi-
tions about program complexity/comprehension
can be found.

3.7 Program Ccmprehension behind the Metric
of McCabe

We showed that in the area of software com-
plexity metrics implicitly empirical conditions are
discussed. Using measurement theory and as-
suming a homomorphism we can interpret the
idea of program complexily/comprehension be-
hind a software complexity measu re. We illustrate
this with the Measure of McCabe,

The idea of program comprehgnsion/complexity
behind the Measure MCC-V2=|E|-|Nj+1 of
McCabe, where E Is the set of edges and N the
set of nodes, is the following {Zuse, 1991), (Boli-
mann-Sdorra, Zuse, 1992) P and P’ are arbitrary
flowgraphs.

el: I P results from P’ by :nsemng an edge,

ihen P is more complex than P

e2: }f P results from P' by inseriing an edge and
a node, then P and P’ are equally complex.
e3: i P results from P' by transfering an edge

from one location 1o another location, than
P and P are equally complex.

The - conditions e1
ranking order of the Metric of McCabe related lo
the term complexity/comprehension.

Because the Metric of McCabe is additive relaled
to the concatenation operation BSEQ, the Metlric
of McCabe also assumes the axioms of the exisn-
siva structure and the conditions G1-C4.

4 Concluslon

Program comprehension and program complexity
are similar terms. Because program complexily is
analyzed with software complexity measures we
derive empirical conditions for the ierm program
comprehension from numericai conditions of soft-
ware complexity measures, This is possible be-
cause measurement theory allows under ceriain
conditions (homomorphism, elc.) the translation
of numerical conditions back to empirical condi-
tions. 1l is shown that the term program compre-
hension can be discussed logether with soflware
complexity metrics. This approach helps fo de-
scribe the empirical term program comprahension
with empirical conditions (axioms).

5 References

E :znn Peter: Zuse H g

! uf: / g éo oftwiye Com i»x; Measure i fPruceed
r?esg }haarehr 13 mpcf xug OQ mp ga uons) n ermat'mn
ge eﬂn dt fmpmca ggndahnns 051 {‘%rmat?n gn P a lwarg Scr
mw Ylek a}‘% g£g§§s1ga?méz§sen2%n r:mas nde, Flenum Press,
Eﬁlig? %dwm"a : énf:ware Complexi ures and
r?alvgrsitél ég?smﬁgFran ;'iesr?rg e% 99 Eﬁ ncal o ?ﬁnﬁ) cgr?ﬂsacngy

Femon. MNorman:

, e2, and ed describe the-

Rigorous Approach, City University. London,

éﬂware Mﬂ }gg

apmars &
ggpnsN rmanu}g;{ligﬁsauan nalysis
famewark i& éraw ?hil Sub ishaf, 1993,
K T k Amos
, David H.: Luce, R, Duncaéwaigéz as; J’gnc vers mo

oun ations ol easuwr“lam alynﬁm'nal epresenia-
tion. Acadomc rress

gaf‘fs an %Fgr: fac*.s oc il

ﬂ:ﬂ@ H:ﬁn vs:so i

A Mamemancai and i.oglcal

ological and Mathg-

cien E st
Soc?gfég r{}ca asf arch ‘iﬁechn:quas
gsaarch, 1 a8

uce, A, Dunean: Krantz, Davi Pazr ck; Tver Ames:
aunda.mns a?Maasura:ran: d\)g %&dsam:c ra3s, 199{:?

é‘f%—gg‘ewg Me;;uﬁ? é%i_}%é!‘}gﬂsamsms of Safware Enginsaring.

g’éﬁwa‘re ﬁ’éléab‘;%ity - Principlos and Practless, Wilsy & Sons, 1976,

EJ%UES; gE

ing .J
Glmar Compﬁxi‘ghé asures {EEER Transactions of Soi-
ware ngmearmg o

ol 14

‘Bobert
ith Applications to i}ems onmaksr U:z!
% erlyv nl E}i%gow n‘cyc pz?e g opi&amema'acs and §t§App!i%uons
dd{scn aslay Publis

ing Company, 1979

er %‘% gepxe ntanu s of Prefﬁr c%s A New Foundation of Deci-
alt

10N naiysns uwer cadamic er, 1939,

ourdon, Conatam é

ruciure esl un arrj_? Eas of a Duscsplma of Computer Pro-
gramsa and Premce ad, 1974,

use, Horst; Boliman . o
ésssr g SUFBIT r'tﬁf' 20 ﬁﬁ esc%ba he R;c eme Sc?éas gf
fah ar& omg exlr?' gtncs sgp oo 24, No. 8,
ugus:
?tw 2 éo plexit sures an athods, DeGruyter Publisher
T1E8Y, ;gerlm ggaw‘:’ ik, 50 pages 438 igures. N
use, Horst !‘mar‘n P
Feasureme are eaaure In: ?r eadin soélf?
niama 5”3;:{ orﬁn spects g(‘cmp 1
ay :3 93\) oum mc eggwr

(et il Bl O S

imiledan, Londen j}, Bhibar 155359

16

ors
??o;:ee Hf& § Sohware Mpasures Sofware Quality Joumnal, Vol 1, Ds-
camper 189 2 pp. 2252

A Process Algebra Based Program and System Representation for
Reverse Engineering *

K. Kontogiannis

3480 Umversity St., Room 318, Montréal, Canada H3A 2A7

*Centre de Recherche Informatique de Montréal
1801 McGill Collége, Burean 800, Montréal, H3A 2N4, Canada

Abstract

A reverse engineering approach based on precess al-
gebras for system representation and understanding is
presented. Process algebras offer both o Sformal frame-
work for representing communicating processes and o
proof theory for proving semantic equivalences between
them. Programs and program fragments are denoled
as concurrent egents and code behaviour is defined in
terms of interections among agents in a process al-
gebra representation suifable for subsequent analysis.
Semantie end behavioural equivelences beiwesn pro-
gramming plans, which represent programming stereo-
types, and code fragments can be defined in this for-
mal system together with a deduciion sysiem o prove
themn. Several edvaniages and furiher research issues
on the use of process algebra for reverse engineering
ond mainienance are identified and discussed.

1 Introduction

This paper describes an approach for program and
system represeniation and understanding, based on
process algebras to represent and analyze the be-
haviour of source code. Program understanding is a
tedious and time consuming phase of program mainte-
nance, particularly when the person involved is not the
author. Impact/change analysis; intermodule conmmu-
nication; classification of what a given code fragment
does; investigation of similarities between code frag-
ments; and path analysis, were some of the problems
identified by IBM researchers and programmers, and
constitute the basis of our research objectives. Our
research efforts focus first, on structural recognition

*This work is funded by IBM Canada Ltd. Laboratory -
Center for Advanced Studies (Toronto}.

0-8186-4042-1/93 $03.00 © 1993 IEEE

17

of code and second, on formalisms and metheds for
behavioural recognition.

Structural recognition is achieved at lower levels
of abstraction using the information provided by the
abstract syntax trees, and by control and data flow
graphs. The structure of these graph representations
is the basis for program understanding, {14]. It pro-
vides essential information for representing code frag-
ments as functional objects.

Behaviouzal recognition is achieved at a higher level
of abstraction. The dominant siructures at this level
are algebraic languages for pracesses, interpretations
of these languages, source code fragments viewed as
processes, and well defined communication mecha-
nisms between these processes. Program statements
are denoted as processes [16], [3], and source code is
represented in a process description language. Pro-
cesses which correspond to source code fragments are
linked through communication paths which describe
control and data flow. Behavioural equivalences of
processes can be defined within the possible interpre-
tations of such an algebraic process description lan-
guage. In {16] it is shown how a programming lan-
guage is denoted into CCS construcis. The transla-
tion occurs in a phrase-by-phrase fashion, and it is
compositional. In such a way, the programming lan-
guage is given an unambiguous meaning. Extensions
to include the process algebra denotation of program-
ning constructs typical of a modular imperative lan-
guage are given in {13] together with examples. The
program fragments can be classified and recognized
by matching or by proving their equivalence to prede-
fined programming plans and specifications. At this
level, process behaviour is captured by using labeled
transition graphs and derivation trees. The recogni-
tion process becomes a problem solving activity for
proving process equivalences. ,

Because of complexity issues and lhmils of current
theories, paradigms for program understanding do not
usually cover all {he situations which have to be ana-
lyzed. Partial recognition has to be performed and
semantic distances, defined for different recognition
plans, can be used to score the alternative recognition
hypotheses. User interaction could also make;feasible
certain analysis algorithms whose cc)mplex.';tj? niakes
them otherwise unacceptable for programs and sys-
tems of subsiantial size. “This approach is used for
developing software maintenance tools for PL/AS !
programs al IBM Toronio research laboratories.

"2 Plan based ”progr.z.ifﬁ un.{iei:séa.ﬁdi'i.}g

techniques

A number of research teams have addressed the
issue of program representation and understanding

using plan. based technigues. The basic idea in all .
of these appreoaches is to syntactically match some

code description to a cliché description, and to per-
form abstractions using rewrite rules. Our approach
replaces the syniactic matching of descriptions with
proving equivalence relations. Program equivalence s
proven by establishing the equivalence beiween pro-
cesses nsing criferia such as observational equivalence
and bisimulation. This resulls in dynamic matching
based on the behavioural properiles of the programs
rather than the syntactic properiles of their represen-
iation.

The Program Recognizer [27] uses a library of
clichés to identify fragments and daia siruciures which
appear in the code. 1t is based on Plan Caleulus [21]
which represents source code al a higher level of ab-
straction, Plan calculus program representations are
encoded as flow graphs which are parsed in order to
produce design trees. Cliché recognition is achieved
by identifying subgraphs in the Plan Calculus repre-
sentations, and replacing them by more abstract op-
erations.

CPU [15], uses lammbda calculus to represent pro-
grams and reason about them. Source code is {rans-
lated inio lambda expressions In a preprocessing
phase. Then using a knowledge base of rewrite rules,
it applies all applicable transformations, until expres-
sions can be no further transformed. The sequence
and the nature of the transformations represent the
design decisions and provide a hierarchical descripiion
of the causal connections of plans at different levels of

PPL/AS is o copyright of IBM Corp.

i8

abstraction.

Pat,[19] uses a Plan Parser to generate a set of rules
that contain understanding, paraphrasing and debug-
ging knowledge along with a deductive inference en-
gine. A Program parser creates events or facts from
sousce code. These are used to fire the rules that rec-
ognize the plans in the program. The whole undes-
standing process is recorded by a justification-based
truth maintenance system.

A program understanding method based on proper
decomposition for large, unstructured, imperative pro-
grams is presented in {6]. Source code is represented
by a hierarchical data flow / control flow graph, cor—
respouding to an abstract model which is language
independent. Plan instances and programming con-
cepls are recognized by matching parts of the abstract
progran representation against a library of standard
implementation plans. Decomposition principles are
used to break complex problems into. smaller. sub-
problems.

The points that make our al_ge_brais; appioach at-
t%a'c'ti'\;'c are (1) the uniform way in which systems can
be described, from simple programming statements,
to operating systems and compuling enviromments;
{2} the compositional way the behaviour of any code
fragment 15 defined in terms of its subcomponents; (3)
the ability to define ordering relations between code
fragments when eguivalences can not be proven; and
{4} the ability ic denote recursive and interactive pro-
grams.

3 Process Caleculus and Program Hep-
resentation

Our appioach uses the theory of Concurrent Coni-
municating Systems {CCS) [18] which incorporates an
algebraic language for processes, a deduction system
for reasoning about processes based on a set of equa-
tions, and a class of equivalence relations.

The key point in this calenlus is the notion of an
ageni. An agent models and describes a specific part
of a complex system. Communication is achleved by
actions that agents may performs. Fach agent is capa-~
ble of performing an action to interact with ils neigh-
bouring agents, which occurs independently and con-
currently with other agents’ actions. Ceommunication
between agentsis achieved by linking input and cutput
ports of agents. Handshakes through complementary
ports are represented by a special action denoied by

the silent action 7. Thus, the behavicur of a system is
defined in terms of its entire communication capabili-
ties, or alternatively, in terms of what is observable in
such a system. Equations are used to represent pro-
cess behaviour, For example the equation A = b.B +
¢.C is interpreted as : Agent 4 is capable of perform-

-ing action b and then behaving like agent By or-A-4s

cepable of performing action ¢ and then behaving Like

wagent C-The bastc constructors for dgent expressiong ™ = |-

afre

e The inactive agent 0

o Constant A (ihe Agent 4)
e Prefix a.E (do Action o and behave like Agent E}

o Summation E1 + E2 (behave Lke Agent Bf or
Agent F2)

¢ Composition E1 | B2 (Agent EI composed with
Agent E2. The Agents may proceed independently
or may interact through complementary poris)

» Restriction E\ L {Actions in the set L, are visible
only within the scope of Agent E)

o Relabelling E[f] (Port renaming of Agent E ac-
cording o function f. It is used for communicat-
wng Agents which share no complementary ports)

o Substitution B/X (Substitute X by E)

o Recussion fix(X = E) (the Agent X such that X
= EJ}

Equations are not the only means to represent an
Agent’s behaviour. Labelled transition systems, pro-
cess algebra flow graphs, and Transition trees are used
as well.

A Labelled Transition System is a triplet (S, A,)
where S is a set of process algebra states, A, a set of
actions, and -5, a state transition function,

Process Algebra Flow Graphs (PAFG) are tools
to understand complex processes. PAFGs consist of
nodes which correspond to processes, and arcs which
join nodes. Eachk node has as many interna! labeled
ports as the corresponding actions emanating from
this node. Fach port may have external labels de-
fined by renaming its internal labels. Arcs join two
ports at different nodes with either no external labels
or complementary labels. In Fig. 1, such a PAFG for
basic programming language constructs is illustrated.

Nodes in Fig. 1 represent the following agents :
o} identifier registers {Reg.i, Reg x); b} identifier ref-
erences {Denoteli}); ¢/ function symbols (Denote]:=])
and finally; d) control {Done).

19

{pu t Reg 1

gET |Fee_i (i)
get 1{i}
qan
Dienotefi]
e

e (.i.)

Benotefi=]

e resm{mi | osri
Fhe

P k(i)

done pumwx(# UL Heg x

{ chorie . J g?ﬁw_‘c(i.)

Figure 1: Process Algebra Flow Graph for the state-
ment x 1=}

[dEte

chopre

Arcs in Fig. 1 represent communication links
between complementary communication ports. The
value of register i is read through the geti port and it
is passed to the function ;= via its argf port which is
renamed as res. The = process updates the value of
the register referring to identifier x by issuing a pui_z
action through its renamed 7% port. The control pro-
cess Done signals the termination of the statement
o=

Dertvation Trees are tree structures which state all
the transitions that may occur in a system. Whenever
E % B, B is called an a-derivative of E. Derivation
trees are of the most interest to our work as the mean-
ing of an agent is a property of its derivaiion tree.
Nodes correspond to processes, and arcs from each
non-leaf node correspond to all possible actions that
emanate from this node. A possible interpretation of
the algebraic language in terms of derivation trees is
shown in Fig. 2.

4 KEquivalence Relations over processes

Basic CCS calculus defines equivalence relations for
processes based on bisimulation. The intuitive idea
behind bisimulation is that two processes can be char-
acterized as different if an external observer can detect
a difference between them.

Derivation Tree

Process

a.A

A+B

Figure 2: Derivation trees for basic language construc-
tors

More formally, a bisimulation is a binary rela.tian
R over processes such that (P, @) € Rif and only if:

i {x
o whenever P -5 P’'then for some Q' @ — @ and

(P, Q)€ R

o whenever { — 7 then for some P, P 2 P’and
(P, Q)R

Thus, two processes, P and ¢, are equivalent if and
only if for all @ € Act each o - derivaiive of Pis equiv-
alent o some a - derivative of @, and conversely. If
the silent action 7 is treated as any other possible ac-
tion in the system, we arrive at the notion of strong
bistmulation (strong equivalence). If 7 is treated as a
special action (unobservable), then weak bisimulation
{observational equivalence) is defined.

The relationship between bisimulation and testing
equivalence is defined in [1} where it is shown how
bisimulation equivalence relations can be based on
testing.

Program understanding is an activity which can
benefit from the semantics of the langnage in which
the programs are written. There are several method-
ologies for representing the semantics of programming
languages. These include denotational semantics, op-
erational semantics [18], lambda calculus, Hoare’s
Logic [10], Dynamic Logic [9] and CCS [16].

20

Denote[x:=y] = {ge! _y(al}.r;ai).ﬂ I

res{w).put_x{w).Done)\ res

get_y(al) {road the veluwe of ¥)

{ree{al)0f res(w).put x(w)Donchses

fay L wat

pat_xtal).Bomc

L S—— A
ol (Update the velue af & Note thet action pul_x(s1)

an be consumed by the agent Reg_s{xavaluc) =

put x(a32}Reg_s(x:l}+ g";l:;(—a [LReg x{X:alh)

put_x{a}}

Done

Figure 3: Update/Initialize plan as a derivation tree
for the expression x:=y

5 Program and Systéem Understanding
using algebraic languages for pro-
cesses

Our objective in system understanding is to pro-
vide a means and tools to a system maintainer to ana-
lyze a system’s behaviour. At program level, two pro-
grams are considered equivalent if their correspond-
ing representations In process algebra can be proven
equivalent. In the context of program nnderstand-
ing, this approach involves proving ithe equivalence
between process algebra descriptions of source code
and programming plans. Programming plans can be
expressed as process algebra derivation trees as well.
For example the initialize/update plan is given as a
process algebra derivation iree in Fig. 3. The ex-
pression z:=y is analyzed as a process algebra agent.
First the right hand side of the expression is evaluated
(get.y(a1)) and the result is passed via the res action
to the agent which updates the value of register z,
with the pul.z(cl) action. Process algebra equations,
derivation trees and PAFGs can be extracted from the
abstract syntax tree of the code being analyzed.

Derivation trees are of particular interest as bisim-
ulation equivalence relations can be defined on them.
An example of the use of observational congruence
for proving that two code fragments are equivalent is
shown in Fig. 4 and in Fig. 5. Two IF-THEN-ELSE

statements are proven equivalent after they have been

s | (e {e et ection pessible dus to compleenentation on actions gt arg2) -

(et a0y realad 1O o res) FresI0) Jarg2hes}) g e) g 2y) ron{ om0
Entolm) (if w then Denote[2=i] else Demotel 22=0]
{Only possible action get_i(n1}}

get_al} {get the value of §}

(g1 0 L arg2(1G) L Largl{chaig2if) resla>ay}) Itow) (i w then Denoffzwi] ;-
else Denote[zol] ;

1au nst, yi10

ralal me 1000 Freafat = |GG (2) >= 10) then Denotelzeil} +
{f ~{al p= 10} then Denotd 01} \pey
{alient action po3sitle due to complementation on action os)

{2l »= 1) ~{al 2= |0} evaiuate >= fimction and expand
metaconditional i w then A else B}
fan taw
Detote] p=i]

. { Desore[70

(gt 31).es{a). 0 [argpes] (1030 g} g b arg2iy) ams(a<10)0)
Into{w) (if w then Deswote{r=0i elae Denotelr =i
{Only possible sction get_ita1})

l et i{al) (get the valus ofi)

T el w016 [BT 20} D)) G w e Dot |
o cleDamolze] |
S

tasf l zal, y10

res(al = 1036t res(al < 10)44if (a1 < [0} then Denote}=C]} + J

{if ~{z1 < 10) then Denote{z:=i}) 4 reg
{silent action possibk due 1o complementation on action res)

~{al <I0) {evaluate < function and expand
metr-conditional if w then A else B}
tan fai

[
f Denotefz:s0] . Denote] z:=]]

fal <15}

Figure 4: Derivation tree for the expression IF (i >=
10) THEN z:=i ELSE z: =0

analyzed as process algebra derivation trees.

At any given node of the tree, the actions ema-
nating from that node can be bisimulated by the the
actions of the comresponding node of the other tree.

For the trees in Fig. 4 and in Fig. 5 to be equiv-
alent in the full value passing calculus, the proof of
(@l < 10) = —(al >= 10} must be incorporated as
well. Another example for proving equivalence be-
tween a structured GOTO statement combined with
an IF-THEN statement, and a WHILE statement is
shown in Fig. € and in Fig. 7. The process algebra
derivation trees are used to prove observational equiv-
alence between these two statements. In Fig. 6, De-
note!Cond] process, which can be represented as a pro-
cess algebra derivation subtree on its own, terminates
by issuing a res{T) or res{F) action. These actions
are consummed by Denote[Body] and the Done process
respectivelly. The GOTO is translated as a special
node in the derivation tree called Jterafe, pointing to
the root of the tree, thus implementing the unfolding
of the statement as indicated by the GOTO label. The
Denote[Body] process can be represented as a process
algebra derivation subiree as well. The last action it
performs is a done action, which is then consumed by
the Jierate process using the before operator.

The before operator links two processes in such a
way that when the first terminates the second starts.
Its process algebra equation is given in [16] and is de-
fined as :

21

Figure 5: Derivation tree for the expression IF (i < 10)
THEN =0 ELSE z:= §

A before B &' (Allink/done] | link.B) \ {link}

wlere done is the last action performed by process
A and link is a new port introduced in process B.

In Fig. 7 the same Cond and Body statements are
transtated as process algebra derivation subtrees and
linked according to the actions performed, resulting in
a derivation tree which is observationally equivalent to
the one in Fig. 6. The fiz operator is used to represent
recursive equations of the form A L B, where B is of
the form E{A/X} and E contains the variable X; that
is A occurs in B, By setting A e E{A/X}, one is
looking for a unique solution to the equation X = E
f16].

The advantages of considering equivalence relations
and partial orders for program understanding within
the framework of algebraic languages for processes are
based on two criteria. The first criterion is related to
the power and formality of process algebras. Such a
formalism offers not only expressive power for program
representation, but also a complete set of combinators
and equational laws for reasoning on processes, It is
possible to define equivalences between processes so
that make program understanding and classification
easier,

The second criterion deals with the application of
process algebras for program understanding. Informa-
tion hiding as well as composition are easily encoded
by using the restriction and the composition opera-

Drencts] 10 : [P (Cond} THEN
GOTO 18 : o .
End;| = W DepotefCond] | reslah (if £2) shen (Doncte[Bicy] befisn
Drenots{ GOTRMO]) ehe Dons) = fix(W) = Denote[Cond] zes(a). (F (23 then
Dronertc] Body] before W)-elez Done

(zem {13 {res (2}

Denots | While (Cond} deo
BodysTor

fix{¥ = Denote [Cond] § mﬂ}.{ﬁtx)hn(ﬁwmﬁz{ﬁodyib«&n-*ﬂdszbcm)

Figure 6: Derivation tree for the statement : 16 : IF

(Cond) THEN Begin Body; Goto 10 End;

tors. Composition, in particulaz, is an interesling fea~
tnre of the calculns since it allows program behaviour
i be defined in terms of the behaviour of its subcom-
ponenis.

Finally, it is moze natural to think of programs in
terms of communicating processes than in terms of
plain funclions or structural descriptions. 'The pro-
cess algebra approach is intrinsically scalable up and
is uniform as well. The whole program environment -
from the user or the operating sysiem up Lo the aclual
source code {program fragments, procedures or mod-
ules) - is viewed and encoded as processes and agents.

The ability of building abstractions is an inherent
attribule of the process algebra approach. Unneces-
sary information due to formail, comments, or syn-
tactic sugar is eliminated as the denotation of such
information is uniform in all of its possible variations.

Behaviour based concept representations of pro-
grams are used for hierarchical recognition in which
already recognized concepts as well as programming
structures can be used for further recognition. Pro-
cess algebra program representations are abstracted
as higher level agents for which actions correspond
to a set of roles which describe the abstracted con-
cept. Programming structures, procedures, or func-
tions can be represented as single agents performing
certain communication actions characterizing the ab-
stracted concept they define.

Transformations on abstractions are straightfor-

.Figufe.'r.': Derivaiion tree for the statement : WHILE ™

(Cond)} DO Body;

ward as process algebra language allows for such ma-
nipulation. Software represented as process algebra
derivaiion trees, process algebra flow graphs, or pro-
cess algebra equations, can be transformed by trans-
forming these process algebra expressions.

The drawback of this approach is that recognition
still relies on programming plans and on complex pro-
cess algebra equations. In the case of scattered code, a
plan may be computationally expensive to match. In
such cases, henristic methods could be used to locale
the possible matching plans. Moreover, recursion and
iteration have o be examined carefully as there are
undecidable problems related io loop and recursion
termination.

Implementation issues arise when such a theory is
applied to real problems. We have chosen the Re-
fine ? tool as a workbench for our approach. Refine
provides an environment with a programmable lan-
guage parser/printer, a soflware analysis and trans-
formation system, and an X windows-based graphical
interface toolkit. Code is represented as annotated,
absiraci syntax trees in an object base. Moreover, a
high level Lisp based language combining logic pro-
gramining, rule based programming, functional pro-
gramming, and object oriented programming is pro-
vided. This language is used to query and update the
object base representing the source code under analy-

IREFINE is a trademark of Hensoning Systems Corp.

¥

sisi o o .

Wlthm this frameworh ‘process ‘algebra equations
and dernahon trees can be constructed directly from
the abstmct syntax trees. Currently, our research fo-
cuses on denoting PL/AS language in a process alge-
bra formalism, ‘and devising ‘appropriate equivzﬁence

~and partlal ‘order-relations - in order-to-prove: I514513 ERTSE

larltles ‘or equsvaiences between coée fragments and

complexity of the derived process algebra expressious;
and the complemty of the matching process.
Recmswn and iteration introduce two basic prob»
lems. The first problem is related to criteria for
proving tenpination. Recuisive and iterative code’
fragnients ‘which have to be identified and matched -

“with “recursive-and iterativesplans-need not-only be:

prmen to ferminate, but must also be b proven as be-

formalism to represent process algebra equations as
trees in'the Refine environment, and we have denoted
basie PL/AS statements and expressions in this for-
malism, Moreover, we have implemented some sim-
ple e’qiﬁif&Eén(‘e'feiaﬁions for matching structurally dif-
ferent code” fragments. Currently, we have denoted
declaration statements, identifier references, assign-
ment sta.t_ements, while statements, switch statements,
If-Then-Else statements, and a number of expres-
sions ‘such as addition, substraction, division, multi-
plication, < prédicates, > predicates, etc. A simple
behavioural “pattern matcher has been implemented
and is used to localize structurally different, but be-
haviourally equivalent code fragments. This simple
behavioural pattern matcher can prove the similarity
betweén the following statements : (a) an IF-THEN-
ELSE statemeit and its reverse ; (b) a CASE state-
ment and a sequence of nested IF--THEN-ELSE state-
ments; and €c) 5 WHILE statement and a combina-
tion of a structured GOTO statement with an IF-
THEN statement. Since process algebras focus on
communication, additional questions on the way sofi-
ware ‘components communicate can be answered as
well:--Within this framework we have devised a set
of programs for selecting code fragments satisfying a
set of input/output criteria such as variables used and
*«amables ‘updated. Moreover, sy mbolic values are used
to unpl:;}meni: the value passing mechanism in process
algebra calculus when no constant values can be calcu-
lated. Towards this line of research, we are considering
the use of flow analysts in order to perform more com-
plex tasks, such as answering questions on reaching
deﬁmtlons and performmg alias analysis.

. Quality-'impmvmnent can be defired in terms of
simplifying, modularizing, and documenting the sys-
tem.

6 Research Issues
Research topics to be investigated for system rep-

resentation and understanding include: recursion and
iteration handling; partial behavioural matching; the

Spedificallywe linver devisedrase

23

“faviourally equivalent processess vamg terimnahﬁm .

is generally an undecidable problem. The solutions we
consider are derived from the areas of partial evalua-
tion, symbolic execution and flow analysis of programs
[12], [17]. Moreover, the extension of system responses
by allowing Do not Know responses in addition to Yes'
/ No responses is currently under investigation in the
framework of loop and recursion analysis. The second
problem is related to the structures used to represent
iterative and recursive processes. In '15] and [22], the
authors show how iterative pmgrammmg strnctures
are transformed into sequentxal ones with the use of
programming plans. This is an attractive approach '
because we wish to avoid using any graph structure 1o’
represeiit programs. The reason for this is that’ prov
ing 1somorph:sm between graphs (programming plan
representations and sonrce code repreqentatmns) 15 ‘a
problem of unknown complexity.

Partial recognition and partial bchm’mumi match- _
ing address the problem of recognizing plan msta._nc__es,__'_
even when source code with no relevance to any pro-
gramming plan is interleaved with the code fragment
being analyzed. In order to accomplish this, distances
and metrics for partial matching must be defined. Se-
mantic distances and metrics can be used to score _9;07
gram descriptions that partially match progranunin_ﬁ
plans. Similar techniques can be found in [4] and [5],
where metrics are used to describe relations beiween
different processes.

Current program understanding techniques may re- .
quire solutions whose complexity is unacceptable for
systems of substantial size. Reducing the complexity.
of the top-level control strategy for guiding the match- .
ing process of plan and code representations is an open
issue and it involves the investigation of several tech-.
niques which include reduction of the search space,
guidance of the matching algorithm, and user interac- .
tion. Top-level control strategies for focusing on pro-:
gram parts-and for selecting programming plans in- .
clude the use of domain knowledge [2], top-down goal .
agendas [11], best first search (TALUS), depth first
recursive search [15], repeated traversals [20], and ex-
haustive parsing [22].

Finally, the existence of normal forms for &ll pro-

cesses is an issue in the equational theory. If an al-
gorithm to derive normal forms can be found, then
programming plans are reduced to these normal forms,
and bisimulation equivalence is reduced to simple pat-
tern matching, Such a normal or standard form exists,
but only for processes thal contain finite summadtions,
no recursion, and finitely many distinct derivatives.
Thus, the objective is tp exploit techniques for select-
m&, cmly those specific, behavioural properties in recur-
sive and iterative processes that can be represented in
standard formi.

7 Conclusxon

Tius paper descrabes an approach for program
and system representation using process algebras and
CCS. The use of this representation for system under-
standing offers several advantages. Firstly, program
behaviour is compeositional and is given in terms of the
. behaviour of its subcomponents.
support such a program represeniation are derivation
trees and process algebra equations. Secondly, seman-
Al equivalences between process algebra descriptions
of programming plans and soutce code can be defined.
Process equivalence can be based on bisimulation and
on the observable behaviour of every process. We in-
yesiigate the idea of using equivalence relations and
partial order relations in order to show semantic equiv-
alences between programming plans and source code
representations, Pariial order relations can be used
to describe properties of a program fragment when
no perfect, behavioural matching betwsen plans and
source code descriptions is possible due o syniactic
variations, implementation variations, nonconligucus-
and unrecognizable code. Thirdly, interaciive
systems can be described and represenied. Finally,
it 15 a uniform, natural, and scalable approach since
program siatements, procedures, modules, programs,
operating sysiems, and users are all viewed as com-
municating agents. Therefore there is no distinetion
between program and system: undersianding.

Thke critical problem of the compleieness of pro-
gramming plans seems to be overwhelming for effi-
cient plan based program understanding. The num-
ber of programming plans required to cover all possi-
ble, realistic behaviours that can occur - let alone de-
termine them ~ imposes a serious limitation towards
automatic program understanding. An alternative so-
lution could be incremental recognition in a goal ori-
ented reverse engineering environmeni driven by an
efficient query system. Complete plan recognition is
difficull {0 achieve and reverse engineering should be

eSS,

Formalisms used to..

an incremental and a goal directed process. Revene
engineering an entire system is expensive and this ef-
fort should be goal oriented. Goals can be set by
the maintainer and expressed as a swies of queries.
Queries can be used to locate code fragments satisfy-
ing a specific behaviour without considering possible
variations due to implementation and syntactic differ-
ences between code fragm%nts Such gueries may seck
code that updates a specific yariable, interfaces with a
given module, or performs a particular seqquence of ac-
tions, implementing a specific algorithm. Thus, plan
recognition becoimnes a goal driven, user assisted pro-
cess.

Open research issues in this framevork involve it-

~eration-and recursion handling for which -termination

proofs are required, as well as the definition of par-
tial order relations which allow for partial behavioural
matching. Alternative solutions based on static exe-
cutton, induction, pariial evaluation, asd flow analysis
are considered. This approach is being applied for an-
alyzing and understanding PL/AS programs at JBM -
Toronto research laboratories.

Acknowledgemeut

We would like to timni E Buss a.nd J Henshm&
from IBM CAS Toronto, for the deep insights our con-
versations gave us.

References

[1] 8. Abramsky, “Observational Bguivalence as a
Testing Equivalence,” Imperial Ceollsge Techuial
Hepori,

21 T, 1. Biggersiaff, “Design Recovery for Mainte-
nance and Beuse,” JEEE Compuler, July 1989, pp.
36 - 49,

T. Bolognesi, E. Brinksma, “Introduction to the
ISO specification langunage LOTOS5” Cempuler
Networks and ISDN Systems 14 (1887) pp23-50.

J. deBakker, J. Zucker, *Processes and ihe deno-
tational Semantics of Concurrency”
and Contrel, 54, pp70-120.

Anformabon

G. Golsen, W Rounds “Connections between Two
Theories of Concurrency : Metric Spaces and Syn-
chronization Trees,” Information and Conirol, 37,
ppl0d-124.

[6) J. Hartman, “Understanding Natural Programs
Using Proper Decompoesition” [3ih Inferne

[Shah’

tional Conference on Software Engineering, 1881,
Austin, Tezas, pp. 62-73.

[7] M. C. Hennessy, “Algebraic Theory of Processes,”
MIT Press, 1984.

“[8] M. C.-Hennessy, G Plotkin, #A term “imodel for == =

. CCs” LNCS 3.

[9} C. A R Hoars, “Commumcatmg Seqaent;al Pm-

cesses,” CACM, Vol.21, pp666-677, 1973,

[10] C. A. R. Hoare, “An Axiomatic Basis for Com-
puter Programming,” C4CM, Vol 12, pp576-580,
1969,

[11] W. L. Johnson, “Understanding and Debug-
ging Novice Programs,” Artificial Intelligence {2
(1950) pp.51-97.

{12} 1. King, “Symbolic Execution and Program Test-
ing,” CACM, July 1878, Volume 19, Number 7,
pp385-384.

[13] K. Kontoglannis, “Toward Program Representa-
tion and Program Understanding using Process Al-
gebras,” CASCON 92, IBM Canada Ltd. Labora-
tory - Center for Advanced Studies, November
9-12 1992 , pp.299-317.

[14] W, Kozaczynski, J. Q. Ning, A. Engberts, “Pro-
gram Concept Recognition and Transformation,”
TEEE Transactions on Software Engineering Dec.
1992, Vol. 18, No. 12, ppl1065 - 1075

[15] 1. 5. Letovsky, “Plan Analysis of Programs,”
Ph.D thesis YALEU/CSD/RR /662, Yale Univer-
sily, Depl. of Computer Science.

[16] A. 3. R. G. Milner, “Communication and Con-
currency,” Prentice Hall, 1989

[17] S. Muchnick, N. Jones, “Program Flow Analysis,
Theory and Applications,” Prentice Hall 1981.

[18] G. D. Plotkin, “A Structural Approach to Op-
erational Semantics®, Leclure Noles, University of
Agrhus, Denmark.

[18] J. Q. Ning, M. T. Harandi, “Knowledge-Based
Program Analysis,” IEEE Software Janvary 1990,
pp74-81.

[20] A. Quilici, J. Khan, “Extracting Objects
and Operations from C Programs,” Workshop
notes Al and Automated Program Understanding,
AAADPS2, pp.95-97.

[2

25

1] C. Rich, R. C. Waters, “Intelligent Assistance for

Program Recognition, Design, Optimization, and
Debugging”, Memo, MIT AI Lab, Jan 1989.

22] L. M. Wills, “Automated Program Recognition:
A Feasibility Demonstration,” A'ritﬁcml InieZIz-
gence, Vol 45, N6, 1-2, Sept. “1890." "

Understandmg Lolita: o
Program Comprehenszon in Functional Languages

i

J.E. Hazan, S.A. Jarvis, R.G. Morgan and R. Garigliano |
Artificial Intelligence Systems Research Group
University of Durham, DHi 3LE, UK

Absiract

Traditional arguments concerning the comprehensi-
bility of funclional programs have been iHlustrafed with
trivial examples. In this paper, we preseni the real-
life ezample of a large sysiem for nalurel language
processing which has been programmed entirely in a
lazy functional language. This system is undergoing
conslant change as new fealures are added 1o differ-
ent areas. We present a series of case studies which

. #llustrate various aspects of the mainlenance task, in-

cluding reuse of existing parts of the system and the
infegration of the new features. We explain how the
choice of @ funclional language for progremming lhe
systemn has aided in ihe comprehension of the system
by new programmers and how fhs in furn has led o the
simplification of the meainienonce insk. We describe
the case with which new fealures have been infegrafed
inic the system and relale this fo the careful design of
abstractions within a functional programming frame-
work.

1 Introduction

I has often been argued that it is easier to wrile
in a funectional programming language than in an im-
perative language. Higher-order functions and lazy
evaluation allow new levels of modularity to be at-
tained [1]; this in turn enables programs to be more
easily read and understood. Lack of side-effects make
the properties of the program easier to reason about.
The similarity to mathematical notation can be con-
sidered an advantage to those with a knowledge of
such notation. In addition, programimers do not need
to concern themselves with storage management; the
program is thus free from memory allocation state-
ments and variable declarations.

In this paper, we shall study some of the features
of functional programming which make it particularly

*This research is supported by grants from the Science and
Engineering Research Council of Great Britain.

0-8186-4042.1/93 $03.00 © 1593 IEEE

26

suiiable for developing large, real-life systems. In par-

“ticular, we shall concentrate on the réasons why these

features make the program easier to comprehend and
hence simplify the maintenance task. In this intro-
duction, we shall introduce our large-scale application
and some of the difficulties facing its maintainers. In
Section 2, some of the features of the functional pro-
gramming language we have used are explained and
in Section 3 we shall present several case studies in
which these features of functional programming have
aided the task of maintaining the application. .
1.1 The Lolita system

The Artificial Intelligence Systems Research Group
at the University of Durham has developed the
Lolite system for natural language processing applica-
tions {2}. The system consists of 12,000 lines of source
code (not inciuding comments; with comments, the
systemn consisis of approximately 23,000 lines), equiv-
alent to about 120,000 lines of imperative code [3}—
divided between filty modules. In addition there are
around 456 dala files. Although the system was ini-
tially developed by one person, o team of approxi-
mately ten people is currently engaged in developing
various aspects of Lolita. The Lolila system is writlen
entirely in Miranda! {4]. Miranda is a pure, functional
programming language with non-strict semantics (i.e.
lazy evaluation} and a polymorphic typechecking sys-
tem. The features and syntax of the Miranda language
will not be discussed in detail; instead, the reader
is referred to [5], an introduciion to functional pro-
gramming in & language very similar to Miranda. In
addition, Miranda possesses a mechanism for defin-
ing abstract data types (Section 2.3), a feature used
extensively in the Lolita system, and a module sys-
tem, allowing separate compilation and parameterized
modules,

The Lolita systemn source code is continually be-

"Miranda is a trademark of Research Software Lid.

ing changed. Many of the people involved in writ-
ing new pieces of code and changing existing code are
new to the system and some have had no previous
experience of computer programming whatsoever. In
spite of these apparent obstacles, alterations to the

and very little disruption to other parts of the system

sumandrothersLolita:developershworlesNovicefunctional:-

programmers have relatively effortlessly incorporated
their work into the system. People who previously had
little or no idea of how the Lolita system worked have
been able to commence with their modifications in a
matter of days. Of course, the situation is not entirely
perfect, but given such an unstructured, decentralised
development model, maintenance of the Lolita system
has been able to proceed remarkably smoothly.

‘Why has this been? A certain amount of this could
be attributed to good design, but only up to a point;
the Lolita system has not been built according to any
formal design methodology and no specification exists,
apart from the source code itself. The aim of this pa-
per is to demonstrate, at least in part, that because
Lolita has been written using a functional language,
program comprehension has been greatly aided. In
addition, we shall atternpt to show that the mainte-
nance task has in no small measure been eased by the
same token. In the next section, we shall describe the
various types of maintenance and which of these are
currently being applied to the Lolita system.

1.2 Maintenance

Historically, the term ‘maintenance’ has been ap-
plied to the process of modifying a program after it has
been delivered and is in use. These modifications may
involve simple changes to correct coding errors, more
extensive changes to correct design errors or drastic
rewrites to correct specification errors or accommo-
date new requirements.

As Turski pointed out in {6}, this is a great abuse of
the term ‘maintenance’. The addition of a new wing
to a building would never be described as maintaining
that building, yet adding new facilities to a program
is described as a maintenance activity. However, as
the term maintenance is in wide and general usage,
it will be used here to mean changing the program in
order to correct errors or, more often, to provide new
facilities.

1t is impossible to produce systems of any size which
do not need to be maintained. Over the lifetime of a
gystem, its original requirements will be modified to
reflect changing needs. The system’s environment will
thus change and errors may emerge. Because main-

gystemn have-been accomplished with surprising ease. - oooon

27

tenance is unavoidable, systems should be designed
and implemented so that maintenance problems can
be minimized. :

Software maintenance can be divided into three cat-
egories: '

e Perfective maintenance

e Adaptive maintenance
e Corrective maintenance

Perfective maintenance involves those changes de-
manded by the user or the system programmer which
improve the system in some way without changing its
functionality. Adaptive maintenance is due to changes
in the environment of the program and correctlive
maintenance is the correction of undiscovered system
errors. A survey by Lientz and Swanson [7] discov-
ered that about 65% of maintenance was perfective,
18% adaptive and 17% corrective. Furthermore, they
found that large organizations devoted about 50% of
their total programming efforts to maintaining exist-
ing systems. ’

Particularly important are the principles of infor-
mation hiding. It is a characteristic of any change
that the original program structure is corrupted. The
greater the extent of the corruption, the less under-
standable the program becomes and the more difficult
it is to change; information hiding can alleviate this’
situation to some extent—such an issue becomes key
in the development of research-based systems. The '
program modifier should try, as far as possible, to min-
imise the effect on program structure by using infor-
mation hiding and concealing the low-level details of
the implementation within carefully designed abstrac-
tions. _

Maintenance costs can be governed by a collection
of technical factors, some of which have been identified
as:

1. Module independence. It should be possible to
modify one program unit of a system without af-
fecting any other unit. '

2. Programming language. Programs written in
high-level programming languages are usually
easier to understand and hence maintain than
programs written in a low level language.

3. Programming style. The way in which a program
is written contributes to its understandability and
hence the ease at which it can be modified.

When planning the perfective and adaptive main-
tenance of a large system such as Lolita, the empha-
sis on maintenance management prmctples provides
worthwhile effectiveness and efliciency considerations.

In the remainder of this paper we shall examine
some of the factors affecting comprehensjon of the

Lolita systemn. We shall then demonsﬁrat# the effec-

tiveness of these factors through a series of case studies
selected from instances of maintenance of the Lolita
system,

2 Factors aiding comprehension
In this section, some of the features of functional
programming in general {and Miranda in particular)

are discussed and their relevance to program compre-
hension are explained.

2.1 Referential transparency

Pure functional progmmmmg languages possess the

“property of referential transparency, a property also
possessed by mathematical rfotation. This means that
no side-effecis are allowed in the language and thus
rules oul assignment statements and gotos, This alse
means that the value of an expression depends solely
on the values of its subexpressions and there are no
hidden effects influencing its value. Thus subexpres-
sions may be substituied direcily with another expres-
sion having the same value; also, different occurrences
of the same name always have the same value, un-
like in imperative languages, where a variable may be
assigned several different values within an expression,

The property of referential iransparency makes
functional programs easier to understand; there is no
exiraneous information required in the program relat-
ing to memory allocation or storage of values.

2.2 Function application and currying

A factor which improves readability is the syntax
of function application in Miranda. The operation of
funciion application is represented by simple juxta-
position of the function and its arguments. Thus a
function £ applied to two arguments x and y, rep-
resented in most imperative languages as £(x,y} is
represented in Miranda as £ x y. This enables a pro-
gram to use far fewer brackets., Associated with this
is a device known as currying. Currying invelves the
replacement of structured arguments with a list of sim-
ple ones. We shall take the example of the function

28

CPlsxy=xby oo

plus. This function gives the sum of two numbers.
Consider the two definitions:

ylué’ (z,y) = x + ¥

and
|

'

In an ordinary imperative ianguage the deﬁmtion
plus?’ would be used. However, Mirande also allows
the definition plus to be written. The difference is
that plus’ takes the single, structured argument of
a tuple of two numbers; the function plus takes two

~simple arguments.- One can therefore write plus-1-2-

which is equivalent to the expression 1 + 2. Function
application in Miranda is lell associative; plus 1 2
is therefore interpreted as ((plus 1) 2). Thus the
expression (plus 1) is a function in its own right—it
takes a single argument and adds ! to it. Without cur-

- rying, the function to add 1 to a number would have.

to be written as a separate, new function. This simple
but useful feature allows functions to be greatly sim-
plified merely by leaving out arguments when they are .
not necessarily required, thus aiding readability. Cur-
rying therefore allows parameter hiding in abstract
types. The abstract type mechanism is employed
widely in the Lolita systemn and will be explained in
the {ollowing section.

2.3 Abstract types

When using the mechanism of type definitions to
influence a new type, we are in effect naming its val-
ues, With the exception of functions, each value of a
type is described by a unigque expression in terms of
constructors. Using definitions by pattern matching as
a basis, these expressions can be generated, modified
and inspected in various ways. It follows that there
is no need to name the operators associated with the
type. Types in which the values are prescribed but
the operations are not are called concrele types.

Abstract types operate in the reverse—an abstract
type is defined not by naming its values, but by nam-
ing its operations. How values are represented is there-
fore less important than which operations are provided
for manipulating them. The meaning of each opera-
tion has to be described by either algebraic specifica-
tion, stating the relationship between the operations
as a set of algebraic laws or by models, describing each
cperation in terms of the most abstract representation
possible.

In order to implement an abstract type, the pro-
grammer must provide a representation of its values,

define the operations of the type in terms of this rep-
resentation and show that its implemented operations
satisfy the preseribed relationships. Apart {rom these
obligations, the programmer is free to choose between

different representations on the grounds of efiiciency

"ot simplicity.

...Jmportant to the design of large programs such as

" the Lolita system is the concept of absiraction barri-

ers, the mechanism of hiding the implementation of
an abstract type so that the reference to the concrete
representation is not permitted elsewhere in the pro-
gram. In particular, this approach allows the repre-
sentation to be changed without affecting the valid-
ity of the rest of the program. Programming of the
system can in effect take place entirely at one of the
predefined abstract levels and the maintenance of in-
dividual modules structured in terms of the abstraci
operations and types.

Abstract data types thus permit the specification
of a data type together with operations which can be
performed uponit. This, in effect, allows one to design
a domain-specific language to tackle the given prob-
lern. This is demonstrated in the case study presented
in Section 3.1. In an imperative language, a domain-
specific language would normally be implemented with
a separate program to parse this language and trans-
form it into code which could then be handled with the
imperative language compiler {the UNIX tool yacc [8]
is an example). The advantage of this approach is
that the programmer has precise control over the syn-
tax of the new language. The disadvantages are that
the tool is difficult to implement in the first place and
is subsequently inflexible. It cannot be changed easily
to accommodate new features or alter old ones and the
syntax of the domain-specific language is completely
different for each tool. These are prablems which are
addressed by the abstract type mechanism of Miranda;
an example of how a domain-specific language may be
defined in Miranda is given in Section 3.1.

Maintenance may therefore take place at three dif-
ferent levels. A change may be performed at the level
of the abstract domain, requiring nc change {o the
implementation. Alternatively, the domain itself may
be altered, for example by adding new operations,
thus changing the semantics of the domain-specific
langnage. Lastly, the implementation of the abstract
type may be altered without affecting the syntax of
the domain-specific language. Maintenance at the first
level is fairly easy to accomplish in imperative lan-
guages when using a tool such as yace; using yace, the
other two are either difficult or impossible.

When writing abstract data types in Miranda, we

have found two techniques to be particularly useful.
The first of these makes use of currying to allow pa-
rameter hiding when using the abstract type. The
hidden parameters are only ever referred to in the im-
plementation of the signature functions and are omit-

wroped when using the abstractions, making the program -

29

much clearer and easier to read. The second technique

“fuivolves ‘the*use of-conlinuation functions to imple.” 7

ment abstractions in which data is handed on from
one part of the abstraction te the next.

The abstract type mechanism of Miranda works
simply by breaking the type equivalence between the
abstract type name and its representation. The only
functions which may make use of the equivalence are
those named in the type signature for the abstract
type. An attempt by any other function to refer to
the abstract type in terms of its representation will be
reported by the typechecker as an error and the pro-
gram will not compile. This means that there is no
price to be paid, in terms of loss of efficiency, for using
abstract data types in Miranda as they are enforced
by the typechecking system and do not affect the im-
plementation of the run-time system. Several aspects
of the type system of Miranda relevant to the compre-
hension of large programs will now be discussed.

2.4 Type issues in Miranda

Miranda i5 a strongly typed language. Associated
with each function is a type specification which gives
the types of the parameters of the function and the
type of the value that the function returns. Thus the
type specification of the function plus is

plus :: pum -> num -> nusm

which indicates that plus takes two numbers and re-
turns a number. The type of the function {plus 1)
is

{plus 1) :: num -> num

as it takes a single number and returns a number. A
type specification in a functional language is more in-
formative than in an imperative language as the for-
mer allows no side-effects. In a functional language,
we know that the function takes some value or values
and returns a value which depends on some opera-
tion which has been performed on these values. We
know that no external factors can have affected the
return value of the function; this is not the case in
an imperative language, where the function could eas-
ily have changed a global value or relied on a global
variable to influence the value returned. Moreover, in

imperative languages, typechecking ensures that types
are consistent within statements. However, imperative
languages rely heavily on the sequence of statements
being correct; typechecking cannot detect errors at
this level. In functional languages, there is only one
level to check— that of function application, which
is chiecked by the typechecker. This not only means
that the typechecking system in functional languages
detects a greater proportion of errors than in impera-
tive languages, but also that a type specification in a
functional language is more informative about what a
function will do than in an imperative language. For
instance, a function which takes a list and returns a
iistcan only perforin & limited viumbet of transfor-
mations on that list; with an imperative language, a
function with an identical specification has a much
greater range of possibilities, not all of which will in-
volve simply transforming the list.

The type of a function in a functional language can

therefore be used as a general guide to what the fune--

tion will do, Thus if a function is required to check
if a particular value exisis in a list of numbers, it is
sensible to search for the existence of a function which
takes a list of numbers and a number and returns a
boolean truth value. Although no such tool exists at
present for Miranda, this idea has been explored by
several researchers in the fleld [0, 10

2.5 Higher-order functions

A higher-order funciion is one which can take an-
other function as an argument. This allows functions
such as map to be written. map iakes a funciion and
2 list as arguments and applies that function to each
element of the list, Thus instead of defining the re-
cursive funciion squares io calculate the squares of
a list of numbers {Figure 1}, one may simply write
map sguare. This Is much easier to read than the re-
cursive definition and, provided one knows what map
does, easier o undersiand. This type of function is
very common in Miranda and novice programmers of-
ten resort to writing functions employing such ad-hoc
recursion; with a little more experience, however, the
programmer learns to recognize this pattern of recur-
sion and will use definitions employing map in pref-
erence. Figure 2 gives a definition of map—note the
similarity to squares and how it has been generalized
from squares by the addition of the funciion param-
eler 1.

The ability to define higher-order functions in Mi-
randa has allowed the parsers of Section 3.1 to be im-
plemented as functions using the parser abstractions.

30

squares [J = [J

squares xs = square (hd x8) : squares (tl xza)

Figure 1: A recursive definition of the function
squares.
map £ [J = [1

map £ xs = £ (hd 23) : map £ (11 xs)

Figure 2: The function map.

2.6 The Miranda interpreter

With Miranda, there 1s an additional factor which
aids programn comprehension. A Miranda script is a
collection of functions, all of which are in scope when

that script is loaded into the interpretér. This allows

individual function definitions to be tesied separately
from each other and means that if one wishes to dis-

cover what a particular furiction does, one ¢an simply

call it directly from the interpreter.

In the following section, we shall relate some of the
issues above to real-life case studies of maintenance
tasks in the Lolita system.

%4 (Case studies .

3.1 The syntactic parser

The parser was originally written o enable the
parsing of the English language. The parser abstrac-
tions have been wrilten in such a way as to enable
a grammar to be written in Miranda simply by tran-
scribing the BNF (Backus Naur {orm) definition of the
grammar with very little alteration, The traditional
way of doing this in an imperative language would be
to use a parser gensrator (such as yacc) to inlerpret
the contents of the grammar definition file and thus
produce a parser.

Using abstractions in Miranda, the grammar itself
can be written in Miranda with no need for a separate
program to translate the grammar. As mentioned in
Section 2.3, the abstract data type mechanism in Mi-
randa allows one to devise & domain-specific language
for a particular purpose; the parser is a prime exam-
pie of this. In addition, this mechanism allows the
grammar {o be specified as a function rather than an
algebraic data structure, which means that there is no

number ::= int ?fracpart Texppart
int ::= ’=* pnat |

nat
fracpart ::= .’ pat
exppart ::= ’e’ int
nat ::= digit nat |
digit s:= 70° | 1 | ... | 9’

Figure 3: A BNF-like definition of a grammar for num-
bers.

number = int $t_ alt_ fracpart $t_ alt, exppart
int = alt_ minus $t_ nat So.
nat
fracpart = point $t_ nat
exppart = e $t_ int
nat = digit $t_ nat $o_ digit

Figure 4: The numbers grammar in Miranda.

need for the grammar to be interpreted separately as
it can simply be applied directly to the input.

We shall illustrate the simplicity and elegance of the
parser abstractions with a very simple example. Sup-
pose it was required to write a grammar which would
accept a sequence of symbols representing a natural
number in a computer programming language. The
grammar can be described in a BNF-like form, shown
in Figure 3. Our abstractions enable this to be trans-
lated into the Miranda code shown in Figure 4,

As can be seen, the BNF symbol ::= translates to
=, 7 translates to alt_, [translates to $o_ and simple
Juxtaposition of symbols translates to $t_. The signa-
ture of the parser abstract type is shown in Figure 5.
The operators t_ and o_ take two parsers and com-
bine them to form a single parser. The function alt_
takes a parser and returns a parser and the function
parse takes a parser and an input stream and returns
the result of applying that parser to the input stream.
There is thus another interesting point to note about
the grammar above: each of the grammar rules is itself
& parser.

The parser abstractions are themselves imple-
mented by the “list of successes” method, similar to
that advocated by Wadler in [11]. This makes use
of lazy evaluation to simulate a backtracking parser,
which generates a list of all the possible results of the
parse. If the parser fails to match all of its input, a
list of incomplete parses is given.

Writing parsers in the way described above leads

a1

abstype parser
with
t., 0. ! parser -> parser -> parser
alt. :: parser -> parser
parse :: parser —> [char] -> parse.result

~ Figure 5: Parser absiract type signature.

to code which is declarative; the code tells us what
the parser does rather than how it does it. There are
several factors which enable one to write parsers in
such a fashion in Miranda. The use of higher-order
functions obviates the need for an intermediate data
structure and, together with currying, allows for the
parameters to the parser functions to be hidden. User-
defined operators allow the use of a BNF-like notation.
Lazy evaluation removes the need for a complicated
backtracking mechanism. Abstract data types hide
details of the implementation. Most of these features
are lacking in imperative languages.

If we consider the implementation of a parser in an
imperative language using a similar method, it is soon
found that the lack of these features is a serious disad-
vantage. Since in most imperative languages we can-
not define our own operators, the BNF-like operators
of our Miranda parser become functions in the imper-
ative language, with the attendant cumbersome nota-~
tion of nested brackets. Since imperative languages
do not permit higher-order functions, the parser fune-
tions would have to build a data structure to repre-
sent the grammar. This data structure would be in
the formm of a graph, which would need to be inter-
preted by a separate function which would perform
the parsing, unlike in Miranda, where the functions
which build the grammar also do the parsing. Addi-
tionally, imperative languages require storage control,
50 the code would also need to contain statements to
accomplish this, unlike in a functional language.

We shall now examine a real-life application of the
existing parser abstractions to a new problem.

3.1.1 A mixed Chinese/English grammar

Research is currently under way at Durham by Wang
into the use of an intelligent tutoring system to elim-
inate errors of transfer by students studying the Chi-
nese language {12]. This has involved writing a parser
for Chinese in Miranda and integrating it with the
existing parser for the English language grammar in
such a way as to form a mixed grammar. This mixed
grammar cornmences by applying the Chinese gram-

mar rules to the sentence and then switches to using
the English rules when the Chinese rules fail to match.
Wang, who has no prior experience of functional pro-
gramming, or indeed computer programming of any
form, has successfully implemenied a parser for this
grammar.

Wang started by writing a grammar for Chinese.
This grammar was written using Wang’s own nota-
tion. The grammar was written entirely from abstract
ideas, without any concern for how it could be trans-
lated into Miranda syntax. When this grammar had
been writlen, i was an extremely simple matter to
translate it into Miranda employing the abstractions
which already existed. A section of the grammar in
Miranda is shown in Figure 6. The mixed grammar
required two new functions to be added to the abstrac-
tions to cope with switching from the Chinese gram-
mar to the English grammar when no successful parse
is found using the Chinese grammar. These functions,
cet and ioet can be seen in Figure 6. Since the two
functions were new, no alteration was required to the
existing English language parser.

Thus can be seen the direct correspondence be-
tween the actual grammar itself and its implementa-
tion using the parser abstract type and its associated
functions in Miranda.

3.2 The semantic parser

The semantic parser is a ceniral feature of the Lolita
systemn, The input to the semantic parser is a synlac-
tic parse tree built at the previous level in the sys-
tem. The output from the semantic parser is the cor-
responding sernantic net structure. The fundamenial
task therefore is the transformation {rom the parse
tree structure to the semantic net data type.

Fach node in the parse tree is labelled with its
grammatical construct. For instance the root node
of the parse tree is labelled with sen, representing the
complete sentence structure. Each of these labels has
a corresponding semantic parse rule which will per-
form the transformation from the parse tree node to
the abstract semantic structure. The semantics of a
node in the parse tree is primarily deiermined by its
label and the subtirees trees befow it. However, con-
textual information is also required to maintain a list
of referents® and the semantic net must be updated
with the new nodes produced. This is achieved using
an additional channel of information which traverses
the parse tree from left to right in a depth-first fash-

?Nodes which may be referred to in later pieces of text by
pronouns {e.g. ‘he’ or *it"}

3z

ion. This traversal is illustrated by dotted lines in
Figure 7.

The main abstract data types of the semantic parser
are leaf rules and branch rules. A leaf rule builds the
semaniics for a leaf in the parse tree and updates the
context. A branch rule combines the semantics from
the two branches at a node to give the semantics for
that node. It also updates the context with new nodes
added to the semantic net and any referents added to
the list of referents.

In the sernantic parse, a set of these abstract rules
are passed as parameters. These rules are then applied
1o the appropriate parts of the tree to produce the fi-

nal semantics. Each of these rules adds more detail to

types, the details of the 1mplemen£at:on of these op-
erations have been hidden. Thus in the code for the
semantic parser, only the semantic rules are given.

Figure 7 shows the results of the semantic parse
for the sentence “Roberto owns a motorbike.,” The
semantic parse begins by applying a léaf rule to the
first leaf node (‘ROBERTOQ’). The information is then
passed back to the parent node. The application of
the proper noun branch rile at the level above will
create the first part of the semantic representation.

As an example, consider the following rule applied
to the transvp node in the parse tree of Figure T:

meta_branch na
= labelboth Act Obj,
if na $is_in [Mtransvp ","is.2 ",
"aq.is_2 ", “hypseniverbs "}

This rule checks whether the name of the node
na is one of either transvp, is.a, eq.is_a or
nypsentverbs. Since this is the case, the rule then
labels both the left and right sub-branches of the node
transvp. The left branch, representing ‘OWN’, is la-
belled as as an action (Act) and the right branch, rep-
resenting ‘A MOTORBIKE', is labelled as an object
(0bj). The identification of these branches as action
and object values allows the subsequent construction
of the corresponding part of the semantic net.

Using the rule abstractions, it is possible to create
Jarger meta-rules by combining several smaller rules.
The operator $compose takes two rules and applies the
first rule to the resull obtained from the application
of the second. The following example creates a meta-
rufe for proper nouns by combining three smaller rules:
labelall, unique_newnodes and addrefs.

meta branch “full_properneoun
= addrefs
$compose unique_newnodes mkobject
$compose labelall Uniy

location.sen = ((poss_ph $o. prop.ph $o_ proper_name $o_ pron_per)
$t. (aux_loc.vp $o_ location.vp))
$ioet. quvb_sen

aux_loc_vp = aur $t_ location_vp

location.vp = {location_ph $t_ (transvp $o_ actl $o_ act_in))
$oet. (transvp $o. actl $o. act.in) $t. location_ph

. BEN

full.properngun transvp -,
) q . .

comptransy, depth

- properaoun

y ROBERTO DAl

PARSE TREE

- F :
TOWN : det | comnoun

ROBERTO

univ
CGWNS

subject

EVENT

ROBERTO object

MOTGRBIKE

MOTORBIKE
e

SEMANTIC NET

Figure 7: A fragment of the semantic net.

The initial application of 1abelall to the parse tree
of Figure 7 creates a link to the universal Univ node
which represents the set of all ‘ROBERTO’. This
node has been passed up from the generation of the
semantics of propernoun. The rule unique_newnedes
is then applied to this to give a node representing a
unique ‘ROBERTO’, an instantiation of the universal
‘ROBERTO’. This new node is thus the semantics of
full_propernoun. The addrefs rule is then applied
to add the resulting node to the list of referents.

The top-level semantic parse function has the fol-
lowing type specification:

:: (nodelabel -> branchrule) ->
(leaflabel ~> leafrule) -»
tree -> semantic_net ->»
senantic_net

sem_parse

Thus the function sem_parse takes four parameters:
a function which takes a node label and returns the
appropriate branch rule to apply at that node: a func-
tion which takes a leaf label and returns the appropri-
ate leaf rule to apply to that leaf; the parse tree and
the initial sernantic net. It returns the transformed
semantic net.

Mualtiple semantic nets

An interesting point concerns the way in which the
semantic net is represented in Lolita. It can be seen

33

from this method that it is necessary to traverse the
parse tree whilst continually updating the correspond-
ing sesmantic data type. The operation of the semantic
net was originally visualised as an abstract state ma-
chine and would have been implemented as such in an
imperative language with one copy of the net being
accessed and altered by a set of functions. However,
this implementation is not possible in a functional lan-
guage owing to the lack of side-effects or state, features
that an abstract state machine implementation would
rely upon. In Miranda therefore, the state is passed
explicitly-~the semantic net is a large data structure
which is passed as a parameter from one function to
the next. Because of the way that functional languages
are implemented, there is minimal efficiency overhead
imposed in doing this. Additionally, it allows there to
be multiple different copies of the semantic net at any
given time with very little space overhead; the only
additional memory used is in storing the alterations
to the net as the duplicated parts are referenced by
pointers in the implementation, which represents the
program as a graph [13]. This would be difficult given
the implementation of the semantic net as an abstract
state machine in the imperative language; major al-
terations would have been necessary to accommodate
extra copies of the net. Indeed, it was not initially
envisaged that multiple copies of the net would be

required in Lolita; however, this was required in the
semantic analysis stage. The semantic analysis stage
involves adding information to the semantic net and
altering exisiing information. There are often a num-
ber of alternative analyses that must be explored and
hence a difference semantic net is required for each.
This additional requirement needed no alteration to
the implementation of the semantic net whatsoever,
S0 easy is this feature to incorporate, it 5 not even
pecessary Lo know whereabouts in the program mui-
tiple copies of the semantic nel are being used; it is
simply a facility which is taken for granted.

4 Conclusion

In this paper, we have shown how the use af
Miranda, a lazy, functional programming language,
has considerably helped in the iask of maintaining
a large, complex, real-life system. The ability to
define domain-specific languages for particular parts
of the system has been instrumental in aiding pro-
grammer comprehension of the Lolita system. The

. abstract data type mechanism of Miranda is central

to this; however it is this mechanism used in con-
junction with several other features which gives func-
tional programming an advantage over imperative lan-
gusges. These other features include higher-order
functions, lazy evaluation, implicit storage manage-
ment and user-defined operators”

These factors have allowed new features to be in-
corporated into the Lolita system with minlmum of
{ect on other paris of the program., They have also
enabled programmers who had not previcusly worked
on the sysiem io familiarize themselves rapidly with
the code. People whe have had no experience of pro-
gramming whatsoever have been able to write parts
of the system with very little training. It is the use of
Miranda for programming the Lolita system which has
allowed much of this; however, many of the concepts
discussed in this paper would be squally applicable to
other lazy, functional languages.

Acknowledgements

The authors wish to thank Mark Smith for provid-
ing information on the semantic net and Yang Wang
for information on the Chinese/English mixed gram-
mar parser.

References

[1] J. Hughes, *Why functional programming matters,”
The Compuler Journal, vol. 32, no. 2, 1989,

34

[2] R. Garigliaro, R. Morgan, and M. Smith, “LOLITA:
Progress report 1, Tech. Rep. 12/82, Artificial Intelli-
gence Systems Ressarch Group, School of Engineering
and Computer Science, University of Durham, Science
Laboratories, South Road, Durham D11 3LE, United
Kingdom, 1992,

D. Furner, “Recursion equalions as a programming
language,” in Functional Programming and its Appli-
cations {Dazlington, &d.), pp. 128, Cambridge Uni-
versity Piess, 1982,

D. Turner, “Miranda: =2 non-sirict functional lan-

guage with polymorphic iypes,” in Procecdings of

the IFIP International Conference on Funetional Pro-

_gramming Languages and Computer Architeciure {(J.-
P. Jouarnaud, ed.}, no. 201 in Lecture Notes in Com-

puter Science, (Nancy, France), pp, 1--~18, Springer-

Verlag, 1985,

R. Bird and P. Wadler, Intreduction to Functional
Programming. Series in Computer Sclence, Prentice
Hall International, 1988.

W. Turski, “Soflware sLai')i'l'iiy',"’ in 6th ACM Eufépéﬂn
Conference on Systems Architecture, (London, UK},
1981.

B. Lientz and E. Swanson, Softwars Maintenance
Manggement. Addison-Wesley, 1980,

S, Johnson, “Yacc—Yet Another Compiler Com-
piler,” Tech, Rep. 32, Bell Labs, Murray Hill, New
Jersey, UBA, 1975, Also in UNIX Programmers’
Guide. .

O, Runciman and I Toyn, “Relrieving re-usable soft-
ware components by polymorphic type,” Journal of
Functional Programming, vol. 1, pp. 181211, Aps.
1591

. Rittrd, “Using types as search keys in funclion li-
braries,” Journal of Functional Programming, vol. 1,
pp. 7189, Jan. 1891,

P. Wadler, "How to repince failure by a list of
successes,” in Procecdings of the IFIP Internalional
Conference on Functional Programming Languoges
and Computer Architeclure (1.-P. Jouannaud, ed.),
no. 201 in Leciure Notes in Computer Science,
{Nancy, France), pp. 113128, Springer-Verlag, 1985.

Y. Wang and R. Garigliano, *An intelligent tutor-
ing system for handling ervers caused by transfer,”
in Intelligent Tutoring Systems: Second [niernational
Conference, no. 608 in Lecture Notes in Computer
Science, (Montreal, Canada), Springer-Verlag, 1692

{13] 8. Peyton Jones, The Implementation of Functional
Programming Languages. Prentice-Hall Inlernational,

1487,

Cempyehensmn

Chair: Panos E. Livadas

Experiments in Identifying Reusable Abstract Data Types in Program Code

G. Canfora®, A. Cimitile** M. Munro™* and M. Tortorella™

DIMA —Dep. of "Ingegneria dell Informazione ¢ Matematica Applicata”
University of Salerno, 84084 Fisciano (SA), Italy.

*% DIS — Dep. of "Informatica € Sistemistica”
University of Naples, Via Claudio 21, 80125, Naples Italy

#&4 (M — Centre for Software Maintenance

Abstract

In this paper the issue of program comprehension is
addressed from the software reuse perspective. In particular

__ University of Durham, Durham DH1 3LE, UK

the identification of abstract data types in existing program

code is explored. A candidature criterion is presented and a
prototype implementing it is described. The criterion is
applied in an experiment that analyses five very different
programs and the resulting owlput is discussed,

The work described forms part of the RE? project that
addresses the wider issues of software reuse through the
exploration of reverse engineering and re-engineering
techniques to identify and extract reusable assets from
existing systems.

1 Introduction

The comprehension of existing software systems plays 2
central role in many larger sofiware engineering activities
such a3 tesiing and debugging, validation, migration,
maintenance and enhancement, re-engineering, and reuse, In
this paper the issue of comprehending software is dealt with
by the software reuse perspective.

An immediste problem io solve, in order to spread
software reuse, is the finding of the reusable assets {1-3].
Reverse engineering and more general software
comprehension techniques can help 1o solve this problem
by facilitating the extraction of the reusable assets from
existing systems. Extracting reusable assets involves
accessing the existing systems, to identily reuse candidate
components, and understanding their meaning in order 1o

This work has been partially supported by "Progetio
Finalizzato Sistemi Informatici e Calcolo Parallelo” of the
CNR under grant no. 91.00930PF69,

0-8186-4042-1/93 $03.00 © 1953 IEEE

36

specify and catalogue them. Reverse engineering techniques

~ can provide answers to some key questions such as:

» what are the criteria for identifying the reuse candidate
_comporents? . .

what are the methods and formalisms to specify them ?

what are the techniques to catalogue them in order (o

- make their retrieval simple ?

Extracting reusable assets from an existing system also
requires re-engineering techniques to decouple the reuse
candidate components from the external environment and to
package them into easy-fo-reuse artefacts. In this paper we
call reuse re-engineering processes the set of activities to
populaie a repository with reusable software components
cxtracted and re-engineered from existing systems.

Reuse re-engineering processes are the main concern of
the REZ project, a research preject funded by the CNR
(Ttalian National Research Council) and joinily carrvied out
by the DIS (Dep. of Informatica ¢ Sistemistica) of the
University of MNaples and the CSM {Centre for Software
Maintenance) of the University of Durham. The aim of this
two years project is to explore and single out the role of
reverse engineering and re-engineering in the setting up of
the reuse re-gngineering processes. The REZ project has
gstablished a reference paradigm to implement reuse 1e-
engineering processes. The key role of the paradigm is to
allow the repetition of experiments, thus facilitating the
learn process. It also defines a framework in which the
available methodologies and tools can be used. Table 1
gives an overview of the REZ reference paradigm; a more
detailed description is given by Canfora er al. {4].

The reuse re-engineering processes may be defined and set
up to extract different types of reusable assets such as
design documents, specifications, code, test data, business
models. Extracting all these types of components allows
software reuse to be placed into different stages of the
processes of developing a new system, thus maximising its

7 E
-
=k =
Bl Candidature Elaction |eeemmalie] Quallficatlon
%3 Q:] [I o
= = {
Eﬂ S e —— @ |- Classitieation | .. e
) Dlaplay et and
S ST . Storage

The reuse re-engincering paradigm REZ divides n rouse re-engineering procsss into five scquential

fully identified by the objzcts it produces. These five phoses are:

phases each of which includes s set of homsgcnec;us activities and is

s CANDIDATURE: This phase groups together the activities of source code analysis and produces sets of software components. FEach one of these sets is a eandidate
10 make up 2 reasable module when suitably de-coupled, re-enginesred and possibly generalised.

a set of rousable moduaies,

the functional and the interface specifications must be produced in this phase.

ELECTION: This phase groups together the activitics of the snalysis of the callection of software-component sets singled out in the candidature phase and produces
: This phase groups together the activities that produce the specifications of each one of the reusable modules obtained in the election phase. Both

3« This phase groups together the activities that classify the rensable modules and related specifications according to a reference

tixonomy. The aim is i define a repository system and pepulate # with the reusable madules produced.

finding the modules the us

: This phasc groups tegsther the sclivities that set up a front end user intedface o interet with the repository system. The aim is to make
er needs a5 simple s possible, for caample by giving them visual supports to navigate through the repositary system.

Tab. I: The RE2 reference paradigm.

potential pay off. Currently, the REZ project deals with
reusable components consisting of source code although the
reuse of other artefacts is being considered. In this paper,
therefore, the term reuse is used to mean "reuse of existing
code" and the reuse re-engineering processes dealt with aim
to produce reusable source code modules and related
specifications.

Accessing the existing systems to identify reuse candidate
modules is the major task of the CANDIDATURE phase.
This phase involves three types of activities: (i) defining a
candidature criterion, and the model to apply it (i) defining
and setting up a reverse engineering process 1o create an
instance of the model (iii) applying the candidature
criterion. The role of candidature criteria is to automatically
produce a first approximation to the sets of components 10
be extracted from the system, each set being a candidate to
create a reusable module, Examples of components that can
be extracted include procedures, functions, subsystems,
slices, primes, dala structures, and user-defined data types.
The definition of a candidature criterion entails the
definition of the model of the system needed to apply it,
and of the information to be reverse engineered to make up
the model instances. The RE2 project assumes the principle
of abstraction [3] as a gnideline to define the candidature
criteria. For a set of components to be a candidate it must
implement one and only one abstraction, ie. one
functionality, one object, one abstract data type, one
interface, one abstract state machine. Changing either the
type or the level of the abstraction to be clustered in a
reusable module entails the change of the candidature
criterion. For example, the criteria and models to look for
functional abstractions (that refer to algorithms and can be

a7

specified by input/output relationships) are necessarily
different from (he ones to look for data abstractions (that
refer to objects or classes) or control abstractions (that
refers to the synchronisation of concurrent processes and the
disciplining of accesses to shared resources). Canfora et al.
[4] present a formalised approach to some different types of
abstractions and discuss the reverse engineering techniques
and tools needed to extract them from existing systems.

In this paper we focus on the family of data abstractions
and in particular on the extraction of abstract data types. A
candidature criterion, and the model to apply if, are
illustrated and results from case studies are presented. The
criterion is founded on Iogic and Prolog is used for the rapid
prototyping of the case studies. The aim of these case
studies is to validate the proposed candidature criterion and
fo assess its strength while understanding its limitations.
They also aim to show the practical feasibility of a
software tool for finding abstract data types.

The remainder of the paper is organised as follows.
Section 2 defines the criterion 1o look for abstract data
types and the model to apply it. The definition of the
candidature criterion depends on the way in which abstract
data types are implemented. This is why section 2 briefly
recalls the concept of abstract data types and discusses how
they can be impiemented in traditional languages that do
not present any ad koc construct. Section 3 illustrales the
rapid prototyping of the criterion using Prolog, and
outlines the main characteristics and features of a software
tool for finding abstract data types. Results from several
case studies are presented and discussed in section 4, while
section 5 contains some concluding remarks and
considerations.

2 A candidature criterion for identifying
abstract data types

Abstract data types allow a type to be axiomatically
defined in terms of the operations that can be performed on
the variables of that type [5, 6]. In practice, for the
conventional programming languages, an abstract data type
consists of a collection of user-defined data types and
procedure-like components. The user-defined data types
define the supporting data structure while the procedure-like
components implement the operators.

A module implementing an abstract data type exports
constants, wser-defined data types and procedure-like
components, while its implementation part does not
contain any encapsulated variable, This defines the type of

~componenis’ collections which a CANDIDATURE

criterion looking for abstract data types must single out.

We assume that the procedure-like components use the

user-defined data types in their headings, ie. to declare
formal parameters and/or return values. A module
implementing an abstract data type must allow a designer
- 1o declare several different objects and to access and
manipulate them by calling the procedure-like COmponents.
This requires the objects to be passed as formal paramelers,
. The CANDIDATURE criterion we propose i3 founded on
logic. A set of direct relations — produced from code by
static analysis — describes the relationships existing
between the user-defined data types and the procedure-like
components that use them in their headings. This set of
relations defines the system's model needed to apply the
criterion that, in tarn, consists of a set of summary
relations obtained by combining direci relations in
expressions.

The sel of direct relations we use describes a graph, the
type-procedure-connection graph, which belongs to the
famnily of the interconnection graphs proposed by Calliss
{7}. The type-procedure-connection graph is 2 combination
of the type-connection graph, used by Calliss and Cornelius
[8] to detect and factor pot-pourri modules, and slightly
madified version of the reference graph proposed by Embley
and Woolfield [9] to assess the quality of abstraci data types
implemented in Ada. If TT is the set of the user-defined data
types in a software system and CC is the set of the
procedure-like components, a type-procedure-connection
graph is a direcied graph G(N,E) with nodes N=TT U CG
and edges E = et | cie CC A tje TT A'cjuses ;in
its heading'} U {(ti,tj) i 4, tj & TT A 't is used o define
15'}. A path in G is a sequence of nodes ny, 02,...,0} such
that every couple (nj,nj;1) belongs to E. Let u{nj,ny)
denote a path connecting the nodes n; and nj, and let go{d)
denote the set of all the paths in G. It is worthwhile to
point out that a node n € TT can only be the first element
of a path, i.e. paths can only connect procedure-like

38

components to user-defined data types, and user-defined
types to user-defined types. In accordance with Lio and
Wilde [10], we say that the user-defined data type tjis a
sub-type of tj, denoted by ti<<ij, if a path exists that
connects tj to tj. We also say that 4 is a super-type of t.
Obviously, if tj << t; and fj <<ty then tj << i.

A type-procedure-connection graph is fully represenied by
the two following direct relations:

e USED-TO-DEFINE ¢ TT x TT defined as:
(ti.tp) € USED-TO-DEFINE iff the user-defined data
type i is used to define t;.

®* TYP ¢ CC x TT defined as:

(ci,tj) € TYP iff the procedure-like component Cj uses

the user-defined data type tj 1o define a formal parameter
The candidature criterion to look for abstract data types on a
type-procedure-connection graph G{N,E) is defined by the
following four steps algorithm: ‘
Stenl.
From G(N,E) generate the graph G'(N',E’) such that:
N'=Nand
E'=E- {{cip) | ¢ie COAtje TTA

ke TTe(Citl) € Eadptjno e 9GN]

From G'(N',E) generate the graph G*(N"E") such that;
N'sMNandE"sE'- GRE | i, tje TT}
Step3.

For cach one of the isolated sub-graphs! in G create a
candidate abstract data type

Siepd.

Recognise and establish any necessary interconnection (i.e.
use and/or composed-of relationships) between the candidate
abstmct data types.

The above candidature criterion can be re-formulated in a
logic based fashion through the following relations:

ABTYP = {trans(STYP }STYP)*
¢ CCTYP = (trans(STYP)STYP)* trans({STYP)

where trans(R) and R* denote the wranspose and the
reflexive transitive closure of the relation R, and STYP is a
binary relation on CC x TT:
= STYP < CC x TT defined as:
{c.ty & STYP iff the procedure-like component ¢ uses
the user-defined data type t to define a formal parameter,
and ¢ does not use any super-type of &.

Lan isolated sub-graph of 2 graph G is a graph g such that:

g CGAg=Dadnotg CGefnotg=Dag M not-g = &
A B \J not-g = G), where the symbol @ denotes the empty
graph. This definition is due to Cailiss {7], who also gives a
formal definition of the sub-graph (), graph intersection
() and graph union (1) operations,

An algorithm to derive the relation STYP from the
relations TYP and USED-TO-DEFINE is presented by
Canfora etal. [11].

The relations ABTYP and CCTYP define, respectively,
the supporting structure and the operands of the candidate
abstract data type. In particular, for a given used-defined data

type t, the relation ABTYP defines-the-sel of the couples ...

{t,t;) such that the user-defined type 1j belongs to the same

CCTYP defines the set of couples (t,ci) such that the
procedure-like component c¢j and { belong 1o the same
isolated sub-graph. The sets T_SET = {4 l {t1) e
ABTYP}and C_SET = {¢j | (L.ep) e CCTYP] define,
respectively, the user-defined data types and the procedure-
like components to be exported by a module implementing
the abstract data type defined around t-— actually, the one
identified by the isolated sub-graph that contains {.

3 Qutline of a tool for searching abstract
data types

The candidature crileria formulated in 2 system based on
logic have the advantage of being easy to prototype using a
logic programming language, for example Prolog.

In order to easily evaluate the case studies, whose results
are presented in the next section, we have developed a
prototype tool that implements the proposed candidature
criterion. Our aim is not (o create a product to be released
for external use but to have a tool that makes it possible to
experiment with the candidature criterion on non oy
programs in a reasonable time, The user community of the
prototype is intended to be the research group within which
the RE# project is being carried out. Therefore, issues like
time/space performance and user-friendliness have scarcely
been taken inio account when designing the prototype. On
the other hand, a tool that fits into a research environment
must be particularly flexible and easy to evolve. For the
logic based candidature criteria this means, for example,
that the set of the summary relations implemented must be
easy to tailor andfor extend. The possibility of defining new
summary relations makes it possible to tune the candidature
criteria to the type and the level of the abstractions to be
looked for and to the characteristics of the environment in
which the reuse re-engineering process is developing.
Moreover, it allows different types of candidature criteria to
be defined and experimented with. This is a matter of
considerable importance because the knowledge and
technologies in the field of reuse re-engineering are not
stable but’ continuously changing. Therefore, for the
methods and tools proposed to be useful they must be
particularly versatile and easily tailorable 5o as 10 evolve on
the basis of the new knowledge developed either within the
environment in which they are used, orin the research

“jgelated sub-graphwhicht “belongs “to. The-relation

a4

community.

The implementation of a logic based criterion requires (i)
a repository to store the direct relations (ii) a language to
define the summary relations, and (iii) a query facility to
specify the type of abstraction to be looked for. We use a
Prolog program dictionary to record the direct relations and
production rules to define the summary.relations. Prolog.
queries are used 1o specify the abstractions to be looked for.

Directrelations consist of-a collection ol same named facts oo

of arity 2, each of which represent one of the couples of the
relation identified by the name of the fact. Facts of arity 1
define the software components involved in the candidature
criterion and siate their type. The argument is the name of a
component whose type is identified by the name of the fact.
it is worth-while to stress that the use of Prolog to
prototype the candidature criteria meets the needs for a set
of summary relations that is easy to extend. Indeed, a kernel
of production rules may be cstablished on which new
candidature criteria can be defined by adding new production
rules or relating the existing ones in a different way.

The structure of the program dictionary is shown below:

proc{procedurs name) .

funo{ function name} .

usar_def typeitype namel.

proo_use_type_in_interface (procedure _name,
bype, namal .

func_use_type _in_interface{ function nams,
type name) .

usad_to define{type name 1, type_name 2} .

We have implemented a static code analyser for
auntomatically producing the program dictionary. The
analyser has been written using Lex and Yacc [12], two
standard Unix facilities for the implementation of lexical
analysers and parsers. The current version analyses Pascal
programs written according to the ISO standard. The main
disadvantage is that the programs to be analysed have (0 be
wriiten in a unique compilable file. An extension s being
designed in order to allow programs consisting of more
than one module to be analysed.

We have also written the Prolog programs that
implement the candidature criterion, i.e. compute the
relations STYP, ABTYP and CCTYP. As an example
Tab. II shows the program that computes the relation
STYP according to the algorithm described by Canfora es
al. {11]. For the sake of brevily we do not show the
productions rules implementing the relations ABTYP and
CCTYP. In order to simplify the interrogation of the
system, the programs have been wrilten that answer the
queries adt_strutt{T,T_SET} and
adt_op (T, C_SET) by producing, for a given user-
defined data type. the sets T_SET and G_SET defined in
section 2.

%] stypiC,T):- i
24 the procedure like component C uses the user i

%] dafinsd data type T to declare a formal parameter |
%1 AND € does not use any super-type of T i
B e 4 1 o 2 5.9 4 8 3 e e +
styp{t, T} i~

procedure like_component use type in_interface((,T),
setof (TS1, procedurs_ | 1ike_,_ca~r>cnent usa t,{pe in_,interfas.e
AT, TEL) TSy
set. . of supertype (T, 142,
Anterseqr{TS1, =2, 193y, -
TE3==(}.

%} procedurs like_component use type in interface(, Tya= |
%} the pr;)“edu,re lika componsnt © uses the user H
% defined darz type T to declare a formal parameter i

procedure_like component - use type, in interface (O This
proc.use type in interface{C,T).

procedure like component_use_type in interface({<,T):-
func use type _in inverface(d,T).

%1 set_of supertype{T, T8}~ i
TS iz the set of the supertypes of the user i
dafined data type T R . [

ot ol _supertype (T, TS)
atof (T35, subtype (T, ’I’S) Ts),

n !‘T

set_of supertypel_,{l}.

1 subtype{T1,T2):~ H
E3 user defined data typs Ti is a subtype of the H
user type T2 H

Subbype{TL, T2~
usad _rto defina {(TL, T2 .
subtype {T1,T2) 1~
used_to dafine (T, Tiy,
subbyee (T, 72 .

TAB. IL: Prolog to compute the relation STYP.

With the cumrent state of the art we do not believe that
the process of finding the abstract data types can be totally
automated. Homan knowledge and heuristics are needed to
identify the coincidental and/or spurious comnections
possibly existing among the components of a candidate
abstract data type, thus improving its quality before
electing it for reuse. If not correctly detected these
connections can lead to the production of modules which
are too large and of low quality. As an example of a
coincidental connection consider a system using one
STACK and one QUEUE, both obtained as instances of
abstract data types, and suppose that it uses a unique
procedure to initialise them once at the beginning of the
exccution. This procedure will force the criterion to
candidate a module that implements both the abstract data
types STACK and QUEUE. Similarly, a procedure that

reverses the content of a STACK into a LIST is an
example of spurious connection as it forces the abstract data
types STACK and LIST to be clustered in the same
candidate module. In the first case the correct way to
separate the two abstract data types consists of slicing the
initialisation procedure into two different ones on the basis
of the formal parameters, thus obtaining the initialisation
operations for the abstract data types' STACK and QUEUE.
In the second case the slicing does not produce any

“meaningful " procediire “and” thérefore the spiiricus

40

connections has to be removed simply by deleting the
reversing procedure,

A tool to effectively support the process of finding
abstract data types should strictly interact with the user in
order o allow him. to identify . the procedure-like. -
components that create coincidental and/or spurious
connections. It should also make it possible to choose the
most appropriate actions -— slicing or deletion — o
improve the quality of the candidate modules. Below is the
outline of the process such a too! should support:

- 1) From the source code automatically produce the Prolog

program dictionary, and apply the candidature criterion;
2) Present the user with the results in both a textual and a
graphical form — the latter consisting of a suitable
layout of the type-procedure-connection graph;
3) Let the user select the procedure-like components that
create coincidental/spurious connections and indicate
ihe action to perform on each one of them.

It should be possible for the user to backtrack their choices
{Le. 1o re-insert deleted nodes or re-joint divided ones) and
to explore different combinations of coincidental/spurious
connections and slicing/deletion actions. Finally, the tool
should access the source code, extract the components
defining the candidature modules, and store them for future
manipulations, for example the re-engineering operations in
the ELECTION phase.

An imporiant issue is the layout algorithm adopied to
display the resuits of the candidature criterion {point 2). It
must clearly identify the candidate modules, i.e. the isolated
sub-graphs. Moreover, it must show the mainly internally
connected sub-graphs? possibly existing within an isolated
sub-graph, thus facilitating the identification of the
coincidental/spurious connections. We are currently
investigating the possibility of obtaining the above features
by integrating the prototype tool for searching abstract data

2a mainly internally connected sub-graph of a graph G is a
graph g & G such that the number of edges that connect
couples of nodes beionging to g is higher than the number of
edges linking nodes in g to nodes in G-g. If a candidate module
implements more than one abstract data type these are likely to
be associated with mainly internally connected components of
the isolated sub-graph that depicts the module,

types into VAPS (Visual Aids for Pascal Software
comprehension) [14,15], a graphical browser of Pascal
programs developed on the top of the visual environment
Diagram Server [16].

4 Case Studies

..In_this section we illustrate the results obtained by
applymg the candidature criterion in a set of case studies.

The aim is to assess the strength of the proposed criterion
while identifying and understanding its major limitations.
We also exemplify the nature of the human intervention
needed to improve the quality of the candidate abstract data
types before electing them for reuse. The study of the
nature of the human intervention is a matter of fundamental
importance as it paves the way towards the definition of
heuristics capable of improving the quality of the candidate
abstract data types automatically singled out from the
existing code,

The set of case studies consists of five Pascal programs
developed in different periods, and therefore the level of
good design practices exploited is guite different. The
difference is also in the sgkill and expertise of the
programmers — these include under-graduate students and
university personnel. A program taken from a text book on
advanced programming in Pascal [17] has also been
included in order to have a "best case” o be assumed as a
term of comparison for the "real life" programs. All the
programs analysed have a small-medium size, between
1000 and 2000 LOC, and the overall study relies on the
analysis of nearly 10,000 LOC. Below, a brief description
of the programs is given:

MiniCalc.pas

A simple spreadsheet taken from the text book [17]. The
program is provided with an interactive user interface. The
display is divided into cells, labelled A o H vertically and 1
1o 5 horizontaily. When the system is in command entry
mode the user enters a command indicating that he wishes
to enter the identifier of a cell and an expression or label for
the cell. The system responds accordingly.

ExamMarker.pas

Marks multiple choices examinations. Set in Computer
Science at the University of Durham. The number of
questions, their allernative answers, their answer and a
particular marking scheme are input together with the
students answers. The program oulputs the resulting
marking in order of marks, college and name.

Editor.pas

A version of the Unix editor ed as presented in the Software
Tools book [20]. The program is augmented with an
additional sel of procedures and functions that have to be
written for a particular environment, to carry out operations

41

such as opening files and detecting interrupts from the user.

Formatter.pas

An ancient public domain pretty printer program for Pascal
that has undergone numerous changes by “anonymous”
authors. The output layout can be parametrised to change

__the_indentation, the line length, and control structure

format.

== {}thello:pas- s
An old Pascal program (cxrca 1978) ongm unknown thai

plays the game of Otheilo. The program has a simple user
interface and the board is presented using a non-graphic
VDU screen.

As was expected, the criterion produced the best resulis for
the program MiniCalc. Here five candidate modules were
obtained implementing the following abstract data types:

Parsed_Expressions, that manipulates an already parsed
expression. In particular, the data structure defining the
parse tre¢ and the operators for evaluating and printing out
the values of expressions are clustered in this module.
User_Messages, that manages the messages forwarded to
the user by decoupling their intemal (tokenised) and
external {textoal) representations.
User_Commands, that interacts with the user to read and
interpret their commands. Again, the internal and external
representations are made independent by parametrisation.
Input, that is responsible for the implementation of low-
level input-outpul operations on characters.
Cells, that actually manage the spreadsheet by updating
the cell contents on the basis of the user commands and/or
inputs.
While ihe first three candidale abstract data types were
obtained straight away from the criterion's application, the
last two were originally assembled in a unique candidate
module. The decomposition of this pot-pourri module
required a careful analysis of the relationships existing
among the procedure-like components, and in particular a
preliminary re-engineering of the declaration nesting on the
basis of the procedure calls. This re-engineering was
performed according to the algorithm proposed by Cimitile
et al. [18). More details are given by Canfora ef al. [11],
who aiso show how the candidate abstract data types can be
clustered in reusable modules implemented as TurboPascal
Units [13] according to the templale proposed by Cimitile
[19].

The application of the candidature criterion produced good
results also for the program ExamMarker. Here the
following candidate abstract data types were oblained:

T _SET:
C_SET:

candidates, lines,papers
checkavailablealternatives,
checkeandidate, checkextradata,
readandcheckanswers, writeparticulars

T _SET: listsizes, markfudge,markschemes,
gquestnos, titles

C_SET: getprelininaries,readtitle,writetitle

T_SET: strings

C_SET: readstring

T_.SET: colleges)

CMSETE'neWGalIege{readcgllegé,writecbllégé

T.BET:. listelements. T,

C_SET: alphapreceda,col1egcp*e ada
highermark, swap

T_BET: exams,lists,posint,seeds

CL.8ET: analyse,dice,dumgtofile, getparticulars,

getrandonnurber, histogram, listbycollens,

- listbymark; listbyname; HistForstudent s,
listsortedresults, mark, permute,
gquicksort, gummarise,validate

It was not too difficult 1o understand the meaning of, and to
give semantics to, the first five candidate modules by
inspecting the code and interacting with one of the authors

of the program. The criterion produced one very simple

general purpose module — namely the one implementing
the type string as a packed array of characters and the unique

components) and it is not immediately obvious how to
associate it with an abstract data type. The analysis of the
source code led us to formulate the hypothesis that this
module clusters together two different abstract data types,
Exams and List. To confirm this hypothesis, and to
identify the sonrce of such a bad clustering, we drew the
associate type-procedure-connection graph. This graph is
shown in Fig. 1 (we use boxes and bubbles 1o represent

- procedure-like components-and- user-defined data types;

dotted and solid lines depict the USED-TO-DEFINE and

TYP relations). From this graph it is easy to identify that
the procedures DumpToFi le and Permute are the canse
of the bad clustering. Indeed, DumpToFile forces the
user-defined data type Exams to be clustered together with

Seeds and PosInt, these being in turn clustered with

Lists because of Permute, The analysis of the system 5
call-graph revealed that the procedure PumpToFile is the
only one that calls Permute, Similarly, Permute is the
only procedure that calls Dice, and Dice is the only one
that calls GetRandomNumber. As a consequence the

" decldration nesung can be re-engineered in such a way that

operator ReadString to féad a string up (0 a maximum

length from a file — together with more application
domain oriented modules. Exemplar is the case of the
module clustering the type Colleges together with the
operators to distribute the marks of the students on the
basis of their belonging to colleges, and produce college
marking reporis. This module is heavily application
oriented as it depends on the organisation of the University
of Durham into different colleges, and it would not be
useful in the implementation of an exam marker program
for universities that do not adopt a college organisation.
Interesting, is the module that clusters the type
ListElements with the operators to compare students'
records on the basis of different parameters such as the
alphabetical order of their names, their marks or the college
which they belong. It is simple to guess that this module
is intended to provide a higher level module implementing
a list with the operators needed to create different ordering
{actually, it also includes a swap operator). Finally, the
candidate modules defined around the T_SETs
{Candidates,Lines, Papers} and {ListSizes,
MarkFudge, MarkSchemes, Questnos, Titles)
implement, respectively, the type CandidatePapers — with
the operators for reading and checking the data of a student
and his answers (paper), and printing out the resulting mark
— and Script — with the operators to read the title of an
exam, the total number of questions, the marking scheme,
and produce a form echo-printed into a file,

Problems were raised by the understanding of the last
candidate module, as it is quite large (16 procedure-like

42

Permute is declared locally to DumpToFile, Dice to
Permute, and GetRandomNumber to Dice. The uset-
defined data types Seeds and PosInt can also be made
local to DumpToFile, this requiring a slight change to
the procedure DumpToFile to allow it to read the first
value of the seed used o generate random numbers with a
uniform distribution on [0.0, 1.0]. These numbers are used
to randomly rearrange the members of a class when wnu:;g
into a file the marks obtained for each question in the
exarmination, thus enforcing the anonymity of data. This re-
engineering made it possible to split the candidate module
into two different modules each of which implements an
abstract data type. The modules obtained are linked by a
USE relationship, as the absiract data type Exams imporis
the resource exporied by Lists.

Applying the candidature criterion to the program Editor
led to the candidature of three modules. The candidate
module T_SET = {TraceString} and C_SET =
{Etrace} was immediately discarded after realising that
the procedure Etrace is actually a debugging routine. The
module T_SET = {LinePtr) and C_SET = {AlloLine,
Freeline, GetInd, GetNew, GetPak, GetTxE,
LinkUp} implements the abstract data type Lines. It
provides primitives to operate on two lists of lines, the list
of the used lines (the ones that currently contain text) and
the list of the free lines, Below, is a brief description of the
operators and their relationships:

GatNew— Allocate space for a new line record.

AlloLine — Allocate a line record. If the list of the
free lines is empty then GetNew is called.

GatInd— Locate a line from its number,

Summarise

ListSorteredResults

ListByCollege

~[Analyse

Validate

-~.aLﬁ§By@&Hne a_f

..ljsﬂayhﬁuk_ e

T B

Permute

DumpToFile

GetRandomNumber

Fig. 1: A partial type-procedure-connection graph for the program Formatter.pas.

GetPak, GetTxt — Get the text of a line and its
length, Both these functions call GetInd.

LinkUp— Receive the pointers to two lines, 11 and 12,
and make 12 follow 1.

The third candidate module is quite a large pot-poumi
module consisting of five user-defined data types and
thirtysix procedure-like components. The analysis of the
type-procedure-connection graph revealed that the main
cause for such a large cluster was the used-defined data type
StatusRange, It appears in the heading of a large share
of the procedure-like components in the cluster.
StatusRange codifies the possible states at the end of a
number of different operations. No procedure-like
components has the specific task of accessing or
manipulating the status, this being always a consequence of
the execution of some other operation. StatusRanga
aggregates procedure-like components on the basis of their
control coupling. We decided to isolate StatusRange in
a module that only defines and exports it. After that we re-
applied the criterion to the cluster without taking into
account StatusRange, This required the manual
extraction of the Prolog program dictionary related to the
cluster from the overall one produced by the code analyser,
and the deletion of the facts that name StatusRange. As
a result, all the procedure-like components in the cluster
that use in their headings an user-defined data type other
than StatusRange were re-arranged into three new
candidate modules. These modules are shown below:

T_SET:
¢C_SET: assignfile,doread,dowrit,getin,open

filenamestring

43

T_SET: linestring

C_BET: addset,ctel,esc, filsst, inject, reademd,
readliine

T_SET: argstring,patternstring

o BET: amatch,catsub,dumppat,getocl, getrhs,

locate, makpatb , maksub, match, omatch,
patsiz,stelos, subst

The first module implements the abstract data type Files,
respansible for the operations on file streams, The
following primitives are implemented: get the name of a
file {GetFn), assign and open a file (AssignFile,
Open), and write and read a given number of line of text
to/from a file (DoWrit, DoRead). This module is
machine dependent as it interacts with the underlying
operating system, and in particular with the file system.
The second candidate module implements the abstract data
type LineStrings, with operators for reading a line from
gither the terminal (ReadcCmd) or a file buffer
{ReadLine), inserting (Inject) and modifying a piece
of text (Ctoi, Addset, Filset), inserting an escape
characier {Esc). The third module implements a
PatiernMatcher, with operations for searching and
substituting strings (Subst,Catsub,Maksub,
GetRhs), and pattern matching (Match, Amatch,
Omatch, Locate, etc.). PatternMatcher uses the module
LineStrings. While this module is quite large, the data
abstraction it realises is well identified, The large number
of procedure-like components is essentially due to the
implementation of slightly different versions of a same
operation. An example is the pattern matching where a
number of procedure-like components implement variants

of a same operation (look for match at the beginning,
everywhere, or at the end of lines, look forward, backward
etc.).

The application of the candidature criterion to the
program Formatter produced low interest resulis, Here three
candidate modules were obtained, all of them with a very
simple structure — two candidate modules consist of only
one user-defined data type and one procedure-like

component; the: third-includes-two-user-defined data types...

and one procedure-like component. Although the analysis
of the code made it possible to understand the meaning of
ifie candidate modules — for example the module T_SET =
[Margins} and C_SET = {ChangeMarginTo} is
responsible for implementing one of the layout

* parametrisations, namely the width of the indentation —

their simplicity reduced the interest for electing them for
reuse. The poorness of the results is probably due to the
original design of the program which was not available to
us. Nevertheless, the analysis of the program's call graph
and nesting tree, the very few comments in the code, the
naming convention, and the detailed study of some sample-
procedures led us lo guess that the program had been

designed according to a function decomposition approach

rather than to the principle of data abstraction.

The worst results in the set of case studies were obtained
for the program Othello. The application of the candidature
criterion to this program produced four candidate modules,
bui the analysis of the code did not lead to the
undersianding of their meaning. The absence of the
program's specification and design and the impossibility to
get in touch with the author made it impossible to provide
the candidate modules with semantics. The main problem
was the lack of knowledge about ihe way in which the rules
of the game have been encoded, and in particular about the
linear programming technigues used to rate the possibie
moves and make the best one.,

5 Conclesions

Extracting reusable assets from existing software systems
is a promising approach o spread software reuse in the
industrial software production environmenis, Reverse
engineering and more general program comprehension
techniques can help to search existing system for reusable
asseis. We have proposed a candidature criterion for
producing reusable modules that implement abstract data
types. The criterion is founded on logic and Prolog has
been used for its rapid prototyping. The strength and the
major limitations has been evaluated by presenting results
from several case studies carried out within the REZ
project.

Although the limited extent of the case studies does not
allow definitive conclusions there is a number of

44

considerations that can already been drawn. The proposed
criterion produced a sigaificant number of well-formed
modules, i.e. modules that can be directly associated with
abstract data types. When the modules produced were too
large, the support the criterion gave to recognise the
different abstract data types possibly clustered in a single

.module was considerable. The clusters produced pmvide _

sensible help to understand the structure of data in a
software.-system,..and.. how.. data..are.. accessed . and ..
manipulated.

The quality of the candidate modules greatly depends on
the original design of the system. The criterion produces
the most satisfactory results if abstract data types have been
used in the design, but modules have not been produced 1o

“implement them at the code level. For the hybrid systems,

that means the systems designed uSing abstract data types
but also including procedure-like components that directly
access the supporting structure of abstract data types in
order to implement system specific operations, the
procedures and functions that create coincidental/spurious
connections have 10 be detected and sliced/deleted, This ¢ar
be facilitated by graphically showing the results of the
candidature criterion through a smlabic layout of the typc-
procedure-connection graph.

Finally, understanding the candidate modules may
sometimes require a deep knowledge of the domain of the
application, and of the way in which processes, rules, and
constrainis in the domain are encoded in the software
solution.

A larger experimentation is needed to obtain a better
understanding of both the strengths and weaknesses of the
proposed candidature criterion, and to fully characierise the
class of the systems for which it works well. We are
currently in the process of producing a new version of the
code static analyser to create the Prolog program dictionary.
This new version will analyse multi-module programs,
thus allowing the criterion to be applied to large systems.

References

{11 Biggerstaff, T. J. (1991} "An Assessmeni and
Analysis of Software Reuse” MCC Technical Report
STP-MT-119-91.

Arnold, R. S. and Frakes, W. B, (1992} Software
Reuse and Reengineering” CASE Trends, 4(2), pp.
44.48,

Tracz, W. (1988) "Software Rense Maxims" ACM
SIGSOFT, Software Engineering Notes, 13(4), pp.
28-31.

Canfora, G., Cimitile, A. and Munro, M. (1992)
"REZ: Reverse Engineering and Reuse Re-
engineering” Computer Science Technical Report

[2]

E)

(4]

{5}
R
7
(8]

(%]

(101

{11]

(12]

8/92, University of Durham, School of Engineering
and Computer Science; to appear on The Journal of
Software Maintenance.

Hoare, C. A. R. (1972) "Notes on Data Structuring”
in Structured Programming, Academic Press, Inc,,
London,

(13}

[14]

Dahl, O. 3., and Hoare, C. A. R. (1972) "Hirerchical

.. Program_Structures” in Structured, Programming, .

Academic Press, Inc., Londos.

Calliss, F. W. (1989) "Inter-module Code Analysis
Techniques for Software Maintenance” PhD Thesis,
University of Durham,

Callis, F. W. and Cornelius B. J. (1989) "Two
Module Factoring Techniques” Journal.of Software
Maintenance, 1, pp. 81-85,

Embley, D. W. and Woolfield, 5. N. (1988)
Assessing the Quality of Abstract Data Types Wrilien
In Ada” Proc of 10th International Conference on
Software Engineering, Singapore, IEEE Comp. Cos.
Press, pp.144-153.

Liu, S. S. and Wilde, N. (1990) "Identifying Objects
in a Conventional Procedural Language: An Example
of Data Design Recovery” Proc. of Conference on
Software Maintenance CSM'90, San Diego,
California, IEEE Computer Sociely Press, pp. 266-
271,

Canfora, G., Cimitile, A. and Munro, M. (1992) "A
Reverse Engineering Method for Identifying Reusable
Abstract Data Types" Computer Science Technical
Report 11/92, University of Durham, School of
Engineering and Computer Science.

Kernigham, B. and Pike, R. (1984) "The Unix
Programming Environment” Prentice Hall, Inc.,
Englewood Cliffs, New Jersey.

45

-.[15)

{16]

i

(18]

(19]

[20]

Turbo Pascal ver. 5.5 (1988) Reference Manual,
Borland International.

Canfora, G. and Vargin, F. (1991) "Reverse
Engineering, Reuse Re-Engineering and Visual
Environments: the VAPS Project” Proc. of Workshop
on Reverse Engineering, Portici (Naples), Italy, Ed.
CUEN. pp. 142175, o

Canfora,.(3.,.Cimitile,.A. and.De . Carlini, 1. (1992} ...

"VAPS: Visual Aids for Pascal Software
Comprehension” Position Paper, IEEE Workshop on
Program Comprehension, Workshop Notes, Orlando,
Florida, ppl3-14.

Di Battista, G., Gianmarco, A., Santucci, G. and
Tamassia, R. {1990} "The Architecture fo- Diagram
Server” Proc. of TEEE Workshop on Visual
Languages, Skokie, Illinois, pp. 60-63.

Miller, L. H. {1986) "Advanced Programming: Design
and Structure Using Pascal" Addison Wesley
Publishing Company, Reading, Massachusetts.

Cimitile, A., Di Lucea, G. A, and Maresca, P. (1990)
"Maintenance and Intermodular Dependencies in Pascal
Environment” Proc. of Conference on Software
Maintenance CSM'90, San Diego, California, IEEE
Compuler Society Press, New York, pp. 72-83.

Cimitile, A. (1992} "Towards Reuse Reengineering of
Old Software" Proc. of 4-th International Conference
Software Engincering and Knowledge Engineering
SEKE'92, Capri, Italy, IEEE Computer Sociely
Press, New York.

Kernighan, B. and Plauger, P. J. {1981) "Software
Tools in Pascal” Addison Wesley Publishing
Company, Reading, Massachusetts,

Partial Evaluation as an Aid to the Comprehension of Fortran Programs

Sandrine Blazy
...EDEDER
1, avenue du Général de Gaulle
o 9214 1. Clamart Cedex, France.

Sandrine.Blazy@der edf .fr
S Abstract. : R
We describe a technique and a tool supporting partial
evaluation of Fortran programs, ie, their

specialization for specific values of their input
variables. We aim at understanding old programs,
which have become very complex due to numerous
extensions. From a given Fortran program and these
values of its input variables, the tool provides a

- simplified program, which behaves like the initial one
for the specific values. This tool uses mainly constant
propagation and simplification of alternatives to one
of their branches. The tool is specified in inference
rules and operates by induction “on the Fortran
abstraci syntax. These rules are compiled into Prolog
by the CentaurlFortran environnent.

1. Introduction

Program understanding is the most expensive phase of
the software life cycle. It is said that 40% of the mainte-
nance effort is spent trying to understand how existing soft-
ware works [211. All maintenance problems do not require
complete program undesstanding, but each problem
requires at least a limited understanding of how the source
code works, and how it is related to the external functions
of the application. There exists now a wide range of tools
to support program understanding [22].

Program slicing is a technique for restricting the behav-
1our of a program to some specified subset of interest. The
stice of a program P on variable X at location i is the set of
statements that influence the value of X at i. This is an exe-
cutable program that is obtained by data flow analysis. Pro-
gram slicing can be used to help maintainers understand
and debug foreign code [11].

We have developed a complementary technique: reduc-
tion of programs for specific values of their input variables.
It aims at understanding old programs, which have become
very complex due toextensive modifications. From a given
Fortran program and some form of restriction of its usage
(e.g. the knowledge of some specific values of its input var-

0-8186-4042-1/93 $03.00 ® 1993 IEEE

Philippe Facon
CCEDRICTIE
18 allée Jean Rostand

oo 91025, Bvry.Cedex, France, .

facon@cnam.cnam.fr

- lables), the tool provides & simplified program, which -

46

behaves like the initial one when used according to the
restriction. This approach is particularly well adapted to

- programs which have evolved as their application domains

increase continually,

Partial evaluation is an optimization technique used in
compilation to specialize a program for some of its input
variables. Partial evaluation of 8 subject program P with
respect to input variables ;... X, ¥1...y, for the values x,=
CiXp™ Cp gives a residual program P’,. whose input
variables are y,.y, and such that the executions of
Ple)..cqyy.yy) 2nd P'(y;...y,) produce the same results
[18]. Such a program is obtained by replacing variables by
thetr constant values, by propagating constant values and
simplifying statements, for instance replacing each
aliemative whose condition simplifies to a constant valne
{true or false) by the corresponding branch.

Partial evaluation has been applied to program optimi-
zation and compiler generation from interpreters (by par-
tially evaluating the interpreter for a given program) [14].
In this context, previous works have especially dealt with
functional {2] and logical fanguages [20]. The structure of
the program may be modified (using loop expansion, sub-
routines expansion and renaming [91) in order to opiimize
the residual code,

As far as imperative langnages are concemad, partipl
evaluation has been used for software reuse improvement
by resttucturing software components to improve their affi.
ciency [3-53]. Partial evaluation has been applied to numer-
ical computation to provide performance improvements for
a large class of numerical programs, by eliminating data
abstractions and procedure calis [3],

Our goal is different. We remove groups of staiements
that are never used in the given context, but we do not
expand statements. This does not change the original struc-
ture of the code. We transform general-purpose programs
into shorter and easier o understand special-purpose pro-
grams. This transformational approach aims at improving a
given program without disturbing its correctness when

used in a given restricted and stable context. However,
uniike [151, we do not aim at improving a program accord-
ing to & performance criterion (e.g. memory), but at
improving the readability of programs.

This paper is organized as follows, First, we justify our

. interest in scientific applications written in Fortran in sec- ..

tion 2. Next, we present in section 3 the two main tasks of

< (rir-partial evaluator: constant propagation-and simplifica- .

tion, I section 4, we describe our partial evaluation as a set
of inference niles, and we show how these rules combine
constant propagation and simplification rules. Section 3
presents conclusions and future work.

2. Scientific programming

A mumber of scientific applications, written in Fortran
for decades, are still vital in various domains {management
of nuclear power plants, of telecommunication satellites,
etc.), Even though, more recent languages are used (o
implement the most external pasts of these applications. It
is not unusual to spend several months to understand such
applications before being able to maintain them, In a recent
follow up about maintenance practices of scientific appli-
cations [12], we have noticed that understanding a 120 000
Fortran lines application took nine months. So, providing
the maintainer with a tool, which finds parts of lost code
semantics, allows to reduce this compulsory period of
adaptation,

2.1. Characteristics

One of the peculiarities of scientific appiications is that
the technological level of scientific knowledge (linear sys-
fems resolution, turbulence simulation, etc.} is higher than
the knowledge usually necessary for data processing
{memory allocation, data representations), The discrep-
ancy is increased by the widespread use of Fortran, which
is an old-fashioned language. Furthermore, for large scien-
tific applications at EDF Fortran 77, which is quite an old
version of the language, is exclusively used to guarantee
the portability of the applications on different machines
{mainframes, workstations, vectorial computers) {1].

2.2. General purpose applications

Our study has highlighted common characteristics in
Fortran programming at EDF, These scientific applications
have been developed & decade ago. During their evolution,
they had to be reusable in new and various contexts. For
example, the same thermohydranlic code implements both
general design surveys for a nuclear power plant compo-
nent {core, reactor, steam generator, etc.) and subsequent
improvements in electricity production models. The result
of this encapsulation of several models in a single large

47

application domain increases the program complexity, and
thus amplifies the lack of structures in Fortran program-
ming langnage.

This generality is implemented by Fortran input varia-
bles whose value does not vary in the context of the given

application, We distinguish two classes of such variables:

* data abow geomelry, which describe the modelled

«~Jomain~They-appear-most-frequeatly-in-assignment ooy

statements {equations that model the problem).

+ data taking a finite number of values, which can be
represented by logical variables, These are either filters
necessary to swiich the computation in terms of the
context (modelled domain), or fags allowing to minimize
errors risks about the precision of the output valueés.

Figure | shows an example of program reduction. The
code section of figure 1-a is extracted from one of the appli-
cations we have studied [19]. The partial evaluation of this
code section according to the simplification criteria of fig-
ure 1-b yields the code section of figure 1-c. A maintenance
team is used to update a specific version of the application.
These people know some filters properties (/C = 0 and
IREX = 1) as well as data agbout geomety
{DXLU = 0, 5). Furthermore IM is a tag whose value is
20.

The knowledge of these values of input variables sim-
piifies the code (as shown in figure 1), Because of the
truth of the relation /REX = 1 | two alternatives are sim-
plified (1). The first alternative is simplified to its then-
branch. In this branch, the variable DXL is replaced by its
value, which modifies the variables XTI} snd DX(I) (2).
The variable IM is replaced by its valve too (3). The condi-
tion of the next aliernative is simplified (4) since the value
of IC is known. Furthermore, the relation /C = 0 simpli-
fies the following alternative to its then-branch {3}, which
allows to compute the value of the variables ZERO,
IREGU and IDECRI (6). Because the values of these three
variables are constant values, the three corresponding
assignments are removed from the code. Then other alter-
patives are simplified (7).

This reduction is specially important thanks to the high
number of assignments and conditionals, This is the case
for most subroutines implementing mathematical algo-
rithms, For subroutines whose main purpose is editing
resulis or calling other subroutines, the reduction is gener-
ally not so important,

In order to show how the simplified code has been
obtained from the initial one, some links between both
codes are shown in figure |, The initial code which is left
unchanged in the simplified code is italicized, Expressions
which have been replaced by their value and which appear
in the simplified code are written in bold type. The rest of
the initial code is the code that has been removed in the
simplified code, When using the tool, such links can be vis-

ualized in different colours.

IF(IDECRLEQ. 1) THEN
IF { IREGU .EQ. 0) THEN

IMIN=2

IMAX =1M
ELSE

IMIN = TM

IMAX =M
ENDIF

ELSE iF (IDECRI EQ. 2)THEN

IF{REGL EQ O)YTHEN
IMIN=2
FMAX = A

FLSE
JMIN = JM
JMAX = IV

ENDIF

ENDIF
ENDIF

() TFUIRER R UV THEN
3 DO =1, IM IREX = 1
() X(lj = XMIN + FLOAT{[-]) * DXLU IC=20
11 CONTINUE M =20
(3) L DONZ T=1,IM._ . DXLU = 0,5
{2 DXl =DXLU*{ .
L ZCONTINUE - fREX =1
DO, T=1,1M - X
DN = X+ 1) - X(input variables
121 CONTINUE
ENDIF
Key AF (IMATSO EQ. 0 ANDL IC GE. 0} THEN
(6) ZERO =0,
{5) IF (IC FQ.0) THEN
{6 IREGU =
ELSE IF (IC .GE. IMy THEN -
IREGH =0
ENDIF
I't)) I CIREX EQ.2) THEN
o ' READ (NFICHL,(AY BHR=5 END=S) 1.
(7 I (INDEX (1,'1') NE. 0) THEN
€] IDECRI = |
. ... ENDIF
ELSE
(6} IDECRI=2
ENDIF

PO, 1=1,20
N =XMIN + 0 5*FLOAT{I-1)
111 CONTINUE
DO, I=1.20
DA} =054
112 CONTINUE
I CIMATSO BQ Oy THEN

IMIN =M
IMAX =M
ENDIF

Fig. 1-a. Initial code

Fig. 1-c. Simplified code

Fig. 1. An exampie of program simplifica'ficn

3. Two aspects of partial evaluation applied to
imperative programs

QOur partial evaluator performs two main tasks: constant
propagation through the code and simplification of state-
ments. The tool can give the result of one of the two inde-
pendently of the other. For instance, if the user is a physi-
cist who is familiar with the equations implemented in the

48

code, he wishes to locate in Fortran statements these equa-
tions and their variables, as they appear in the formulae of
these equations. But if the user is a maintainer who does not
know the application well, he wonld rather visualize the
code as simplified as possible. In all cases however and for
an optimal partial evaluation, the tool performs both tasks.

w

3.1. Constant propagation

Constant propagation is a well-known global flow anal-
ysis technique used by compilers. It aims at discovering
values that are constant on all p0551ble executions of a pro-
gram and fo propagate forward through the program these

{231

We describe in this section our constant propagation
process. It modifies most expressions by replacing some
variable occurrences by thelr values and by normalising all
expressions through symbolic computation. Presently, our
tool propagates only equalitics bebveen variables and con-
stants. Of course, that limits the precision of the analysis.

Substitution. Before running the partial evaluator, the
user specifies numerical values for some input variables of
the program (thanks to his personal knowledge of the appli-
cation). Constant propagation spreads this initial knowl-
edge supplied by the user. In'a first stage, the partial evalu-
ator replaces each specified variable by its value. Then,
expressions whose operands are all coastant values are
computed and these resulting valves are propagated for-
ward through the whole program. This technique allows to
remove from the code all occurrences of variables identifi-
ers that are no more meaningful. The substituted valves
may be visualized differently from other values (with bold
type as in the previous example or with a different colour),

Furthermore, the user can specify some variables that
will not be substituted by their value. For instance, he can
indicate that the variable PI will not be replaced by 3.1416.
Expressions containing only such variables and numerical
values are considered as constant values.

Normalisation. For any given numerical expression,
we have to recognize if it reduces to a constant value (e.g.
x+3-x reduces to 3). In the same way, for any given logical
expression, we have to recognize if it reduces to a conjunc-
tion of equalities or to a disjunction of inequalities. In the
first case {respectively the second case), we will be able to
propagate equalities in the then- {respectively else-) branch
of alternatives, To do this, we perform constant propaga-
tion. To propagate constant values as most as possible, our
system normalises each expression into a canonical form: a
polynomial form for numerical expressions and a conjunc-
tive normal form for the logical expressions.

In a polynomial form, expressions are simplified by
computing the values of the coefficients of the polynomial.
Polynomial forms are written according to the decreasing
powers order. When some terms of a polynomial have the
same degree (e.g. z°, x> and t.u), they are sorted according
to a lexicographical order (e.g. t.u < x> < z%). The canonical
form of a relational expression is obtained from the canon-
ical forms of its two numerical subexpressions. In normal-

~ constant values as far as possible. Some algorithms now
....exist to perfarm fast and powerful constant propagation

49

ized relational expressions, all variables and values occur
on only one side of the operator, . ' '
Becanse of these modifications of expressions, over-
flow, underflow or round-off errors may happen. There-
fore, the normalization of expressions may cause run-time

_errors, 1t is possible to obtain programs that will cause

machine errors when compiled hﬂd executed, Conversely,

.-Some fun-time errors may vanish thanks to the parfialeval-

uation. As most partial evaluation systems [17], our tool
ignores such problems. In this case only, the tool does not
vield a program which behaves like the initial one.

3.2. Simplification

- Simplification is an option of the partial evaluator, First,
the expressions are simplified during the propagation as
expiamed above. Then, the ssmphﬁca{soﬁ process reduces
the size of the code by removing both assignments of vari-
ables which can be evaluated to constants and statements
which are never used for the specified values. This simpli-
fication includes the elimination of redundant tests and in
particular the simplification of alternatives to one case
thanks to the evaluation of their conditions. To simplify a
statement means to remove or to modify it. Its components
must be simplified, but in different contexts. This section
defines the simplification for each statement.

A write statement is simplified by sunphfymg zzs
parameters that are expressions. A read statement is sim- .
plified by remmoving its parameters whose values are known
input values. If all its parameters have known values, the
read statement is removed (replaced by an empty state-
ment). Since the removed parameters do not appear in the
residual program any enore, their inifialization is not miss-
ing in the code that is therefore still executable,

An assignment simplification consists in simplifying the
assignment expression or in removing it in some cases.

An alternative is simplified into one of its branches
when its condition has been evaluated to either true or false.
Otherwise, the statements of the two branches are simpli-
fied. In this case a branch may become the empty state-
ment.

Loops that are never entered are removed. When discov-
ered, infinite foops are left unchanged. Qtherwise, the only
staternents of the foop which are simplified by the knowl-
edge of variables values, are those statements whose
expressions are invariant, Thus, we do not expand loops
because we want to keep the original structure of the code.
Furthermore, Fortran loops are implemented using labels
and goto statements. So, when a loop is removed, its label
statement is kept when other statements contain goto state-
ments to such labels (the label is left unchanged and the
staternent is replaced by a skip statement).

A call statement simplification consists in replacing its

actual parameters whose values are known by these values.
The identifier of the called subroutine is left unchanged in-

the current program (subroutines are not necessarily spe-
cialized) and the user has to run the partial evaluator on this
subroutine code if he wants to simplify it tco.

Tha.. partzﬂl evaluation does. not. simplify . other state- .
5

ments. Let v
: -mequahtaes nor wath hteral vaIues

4, Inferenae rnles for parual evaluatwn

To specify Ehe pamal evaluatlou we use inference rules
operating on the Fortran abstract syntax and expressed in

notice that our tool yet can nexther cieal W1LE1 _

- the natural semantics formalism [15], augmented by some

VDMI[13] opuators This section first presents rules defin-
ing on the one hand the constant propagation process and
on the other hand the simplification process. Then, it details
the rules for partial evaliation of statements. These new
rutes combing the propagation rules and the simplification

- rules. Let vs notice that the techniques we implement are

not new, but we specify and use them in a novel way.
4.1. Propagation and simplification rules. ..
In the following, we use sequents such as H |- LI
(propagation), H |- I—> I’ (simplification), and the com-
bination of both H}- T —g=I'. H' (propagation and sim-
plification). In these sequents:
= H is the environmen: associating values to variables
whose values are lknown before executing L It is
modelled by a VOM-like map {13], shown as a collection
of pairs contained in set braces such as {variable —
constant, ...}, where no two palrs have the same firsi
elements. Our system initializes such maps by the fist of
variables and their initial values, supplied by the user.

* 1is a Fortran staternent (expressed in a linear form of the

Fortran abstract syntax).
= I’ is the simplified statement under the hypothesis H.
= H’ is H which has been modified by the execution of 1.

The sequents such as H |- TH' express the propagation
relation. The sequents such as H!— T—T1 express the
simplification under hypotheses. It depends of the compo-

nents of I, which are themselves simplified under other .

hypotheses. Thus, the definition of the simplification rela-

tion uses the definition of the propagation relation,
In the sequents, we use the map operators dom, U, T, 4

and Q

> The domain operator dom is the sei of the first elements
of the pairs in the map.

* The vnion operator U yields the union of maps whose
domains are disjoint (this operator is undefined if the
domaios overlap).

50

» The map override operator ¥ whose operands are two
maps, yields a map which contains all of the pairs from
the second map and those pairs of the first map whose
first elements are not in the domain of the second map.

+ The mip restriction operator 4 is defined with a first

..operand which is a set and a second operand which isa
map; the resulé is all of those pairs in the map whose ﬁrst _

- glements are-in the set.-

» When applied to a set ﬂﬁd 2 map, the map delenon

operator Q yie}ds those pairs in the map whose first
elements are not in the set. The example of figure 2
illustrates these definitions.

m = {X—=58-—irue}

dom(m)y = {X.B}

..m'u'{}’w—_}’/"} ={Y=7X~ 5;8——3’{1”11(4}
{B}Qm = {},—7»5}

= {C w:»falkseX—% 8t

mtn = {B - true,C — false, X = 8}

itm = {B = true,C —s false, X — 5}

Fig. 2. Some map operators

We have written some rules to explain how sequents are
obtained from other sequents. A mle is composed of a pos-
sibly empty set of sequents on the numerator, the rule
premises, and of & sequent at the denominator, the conclo-
sion of the rule. If the premises hold, then the conclusion
holds.

The rules we present in figure 3 express the simplifica-
tion of logical or numerical expressions. They belong to the
eval system, which is a subsystem of the simplification sys-
tem 3. The first rule has no premise, It specifies that a
variable X which belongs to the environment is simplified
into a constant which is equal to its value C. Otherwise
(second rule), the variable is not modified. To evaluate an
expression E1 OP E2 to the value T, its two operands El
and E2 must have been evaluated to E’'] and E'2 respec-
tively, and the value T is the result of the computation of
E'1 0P E'2 (through the comp system). T E’1 and E'2 are
both constants (respectively N1 and N2), the computation
of T is processed by the application of the app primitive to
the operator OF and to its two operands N1 and N2.

evitl i

HU[X=C) | id® —>C

X ¢ dom(H)

HF El—pi H | E2—>E2

]— OF.E'LLE2T

HI— EIOPE? —> T

E: = number (N) Ei = bool (B)

fori=12

comp

| op.EL E2 El OPE2

app {OP NL.N2,T)
comp
OF. nummber(N1), number(N2): T
app (OPNINLT)
comp
I" OP, bool(B1), bool{B2)y. T
app kLT, number(Z)y - Zis T+ J.
app (=11, booKuue)) ~I=1
app (=, 1, 1, bool{false)) - not (1=
- app (and, bool(false), C, bool{false)),
wi

app {and, bool(tree}, C, C).
app (or, bool(true), C, bool{true)).

properties of lugical

a sequence of statements,

EXPressions
app {or, bool(false}, C, C).
by using C-Prolog like evaiuation predefinite primitives,
Fig. 3. Simpiification of expressions
The rule of figure 4-a expresses the propagation through H I_ I HI 1]_ D
To propagate the environment H through the sequence H |__
of statements 11;12, H is propagated through the statement 11;12: H2

Ii, which updates H in H1, This new environment HI is
propagated through 12, which updates H1 in H2, H2 is the
environment resulting from the propagation through the
sequence,

81

Fig. 4-a. Propagation through a sequence of
statements
The rule of figure 4-b expresses the simplification of
such a sequence, Given an environment H, to simplify a
sequence of statements 1112 the first statement 11 is simpli-

fiedinI'L, and the environment H is propagated through I1.
In this new environment H1, the second statement 12 is then
simplified.

u} U->T1

H | oew HI |2 —> 1)

H..I- ILD —3> PLT2

“Fig. 4= b Simplification of a sequence’

Figure 5 presents some simplification and propagation
rules for alternatives. If the condition C of an alternative
evaluates o true, then:

* the environment H' resulting from the propagation of H
through the alternative is obtained by propagating H
through the statements of the then-branch (first rule:
propagation),

» the simplification of the alternative is the simplification
of its then-branch (second rule: simplification).

The last rule of figure 5 is a propagation rule. It shows
that information can sometimes be derived from the equal-
ity tests that control alternatives. If the condition of an
alternative is expressed as an equality such as X=E, where

Note that the dynamic semantics is a special case of our
system: if the initial environment associates values to all
input variables, the final environment will give us (among
others) the values of ali output variables, with the executa-
ble pait of the program sometimes simplified to skip. Thus,
a very special use of the implementation of our system isto

- 1[as a standard lﬂtfii’pi‘e!ﬂr [P

" of otir’ simplificdtion, With'réspect 16 the dynamic §eman:

Tp prove eventually the correctness and completeness

tics, we have to prove that two derived inference rules hold
in the union of the two systems (simplification and propa-
gation). These two inference rules are presented in figure 6,
where sem is the system formalizing the dynamic seman-

. tics of Fortran, We are currently investigating such proof,

X is a variable that does not belong to the domain of the

environment H and E evaluates to a constant N, then this
equality is added to the environment related to the state-
ments of the then-branch (but this equality is not inserted as
assignenent in the code),

There is a corresponding rule for a condition of an alter-
naiive expressed as an inequality such as X=E; this condi-
tion is transformed in an equality such as X=E which is
added to the environment related to the statements of the
else-branch. Such mles have been generalized to condi-
tions of alternatives expressed as conjunctions of equalities
and disjunctions of inequalities. The last rule expresses that
only equalities between variables and constants can be
added to the environment. Thus, if other information are
expressed in the condition, they are not taken into account
by the partial evaluator.

H | C—> e

H |
H | if C then Il else 12 fi: Y

HF C—>me HF l—sT1
H} ifCthenTielse Rfi —> I'l

H i— E —> mumber(N) X ¢ dom(H)

HU {x >~ 1} nm
Hf if (X=E) thenTelse 12 fi: HINH2

Fig. 5. Some rules for alternatives

52

and we use the similarity with rules for the proof of trans- B
lation [8].

G2z
st e e SLuS f—P:S’
' sem
5 f‘ PL:S {completeness)
sem
stk popl sk ors
S1us }— Py {correctness)

Fig. 6. Correctness and completeness of the
shnplification

Since the simplification is performed in the context of
the propagation, and the propagation uses the simplifica-
tion of expressions, we have chosen to represent rules
grouping propagation and simplification. They are very
close to the rules we have implemented in the Foresys [10]
toolkit, which compile them into Prolog. Foresys has been
built upon the Centaur/Fortran environment {3].

4.2, Combined rules

For every Fortran statement, we have written rules that
describe the combination of the propagation and simplifi-
cation systems. This combination ~——8 of these two sys-
tems is defined by:

I—s DWW iff HFLE and Hhi—» T,

From this rule, we may define inductively the
—= selation, For instance, figure 7 shows the rule for a
sequence of statements, A sequence is evaluated from left
to right: The partial evaluation of a sequence of two state-
ments Ii and 12 consists in simplifying 11 in I'] then in
updating (adding, deleting or modifying) the data environ-
ment H. In this new data environment H1, 12 is simplified
1n I'2 and H1 is modified in H2.

Hl— Il —g T'l, HI Ml |—12 — 12,02

1,12 ~p I'[; 12, H2

Fig. 7. Partial evaluation of a sequence of
= statements

. In the sequel of this paper, we call such miles partial ...

evaluation mles.

assignments. The eval notation refers to the formal system
of rules which simplifies the expressions, that we have pre-
viously presented.

If the expression E evaluates to a numerical constant N,
the data ervironment H is modified: the value of X is N
whether Xhad already a vatue in H or aot. With the kind of
propagation we perform, the assigmment X = E can be
removed only if all possible uses of that value of X do not
use another v alue of X. For instance. in the sequence:

K= HCODE#5then X =X+1{f; Y:==X
the value 2of X is propagated in the expression X+1 but the
assignmeni Y :=X can not be removed becsuse the assign-
ment Y:=X may use two different values of X. Thus, that
sequence is simplified into:

Xe=2 fCODE#25then X =311, Y =X,

To detect such situations we use classical «dead code
elimination» algorithms.

If Eis only partially evaluable in E’, the expression E is
modified in consequence in the assignment Xo= E aod the
variable Xis removed from the environment if it was in it.

aval

H }- E — number (N)

H | Xi=E — skip. HH{X-N]

eval

H I—- E—>p E"# number (N)

H| x=E —» X=E.(X14H

Fig. 8. Partial evaluation of assignments

The following examples illustrate these two cases. Ie
example £xJ, as the value of the variable A is known, the
new value of the assigned variable C is introduced in the
data environment. We suppose that the assignment C ;=
A+l can b removed from the simplified program. In
example Ex2, after the partial evaluation of the expression
A+B, the value of C has become unknown. Such a case
only happens when A and B do not have both constant val-
ues.

Ex1{A—1,C - 41} C= A+l —p skip, (A-31.C-52)
Ex2{A—1, Co 2}|_ C:= AtBpe C:= 14B.{A—>1}

e Figure-§- specifies-the -rules - for-partial -evaluation: of -

53

The rules for partial evalvation of aliernatives are
defined in figure 9, If the condition C evaluates 1o a logical
constant, the alternative with condition C can be simplified
to the corresponding simplified branch. If C is only par-
tially evaluated in C, the partial evaluation proceeds along
bath branches of the allernative. It leads to two different
enyironment H'[and H'2, Their intersection (that is the
identifier/value pairs common to both environments) is the
Final nVIIONIMEnt ot o s e :

eval

H }- C ~3 bool (false) H}- 12— 2.

H]— ¥Cthenllelse 2fi ——p I'2H
eval

H| C—>bool(me) HF Il —s I'LE

H b #CthenTlelse2fi —p I'LH
eval
Hl—c —_ C' # bool (B)

HEN —pr1m1 HFp— 12,82

H i— if CthenTl else 12 fi v
O then Tl else 26, 11 A A2

Fig. 9. Pariial evaluation of aliernatives

As for allernatives, the rules for partial evaluation of
Ioops, presented in figure 10, depend on the ability to eval-
uate the tnuth or falsity of the condition { from the current
environment H. The first rule specifies that if the loop is not
entered, it is removed [rom the code. There is no specific
rutle for the case where C evaluates to true, because we do
not expand loops, not to alter the structure of the code. Fig-
ure 10 shows the rules for while-statements. but similar
rules exist for repeat-statements,

In the second rule, if C evaluates in ' (and O differs
from false), the statements T of the loop can be simplified,
given H restricted to a loop invariant Inv(I). Inv(I) is a pes-
simistic estimation of the variables that are not modified in
the loop, It is calculated by the partial evaluator and con-
sists in a list of variables whose values are known and that
are neither in a left-hand side of an sssignment, nor a
parameter of a call or a read statement. The sequent that
transforms I into I belongs to the simplification system.
Since we have imposed a pessimistic loop invariant, we
have not written a sequent refereing 10 the system ~——g
performing the propagation through Iwould not have mod-
ified the restricted environment.

eval
¢ —-9 boo[(false)

| H[— w]:uleCdoIend m.g. skpo .

cm[

T bom’ (faise)

H |- while C do I end——p-while C' do I’ end.Inv(D) {[H
Fig. 10. Partial e valuation of while-loops

§. Conclusion

We have used pamal evaluation for programs which are
difficult to maintain becaue they are too general. Special-
ized programs for some vilues of their input variables are

. obtained by propagating; these constant values (through a
normalisation of the exp,reasmns) and by performing sim-
plifications on the code, for instance- assignments are

mmmed and aliernatwes are reduced to one of their

branches This technique helps the maintainer to under-
stand the program behawiour in a particular context. The
residual program is furthermore more efficient because
many statements and variables have been removed in it,
and no additional statexment has been inserted. Another
advantage of this technigw is that it can also be applied to
abstractions at a higher Jevel than the code (e.g. it can be
applied to algorithms), N g that the Lechmques we develop
are not new, but we sp@mfy (mfer&uce rules), implement
(Centaur) and use them {fm' proaram cempreheusmn) ina
novel way.,

Our tool may be usecl in two ways: by visualizing the
residual program as a paxtof the iaitial program (for docu-
mentation or for debugging) or by générating this residual
program as an independen (compllai}ie) program,

We are also focusing' on the possibility for the user 1o
supply general properties sbout input variables, These gen-
eral properties are for instance retaﬂonal expressions com-
posed of some literal valies (e.g. x<z+44}) instead of only
equalities to constant valies: We will consequently take
into account that kind of information in the conditions of
alternatives and loops. Weintend to apply lmear resolution
methods and symbolic mipulation packages for Fortran
Nw propaﬂate such propernes.

Relerences

{1} Fortran ANSIE standard X3.9 1973.

E2] VAmbnoIa FGza.rmottI DPederschL FTuﬂnz Svmbo!ic"
semantics and program reducrzon IEEE Trarzs on Sofiware Engb'_
neering, 11(8); 08 /85, 784-704 B
(3] L.O.Andersen C program spec:alrarwn Mastnr s thesm Um-_ '
versity of Copenhagen May 1992 S

[4] A Berlin, DWc:ise Cwnpr!m 3 suemzﬁc wda using pamal
evaluation Cemput!:r December 1990, 25-37. .
[3 C‘emaurl T docunientarion TNRIA, Janiiary E‘))O _
[6] A.Coen-Porsini, F.De Paoli, C. Ghezzi, D. Mandrmh Safm dre

“speciulization vid' SYBOIE Ciecution IEEE Ttang “an Software: e

Eﬂgmeermg 179, September 1991 884-800
{71 P.D.Coward Symbolic execution sysiems -+ a review Seftware '
Engingering Journal, November 1988, 229-239; '
(811 Despeyroux Proof of translation in ratural Serantics Symp
Logic in Comp. Sciende, Cambridge USA, June 6. -

- 191-AP Ershov; BN Oswovski- Controlled mixed compuration

&4

and its application to systematic developmient of language-ori-
ented parsers Pr{}wram Specu"manon and Transformation,
IFIP'$7, 31-48.

{10} Connexité Referf_ncc manzeal of rhe Farcs_) Y Ima of iofmaré o

products 1993. :
[11] K B.Gallagher, J.R. Lyic U smg program shum; in software

mazm‘enanc&IEEE Trarisactmnson Softwa;e}ingmevrmg 17(8} T —

August 1991, 751-761
[12) MHaziza, I E. Vo;drot E.Minor,

straints JEEE Conference: on Software Meumenance Orlando :
USA, November 1092,

{13] CB.Jones Systematic software dewiopmenr using VDM
Prentice-Hall, 2nd eds., 1990,

[14] N.D.Jones, P.Sestoft, H, Sondergaard MIX: /] xel:f applicable
partial evaluator for experiments in compiler gencration Lisp and
Symbolic Computation 2, 1989, 9-50,

[15] G.Kahn Natural semantics Proceedings of STACS'87, Lec-
ture Notes in Computer Sclence, vol.247, March 1987,

{16} V Kasyanov Transformational approackh to program concre-
sization Th. Computer Science, 90, 1991, 37-46.

[17] R Kemmerer, S Eckmann UNISEX: g UNIX - bassd Symbolkic
Executor for Puscal Software Procrice and F \[n rience, 15(5).
1983,439-457. .

[18] UMeyer Technigues for evaluaiion of imperative lapguages
ACM SIGSOFT, March 1991, 94-105..

[191 G.Nicolas & al. A finite volume approach for 3D o
phase flows in tube bundles: the THYC' code Kemforsc-
hungscentrum, Karlsruhe, Vol.2, 1989, 1247-1253.

[20] D.Sahlin An automatic partial evaiuator for full Pro-
log Ph.D. thesis,-SICS, Copenhaguen, March 1991,
[211 T.H.Sneed The myth of ‘top-down' software develop-
ment and its consequences TEEE Conférence on Software
Maintenance, Miami USA, October 1989, 22:29. - :
[22) HI.Van Zuylen Understanding in reverse engmeermg '
The REDQ handbook Wiley éds., Septeriber 1992, -

[23] M.N.Wegman, K.Zadeck Constant propagation with
conditional branches ACM Trans. on Programming Lan- -
guages and Systems 13(2), April 1991, 181-210,

L Pofelski, S.Blazy
-Software maintenance: in analysis of industrial needs and con=

Facilitating the Comprehension of C Programs :
An Experimental Study

Panagiotis Linos
- Tennessee Technological University -
Computer Science Department '
=Cookeville; TN-38505;USA~
email : PKLBé?S@mtech edu

Abstract

A software environment called C.A.R.E. (Computer-
Aided Re-engineering) that facilitates the comprehension
of existing C programs is described in this paper. Program
comprehension in CARE is accomplished by visualizing
program dependencies (i.c. entities and their relations). A
repository of such dependencies is maintained and displayed
using a graphical model which combines control and data-
flow information. Moreover, CARE entails transformation
tools and abstraction mechanisms that support monolithic
and multiple-view organization of program dependencies.
Results from an experimental study with the CARE
environment has shown that the productivity of its users
was increased and the quality of the changes made during a
software maintenance task was improving. Finally, the
lessons learned from an empirical evaluation of the CARE
environment indicated that its graphical model,
transformation tools and abstraction mechanisms constitute
a promising platform for the comprehension of C
programs.

I. Introduction

Since program understanding is a key issue in software
maintenance, the study of various approaches to program
comprehension becomes a compelling issue [11]. Under-
standing programs is a time consuming and tedious task
because very often the only alternative for the software
engineers is reading a poorly documented source code.
Visualization of program dependencies (i.e. entities and
their relations) is a step toward a better understanding of
the internal structure of programs [12]. Currently, there are
several software maintenance environments which utilize
graphical models in order to display structural and
functional dependencies of programs. Some examples of
such environments are the CIA System [10], the Act and
BattleMap [8], VIFOR [9] and the Dependency Analysis
Tool Set [8). However, the resulting complex drawings and
the display of only one relation between entities are some
of the distinct limitations of these environments. In
addition, the lack of abstraction mechanisms and trans-
formation tools that facilitate program understanding con-
stitute another weakness of existing software maintenance

0-8186-4042-1/93 $03.00 © 1993 I[EEE

55

Philippe Aubet, Laurent Dumas,
- Yan Helleboid, Patricia Lejeune
~Institut Superieur D" Electronique Du-N ord
41 Boulevard Vauban
59046 Lille Cedex, France

tools. Therefore, software environments with effective
display models, abstraction mechanisms and transformation
1oals are needed to facilitate the comprehension of existing
programs [1].

In this paper, we present an environment called
C.A.R.E. (Computer Aided Re-engineering) which facili-
tates the comprehension of existing C programs {3]. The
implementation of CARE is an effort aimed at providing
practical solutions to the limitations of existing software
tools and it is based on our past experience with VIFOR
{Visual Interactive Fortran), a software environment for
maintaining Fortran 77 programs [9]. In addition, the re-
sults from an experimental study with the CARE envi-
ronment are discussed which support our hypothesis with
respect to the performance of its users during software
maintenance. Finally, the lessons learned from an empiri-
cal evaluation of CARE and how these lessons were used
in order to improve its functionality and user interface are
also included in this study.

The rest of this paper is organized as follows: the next
section includes our motivation and hypothesis. A de-
scription of the CARE environment follows in the third
section. The fourth section, includes the experimental
study of CARE and the next section discusses the lessons
learned from that study. Finally, the history of the CARE
environment is entailed in the last section of this paper.

11. Motivation and Hypothesis

Some of the weaknesses of existing software maintenance
environments is the lack of efficient display models for
program dependencies as well as the limited abstraction
mechanisms and transformation tools that facilitate pro-
gram comprehension. The CARE environment provides
peneralized graphical support by capturing several program
dependencies within the same graphical representation. In
particular, CARE facilitates program comprehension by
introducing a display model which is a combination of a
graphical representation of the data-flow (i.e. use of
variables, constants, data types and parameter passing)
called colonnade and the traditional hierarchical display of
the control-flow (i.e. call-graph). In addition, CARE en-
tails efficient abstraction mechanisms and transformation

tools that facilitate the comprehension of existing C pro-
grams.

For the purpose of this research, we hypothesize that the
combination of the colonnade and the hierarchical display
of program dependencies constitute a promising platform
for the comprehension of the overall architecture of C
programs. Moreover, code visualization facilities,
transformation too]s and graphical abstraction mechanisms
entailed in the CARE environment enable software
engineers to improve the quality of changes made on ex-
isting C programs and increase their productivity,

11I. The CARE Eavironment

C.AR.E. (Computer-Aided Re-engineering) is a software
environment for facilitating the comprehension of existing
€ programs.-The- CARE-environment enables the
comprehension of existing C programs by maintaining a
repository of program dependencies {i.e, entities and their
relations). Monolithic and multiple-view visualization of
program dependencies, transformation tools between
different representations (i.e. graphical and textual) and
abstraction mechamsms are some of the zmpoﬁani feamres
of CARE. .~

The CARE environment supports a compact data model
for C programs which consists of five entity and four
relationship sets as shown in figure 1. The function,
constant, variable, type and parameter are the entity sets.
The relations among these entities are the calls ,uses, has
and defined-as relations. A function can call another
function, use constants and variables and Aave formal
parametars, Also, constants, variables and parameters can
be defined in terms of a certain type. This information
abont C programs is maintained and graphically presented
in the CARE environment.

defined-as o Type
8 .
defined-us defined-as
uses
Constant Function Parameter
has
calls é nses
Variable
defined-as

Figure 1 : The C lanpuage data mode! used by CARE.

The architecture of CARE comprises of two main
modules; the code analyzer and the display manager as
shown in figure 2. The code analyzer parses classic or
ansi C source code and populates a repository with
program entities and relationships. The display manager
transforms the information found in the repository into
various representations. It entails two graphical editors: the
colonnade and the hierarchical editor. The colonnade

editor displays the entity sets of the data model in different
columns and the relationship sets as connecting lines
between columns. The call relationships among functions
(i.e. call-graph) are dlsplayed by the hierarchical graph
editor, The repository of program dependencies maintained
by CARE can be queried and displayed on specially
designed user interface windows. Figure 3 displays the
main window of CARE and two graphical windows. The
main window consists|of six icons; the first one represents
the Project Manager where the user can set or select a
working directory. The second icon is used for default
settings, The third icon is for exiting CARE. The Parser
icon is used to invoke the Code Analyzer for parsing C
files and populating a repository of program dependencies,
the next icon invokes the hierarchical editor for displaying
call-graphs and the last icon represents the colonnade
graphical editor. In the same figure but separate windows,
two graphical representations of program dependencies are
displayed. The graphical model for displaying program
dependencies supported by the CARE environment is
described next.

AL szua];zaimn cf Program Depcndenczcs _

58

Understandmg programs in CARE is accomplished by

maintaining and visualizing program dependencies using a

novel graphical model, This model combines the
hierarchical display of the control-flow (i.e. cali-graph) and

a graphical representation of the data-flow (i.e. variables,

constants, types and parameters} of the program called

colpnnade

Colonnade Represeniation

=

Hierarchical

Source Code

¥ s Representation
Code Display 4
3 S
Analyzer Manager &

Program
Dependencies

Figure 2 : The Architecture of CARE.

A colonnade is an extension of the two-cofumn display
used by VIFOR {9] and it has been formnally defined as a
m-column graph {2]. The novelty of the colonnade comes
from the fact that it provides generalized graphical support
by capturing several program dependencies within the same
graphical representation. Figure 4 contains a colonnade
representation for part of a C program. It consists of five
columns, The first column contains all local and global
variables of the program, the second entails types, the third
column inclodes parameters, the next the functions and the

.m_mcﬂm J: The maln window of CARE and two graphical a_wu_m<m of program dependencies.
E Computer-Alded xuimam_nmmlsm Tennessee Technological Unlversity 1892, 1893

| m__” C.A.R.E.

1..&3" &ES»E. Editer chelee Quit CARE

i
§Emrﬂ TYPES PARAMETERS FUNCTIONS
Q] } D

57

Flgure 4: A 00#01:mam display of data-{flow program dependencles.

PARAMETERS FUNCTIONS

CONSTANTS

<t

nEw

58

_the fact that Ehe function read appomtment

fast column displays all the constants used in the program.
The connecting lines represent the relations between these
entities, For instance, the function delete_day has three
parameters day, month and year all of type int. The same
function uses also several local and global variables of
various types and it has no constants, One limitation of
the colonnade is that it cannot display reiatncmshlps be-
tween non-conseculive columns. For instance in figure 4,

FUNCTEONS and TYPES become adjacent (the move
operation overcomes this limitation and it is discussed in a
fater section). The colonnade produces crossing-free and
aesthetically pleasing layouts and compiements the call-
graph. As a result, software enpineers can have multiple
graphical views of the program architecture (i.e. control
and data-flow),

1. Abstraction Mechanisms

The CARE environment encompasses abstraction
mechanisms in order 1o manage the complexity of large
program displays and to allow for the organization of
multiple graphical and textual views In CARE, program
dependencies can be displayed by monolithic or multiple-
view representations. A monolithic view entails the
complete code or global graphical representations (i.e.
complete call-graph or colonnade) of existing programs.
The multiple-view represemtations consist of graphical or
texiual slices which are fragments of the code, colonnade
or the call-graph and allow for multiple organization of
program dependencies. Moreover, graphical slices provide a
platform for flexible transformation mechanisms and reduce
the complexity of large graphs. Figure 5 contains a €
function and its data-flow graphbical slice. The zoom,
move, compose, hide, refresh and highlight are
graphical operations available by the CARE environment,
The zoom operation is used to enlarge or reduce the size of
the graphical display. The hide operation removes a
selection from the display, as well as all the relationships
associated with it. The compose operation allows the user
to abstract parts of the display in order to manage its
complexity. The move operation permits the user to
relocate graphical entities in different positions on the
display. The highlight operation enables the user to
prominently display parts of the display. Moreover, two
editing operations are available in CARE; the code and
delete operations which allow the user to modify the
contents of the source code and the database respectively.
The code operation enables the user 1o have direct access
io the code using a text editor (e.g. emacs, vi), whereas the
delete operation erases a selected entity from the database.
Additional operations allow the user lo save or foad
specific hierarchical or colonnade layouts. Finally, in order
to improve the readability of the layouts produced by
CARE modifications of the algorithms found in {3} and [6]
are used,

retums a 3

59

C. Transformation Tools

The transformation and slicing mechanisms available by
CARE are shown in figure 6. The textual representation of
the code can be transformed into either the hierarchical
representation of the control-flow or the colonnade
representation of the data-flow. In addition, colonnade

" graphis can be transformed into call-graphs and vice versa.
_Graphical or textual slices can also be created from these
representations. Control-flow slices can be derived from'the

colonnade and data-flow slices can be generated from the
cail-graph. For instance, in CARE, the user can point and
click on a specific function on the call-graph and get a pop-
up slice of the data-flow {i.e. global and local variables,
constants and parameters used and their types) for that
fanction. Similarly, a control-flow slice can be created for
a selected function in the colonnade. The control-flow slice
contains the call and called-by relationships of the
selected function.

Colonnade Graphs Conurol Flow Slices

B
=]
Source Code %? N - :
e —— \-k Y

E:W Code Slices

Transformations
e m—————

SticingDirection
P

.
Hicrarhical

WY

[
=
-
2,
*d
-

Data Flow Slices

Figure 6 : The transformation tools and slicing
mechanisms available by CARE

IV. An Experimental Study

In this section, an experimental study with the CARE
environment is described. In this study, we performed an
experiment in order to verify our hypothesis with respect
te improving the productivity and quality of changes made
during the maintenance of C programs. Moreover, results
from an empirical evaluation of the vser interface of CARE
are included in this section.

A. Experimental Framework

An experiment with forty computer science graduating
seniors was performed during this study. The graduates
were divided into groups A and B, each having 20 members
and they were asked to complete a maintenance task. The
experiment was performed in two phases as shown in
figure 7. During the first phase, both groups were given an

Flgure 5: A C: functlon and Its date-flow slice.

. Text a:_.u 3:2_2_ zoc ?::munmm qmn_d:a_am_am_ ::Em..u:f Ewm Smw

Mhzn HOD Athn« 1p~
h:n_vNJ

t

int RESULT; :
const int nezmqazq " 1;
char *HSG6;

1180 = (char) wawnoﬁucu“

strcpy(Hso, ' qzh- is the module w==o«»o=f: y;

{ printe (" 1e" .:mav. | :

| RESULT = (P1 ¢/ =- * P2 + CONSTANT;

| return ﬂzmmcrquﬂ

o

CLOSE

Data =E... u__nu for Enn:g MOoD ..d::mummm Hm%:a_ammnm_ :=_<m3_€ Gmn _mwu

s ey T

VARIABLES : TYPES . PARAMETERS FUNCTIONS

CONBTANTS

CONSTANT

6o

existing program which auiomates the process of
maintaining a database of appointments, notes and
reminders on a weekly calendar {program X). This program
was written using the C programming language and
utilized the X window manager and graphics routines in
order to display the days of the week on the screen, The
graduates were asked to modify the weekly display from

- seven days to six {i.e. Sunday was to be removed from the

display).

Phase 1

Source Code of Program X

GROUP A
(withaut CARE)]™% ~]

Source Code of Program X
CARE Environmen!

GROUP B
~ = (with CARE}
| \/ T
Y N\ y

GROUP A GROUP B
(with CARE) /™= ~ 7

~ = {(without CARE)
Source Code of Program Y
CARE Envirenment

Source Code of Program Y

Phase 11

Figure 7 : Experimental Framework

During the first phase, group A was given only the source
code of the program to be modified while group B was
given the source code plus the CARE environment. During
the second phase of the experiment, both groups were
given a stand-alone part of the source code of CARE itself
{program Y}. Then, they were asked to increase the scaling
{actor of the zoom operation by one unit. During the
second phase, group A was given the CARE environment
in addition to the source code of program Y whereas, group
B was given only the source code of program Y. There
were no comments included within any of these programs
and they both used Xwindow routines. Also, during the
experiment the graduates didn't know anything about the
internal structure of the programs to be modified. Both
programs X and Y were of similar size and complexity.
The results from the experimental study supported this
assumption. The performance metric for this experiment
was the time needed by the graduates to complete the
maintenance task. The independent variables in our
experiment were the grouping of the graduates (i.e. group
A and B), the two phases of the experiment (i.e. phase]
and I1) and finally, the availability of the CARE envi-
ronment {i.e. with or without CARE). in addition, during
the experiment we followed an empirical evaluation
technique known as thinking aloud method [7] in which
the graduates were asked to verbalize their thoughts while
working and their discussions were recorded. That method
gave us a direct understanding of their pattern of thinking

61

with respect to understanding the architecture {i.e. control
and data-flow) of the program. Moreover, this approach
helped us to identify essential misconceptions related to the
user interface as well as the users’ interpretation of the
praphical displays and operations available in CARE. A
separate questionnaire was also completed by the graduates
at the end of the maintenance task,

From this study, we have gathered qualitative and
guantitative information. The qualitative data contains

sesults from the.empirical evaluation of the user interface

and functiionality of the CARE environment. The
guantitative results reflect the measurements of the time
needed to perform the maintenance tasks. Next,
representative qualitative and quantitative results are dis-
cussed in separate sections. Finally, a summary of the
overall results of this study is presented in the following
section. '

B. Analysis of the Quantitaf%ve Resulis

In this section, the quantitative results from the experi-
ment are discussed. The overall time needed to perform the
maintenance task was measured during the experiment.
During the analysis of variances, we correlated the time
needed for the modifications (i.e response variable} versus
three independent variables namely the phase (I or II), the
availability of the CARE environment (with or without)
and the group (A or B). Two statistically significant
results were found during the analysis of variances. The
average time needed to complete the maintenance task was
found to be less when the CARE environment was
available than the average time needed when CARE was
not available to the users. In particular, the mean time
when CARE was used was found 101,87 minutes and the
mean time without CARE was 162.91 minutes. The
standard deviation was found to be 17.48 for both cases
(p value was less than 0.0175). The second statistically
significant result was found to be the difference between
groups A and B. The mean time of group A was found to
be 164.58 minutes and the mean for group B was 100.20
minutes. The standard deviation was found to be 16.57 for
both cases {p value was less than 0.0125). In other
words, a significant difference was found with respect to
the direction of the experiment. Namely, less average
time was needed when the tool was given during phase I
and then removed in phase Il rather than the opposite sce-
nario. When the users were piven the CARE environment
from the beginning it guided their thoughts with respect
1o program understanding and therefore helped them to lo-
cate the points to be modified in the program. In addition,
during the second phase {(after CARE was removed) they
were still able to find the points to be modified faster due
to the fact that they already had gained some experience
using CARE. Finally, there was no statistically signifi-
cant results found with respect to phases [and 1. Namely,
there was no difference of the performance found between
using programs X and Y for the maintenance task. This
supports our assumption that both programs were of sim-

ilar complexity. In addition, during the experiment the
number of statements modified (i.e. added, removed or
changed) in the source code were counted. The average
number of statements modified was 19.9 when CARE
was not available and 12.5 statements when CARE was
used by the graduates. It appears that CARE helped the
users make better quality changes during the maintenance

-C..Analysis.of the Qualitative Results.......

In this section, the results related to the user interface and
functionality of the CARE environment are discussed.
Figure 8 depicts ratings of the frequency of usage for each
operation available by the call-graph editor. The most

frequently used operations available by the call-graph editor -

were the code (96% of the students used it often) followed
by zoom (88%) and highlight (49%). The zoom opera-
tion allowed them to focus on a part of the call-graph and
therefore helped in locating the points to be medified. The
highlight feature was found to be useful in understanding
the data and control-flow of the program. The code option

~‘enabled the users to have diréct access to the body of any ™

function from the call-graph. The least frequently
operations were the compose , undo , refreshi and delete
operations, The compose option would be more useful
when the users have to work with larger and more complex
graphs. However, during the experiment, the call-graphs
were fairly small and therefore composing any function
was not a demanding task. The delete operation removes
information from the graph and directly affects the
database. Since the main objective of the CARE envi-
ronment is to facilitate program understanding by graphi-
cally displaying program dependencies, any permanent
deletion of the graphical information on the screen didn't
seem to be of a preat interest. Figure 9 shows how often
gach operation available by the colonnade editor was used
during the experiment. The most frequently used operations
were code and zoom and the least used ones were the
delete, undo and refresh operations. For both the
colennade and the call-graph editors, the save and foad
operations were not used very frequently. During the ex-
periment, it appears that there was no need to save a par-
ticular call-graph or colonnade. Again, one possible reason
for that can be the simplicity and small size of the graphs.
In addition, the ratings of the operations available by the
slice editors (control-flow and data-flow) agree with those
of the call-graph and colonnade editors. Despite the fact
that graphical or textual slices were new concepts to the
graduates, they were found easy to understand and use by
the majority of them. An important cbservation from the
overall ratings of the user interface of CARE is that almost
all (98%) of the users indicated that CARE was not
difficult to learn and the majority (82%) spent little time
learning it. Moreover, all users found the main window and
the hierarchical call-graph easy to understand and use.
Despite the fact that the colonnade was a novel concept to
the users, 82% found it easy to understand and 65% easy to

62

use, In addition, the majority of the users found the
graphical shapes used to represent information appropriate
(95%) and the fonts easy to read (80%). Finally, many
users (82%) suggested that colors would be a valuable
addition to the user interface of CARE.

Rerely Ocraslonally Ofien
1 U | .

z
¥
4 o
7 q e
¥ b
/ i
7 i
4 &
’ : 2
2 || |
Uniby Delete Refresh Zoom Load Save
Figure 8 : Frequency of usage for each operation of the
' call-graph editor.

" Rarely”

Occasionally”
%}

' one
80% n
0%

Comipose Hide Hillie Move Code Lo Delete Refresh Zoom Load Save

Figure 9 : Frequency of usage for each operation of the
colonnade editor.

D. Summary of the Results

In summary, it was found that the users were more pro-
ductive (by 61.2%) and they produced better quality
changes {by 14.7%} during the maintenance tasks when
using the CARE environment. In addition, it was observed
that the graduates were able to understand the control-flow
(i.e. call-graph) of the program using the hierarchical
display almost with no problem. Also, using the
colennade editor, they could trace the data-flow (i.e. pa-
rameter-passing, variables, types ete) of the given program.
Most ratings (82%) of the user interface indicated that the
graduates needed little time to become familiar with CARE
as a software engineering tool and the majority (98%)
acknowledged the simplicity of its user interface.
Additionally, the complexity of the colonnade and the
hierarchical displays were conveniently managed using the
graphical operations and abstraction mechanisms provided

by CARE (e.g. zoom, compose, hide etc). In particular,
the zoom, code and highlight operations were frequently
used. The move operation allowed the graduates to see the
relationships among different entities (e.g. type of
parameters and functions).

'V Lessons Learned

“There are several important lessons we learned during this

study which helped us improve the functionality and user
interface of the CARE environment. In addition, these
lessons assisted us in making some points with respect to
program understanding issues,

As mentioned in earlier sections, the need to access the
code from the CARE environment was compelling. This is
the justification of our code operation. On the contrary,
the low ratings of the delete operation with respect o its
usefulness as well as being the least frequently used
eperation lead us to the decision to remove this operation
and disallow any permanent modifications to the database
of program dependencies. This observation helped to nar-
row down the functionality of our too! to be an environ-
ment for program understanding. In addition, the need of an
open architecture for CARE was indicaied namely the
desire to use a favorite editor or a tool that the users were
familiar with was strongly stated. The slicing mechanisms
and browsing tools in the database were justified by the
users’ responses. The most frequent comments about the
CARE environment were related to the simplicity of its
user interface. Moreover, the graduates had positive
comments about the colonnade editor and found it a
promising way to represent program dependencies. They
also acknowledged the usefulness of the call-graph editor.
Although graduates preferred to see the colonnade graphical
representation to be separate from the call-graph, they also
appreciated the combination of the two models as a
promising vehicle towards program understanding. 1t was
also observed that all graduates (100%) believed that the
code visualization tools available by CARE enabled them
to understand the existing programs easier., During the
experiment, the maintenance tasks given to the graduates
were considered moderately difficult (70%) or even easy
{31044} 1o do when CARE was available.

A unanimous desire for software engineering iools for
program understanding was distinct during and after the
experiment, The tendency to understand the whole program
before making any changes was rare (almost nonexistent).
An incremental, as-needed approach was taken during the
maintenance task almost in all cases. In addition, using the
CARE environment the quality of changes performed on
existing C programs appeared to be improving and the
time needed to accomplish such changes was reduced.
Finally, it was observed that when the graduates were
given the CARE environment which facilitated program
vnderstanding, they were guided through the process of
understanding the control-flow and data-flow of the existing
proprams and thus improved their performance.

63

VI. History of CARE

CARE has been an on going research project at the
computer science department of Tennessee Technological
University since summer 1990 and includes five research
students and a faculty member. It is partially supported by

‘the Faculty Research grants #9111 and #9206 from Ten-
_ nessee Technological University. CARE runs on Vax-

Stations with the Ultrix operating system and if has been
implemented in ansi C. It utilizes the X window manager
and graphics utilities for displaying program dependencies.
The code analyzer has been implemented using fex , a lexi-
cal analyzer available in the Ultrix environment. In
December 1992, a prototype of the CARE environment
was demonstrated at the 5th ACM $IGSOFT Symposium
on Software Development Environments in Virginia, USA

[4].

References
{1} Lerner, M., A Standard Approach to the Process of Re-
engineering Long:lived Systems CASE trends, Software
Productivity Group, Inc., July/August 1991,
[2] Linos, P., Graphical Support for Visual Environmerls,
IAMM, April 23-26, 1990, Detroit, M1, pp. 642-647.
[3] Linos, P., Aubet, P., Dumas, L., Understanding the
Structure of C Programs, Research Report, Computer
Science Depastment, Tennessee Technological University,
December, 1991,
{4} Linos, P., Helleboid, Y., Lejeune P., Tulula, P., A
Software Tool for Understanding and Re-engineering C
Programs, 5th ACM SIGSOFT Symposium on Software
Development Environments, Tool Demonstration, Vir-
ginia, Dec. 1592,
[5] Linos, P., Rajlich, V., Korel, B., Layout Heuristics for
Graphical Representations of Frograms, 1991 1EEE
Conference on.Systems, Mans, and Cybernetics, Univer-
sity of Virginia, Charlottesville, Virginia, October 13416,
1991, pp. 1127-1132.
[6] Messinger, E., Rowe, L., Henry, R., A Divide-and-
Conquer Algorithm for the Automatic Layout of Large
Directed Graphs, YEEE Transactions on SMC, Vol SMC-
21, No. 1, Jan/Feb 1991.
[71 Nielsen 1., The Usability Engineering Life-Cycle,
IEEE Computer, March 1992, pp. 12-22
8] Oman, P., Mainfenance Tools, IEEE Software, May
1990, pp. 59-65.
[9] Rajlich, V., Damaskinos, N., Linos, P., Khershid, W,
VIFOR : A Tool for Software Maintenance, Software-
Practice and Experience, January 1990, pp. 67-77.
[10] Ramamoorthy V., Chen, F., Nishimoto M., The C
Information Abstraction System, IEEE Trans on Software
Engineering, vol. 16{3), March 1990, pp. 325-334.
[11] Robson, D., Bennett, K., Cornelius, B., Murno, M,
Approaches to Program Comprehension, J. Systems
Software, 1991, vol. 14, pp. 79-84.
{12] Wilde, N., Understanding Program Dependencies,
Software Engineering Institute, CM-26, August 1990.

Chair: Norman Wilde

Use of a Program Understanding Taxonomy
at Hewlett-Packard

Alan Padula
- padula@hpeence.hp.com

"~ Hewlet-Packard Company, Corporate Engineering
Palo Alto, Ca. 94303

Abstract

This report summarizes the use of a Program
Understanding taxenomy that was developed at Hewlett-
Packard. The primary use of the taxonomy has been in the
creation of o company fnternal document called the
Software Tools Report. The Software Tools Report is a

selectipn. und - evaluation guide - to- suftware - tools that -

addresses key company software engineering ureas which
include Program Understanding. A description of the
Report, how it was created, and how it is used is the subject
of this paper.

1 Introduction

Hewlet-Packard (HPY Engineers spend an estimated
$200 miltlion a year just reading code! Although that is an

unotficial, broad estimate, it does capture the magnitude of

investment HP makes in understanding (not changing) the
software 1must maintain, Industry data substantiates that
halt of the overall effort of making changes is spent just
understinding the code {1}, When HP Divisions are
presented with this data, most engineers and manngers nod
in acknowledgment while the few skeptics are generally
questioning whether 50% is w0 low!

As with the rest of industry, Corrective, Perfective, and
Adaptive Maintenance are all large pasts of the company's
software budget [2]. Fewer and lewer sofiware systems are
developed from scratch, Source code is constantly picked
up and leveraged from other pre-existing systems to
quickly make new competitive products. Source code is
hought from third parties for modification. Responsibility
for maintaining software systems is transferred from one
Division o another. Customers report sporadic problems
with software that has been around for years and years
requiring bug fixes. New hardware platforms are
constantly developed that existing software must be ported
to. In all of these cases, it is not unusual for the original
programmers to be long gone, for the code o bhe
unstruciured due to a long history of fixes and

0-8186-4042-1/93 $03.00 © 1593 IBEE

enhancements, for the code not o mai;lz tiau dmwu or

~documentation, and so on.

- engineering processes and technologies to the Company’s

65

For all of these reasons and more, Program
Understanding at HP has been identified as a key internal
software engineering area to focus on, A group called the
Software Initiative (SWI) was formed at Corporate
Engincering (CE) to help develop and deploy best software

Divisions. Program Understanding technology is a part of
that effort.

2 Wh} a Program Uﬂderstandmg
taxonomy?

The need for a good Program Understanding definition
and mxonomy guickly became apparent, 1t was needed for
performing simple phone consulting, establishing long
term consuliing, conducting needs analysis, and creating
most othier information deliverables resarding Program
Understanding including:

» The Sofiware Tools Report - 2 selection & wols
evaluation guide (see below),

+ Tool Information Packets - bundled vendor &
internal datz on specific wols,

= Tutorials - cducational materials directed at difforent
audience levels,

» Usage Guidelines - 1 “how 10" process suide for
Progrum Understanding tasks,

3 Program Understanding taxonomy
development

The taxonomy was developed and cusiomized to be an
approprigte fit for HP's software development
eavirpnment. This last phrase is emphasized since the
frame-of-reference was CE's customer (i.e, HP's software
Divisions) and their need for the taxonomy 1o a large extent
dictated what was included. The purpose was not to
produce the most comprehensive list and description of all

Program Understanding functionality ever made. A general
research project was not the poing; practical usabiiity of the
feature set list inside the HP industrinl environment to help
tmprove productivity and quaiity was! Whereas there are
some features lsted i the tonomy that are not available
i the HP environment, the focus is on whal is

Ccammercially avalable instead OF what Would bé ™ nicesto-

nave”, Purchasing tools is gencrally preferable as it is
tools that may have a high maintenance cost associated
with them. More suention was padd 0 Program
Usnderstanding functionality available for C, FORTRAN,
aid PASCAL-based software than to special Object-
Crienfed language ooes due 1 the corresponding language
mix in HP's maintenance backlog. With the emplhasis being
on system’s software, e regard was given 1o
functionality that helps in understanding” Management
Information Systems or daabase type applications.

The taxonomy was developed from many sources
including books, research articles, monthly magazine
review & ratings, conference & workshop proceedings,
vendor brochures, and meetings with vendors and
rescarchers 13-5]. Interviews were conducted with HP
engineers o find out what commercial and internal wols
they used on a daily basis, what enhancements they wanted
{0 see added to them, and what their 1ist of information
needs were. As the purpose of this experience report is w
describe how the taxonomy and the subseguent Software
Tools Report is being used, the lfengthy text of the
txconomy has not been included. The detailed definition of
the tixonomy is tie topic of another paper. Inquiries
regarding the taxonomy may be addressed w the author.

Of alf the debiverahles that the txonomy influenced, by
tar, the most imporiant is the Software Tools Report...

4 Software Tools Report

The Software Tools Report is an internal Hewlett-
Packard eviuation and sclection guide o soltware
engineering tools. The Report provides a list and
description of the software wols that address key inernal
MP software engineering areas such as Progrun
Understuhing, Soltware Configuration Management,

Process Definition, et cetera, Tt does this 1n part by mapping

the features that aid in different software cugineering areas
to selected soltware tools. Tt provides both an objective,
low-ievel analysis of features as well as a more subjective
rating of how well {from Better o Worse) those features are
actually provided.

cheaper and lower sk than developing custom in-house

5 Evaluation of tools for the Software Tools
Report

Evaluation of the tols was initlally done through
analysis of commercial brochures and documentation. This
created a first pass. This was followed by hands-on-waork,

TWwhieh sometimes revedled thatiactual operation of a tool

was a lide different from what was actually advertised.

“This hands-on-work provided “direel VErRAion of the

67

functionality and at the same time, gave a feel for the
usability, rebiability, and other atiributes of the product.

Direct Division feedback was heartily solicited and
required from engineers who used the product or who ware
in the process of evaluating it themselves, This is an
absolutely essendal ingredient in order o maximize
credibility of the Software Tools Report with the HP
engineering community. A success story or simple
endorsemertt by an engineering cobort is magic when
introducing change into an organization, (Our experience is
that introducing change into an organization is by the far
the most difficult part of aiding Divistons i the adoption of
new software engineering tools and processes.)

Every effort was made to validate with the vendors that
the Software Tools Report accurately depicted their wol.
This psually amounied w sitting down with them and doing
a line-hy-line feature review ol the existing tixonomy
refative (o their ool If their product provided functionality
that they felt was Program Understanding techiology, we
considered ¥ for inclusion in the Report. Again, the
sconomy of Program Understanding is not intended 10 he
exhaustive, just practical. Vendors are left responsible tor
notifying HP when new features are added to their tool
which require an update o the Report, This works well as
the vendors huve a vested interest in keeping their product
up o date and saves CE the trouble of having 1o acuvely
monitor the vendors for new feaiures.

When 2 change s made to the Report, an clecuonic
aotification is sent (o HP subscribers advising them. They
then may request the latest update of the Report. One of
CE's primary goals is to produce a deliverable that does not
become dated “Shelfware”]

6 Software Tools Report layout

Figare | shows the basic outline of the Software Tools
Report. It combines several pages of the Software Tools
Report onto one o help give the reader a better overview of
how one navigates throngh the Report. (For legal reasons,
the names of the actual tols couid not be used in this
paper.}

There are four fevels {0-3) in the Sofeware Touls Repornt
used to describe tools:

rogram Categorie B

‘Software Tools Heorf
.. Level Indicator

Ctgory Rating Sybol

4
Cateioried . " " _
SWI o T T e . ﬁﬁuw&_?’wb!{epen_
n-,._;.' } i g 3
;'ﬁ,s,mmp,}mg o ¥ / i ;n FER 3 J— g
I EREREAR N 3 5 2
Eliigisiss g g H Tools
s E £ .)
g EHELE -3 B % g £ Hev]ewed
anmip . < 2 a
N g T -
ores = e
e S =
- PR A
Tool Frre o L i
e T A e i e g HP o
SWI » E
e - ,-h,ﬁwg,ﬂ,,xs" : E Software
Tools. -
SW} »M " 3 Soﬁware Maittésiansa | - Repart
; S i ijmlfndnnlméng i
4 Volhdis o L0 L F ol Plewen Undstandng
: o St intaien . 13 impact Anatysis i
[Snt‘fware M:Lnienan:e HEFHEIEy
s Progrinlindersteriding %% '%' '%' :, i!‘hiy..rguﬁdwsﬂc!hﬂn
o @ L e @ v RS2l R e s
% ;
m lmpae;mmma;

Description of the
Program Categories
M

I

Unshaded lines are 5
Sub-Entries of prior
Shaded Category

s .

e

3 ,é{nmy Crivs. fatornnoa nden
lved Setir Lorarasn
_ﬁ's!i Lagal Sdand Tomragd -

s Raased 2 e

Pt a2 T £ Calis Yeithin éno

. ‘Dot Erpite ity Pelgianshiz
Lraphi and leformgtian :

Figure 1.
6.1 Level documentation, and the price. Tt also identifies 1ools that
may be used across different software engineering areas.
Level O {not shown in Figure 1) is used for identifying Tools that provide for Program Understanding may cut
basic product environment information about the tools. across other software engineering technologies such as
This includes the reguired software environment, hardware Software Configuration Management and Reuse.

platform and configuration, the user interface, the available

68

6.2 Level]

Level I provides the highest view of the functionality of
a ool relative 1o the software engingering area that it is
being cvaluated on. For HP's purposes, Program
Understanding is broken down into seven areas,

" impact Analysis
.. Dtatic Analysis
“Reformatting
Dynamic Analysis
Test Coverage
Source Comparalors
Support Resources

Each tool is rated from Better to Worse in those
citegorics (sec Rating below.) HP engineers needing help
in any cne of those major calegonies quickly see which
tocls are the top candidates to consider. They then drop
down to the second and third levels to do a more detailed
analysis. The use of the Report is intended 10 be used only
as g guide. The needs of individual engineering projects are
much oo variable to come to any singular recommendation
aboul which ool is actually “best” for everyone,

6.3 Level 2

Level 2 provides the next tier of functionality detail, It
o i3 rated from Betler to Worse. An cxamnple is Level |
Impact Analysis which expands at Level 2 as:

Impact Analysis
Entity Cross-Referenca index
Gicbal Scope Coverage
Local Scope Coverage
Reterence Information
Function Calls Te/Calls Within Report

Note that the definition of these terms 15 provided in the
Software Tools Report close to where the terms are
introduced (see Figure 1.}

6.4 level3

Level 3 contains the most detall and is a further
expansion of Level 2. For example, under Impact
Analysis & Entity Cross-Reference Index, Local
Scope Coverage expands (o

Impact Analysis
Entity Cross-Reference Index
Global Scope Coverage
Local Scope Coverage
Standard
List Local Vars Passed to Other Functions
Argument Table

At this fevel, there is Bo rating from Bstter to Worse
which is subject to interpretation. The objective is to
provide a Yes or No answer i.e. the tool either provides the
functionality or it does not. A Tot of use is made of Level 3
by HP Divisions who are independently doing their own
needs assessment and iool evaluation. Only they know

~ what is wuly important {0 them and this gives them the

63

_Objective data to fairly rate the tools for their own

environment. In conjunction with CE consulling, it is used
primarily as a reference document. (Note: The initial
development for any tool evaluation to be included in the
Software Tools Report begins with an analysis that resulis
in Level 3.)

7 Rating

Evaluation criteria was developed o enable assignment
of a rating {rom Bstter 1o Worse for Levels 1 and 2.
Basically, the Better 10 Worse symbols cach map into a
percemtage range that has the population of the (ools
evaluated falling into the shape of a modified bell curve.
That is, the majority of the wols do not fall into the Betisr
or Worse extremes, but rather in the middle. Each ool
feature 15 assigned (weighted) a value depending on how
importaat it is thought 10 be to that particular Program
Undersianding category. High (o low point ranges are then
calculated for each symbol in each feature category based
on the maximum number of total possible weighted points
and the percentage ranges that the symbols represent. Point

ralues are then caleulated for the individual tols in each
feature category based on their feature set. From this, a
symboi indicating the tool's rating is assigned.

The fact that the reviewers may {and probably do) feel
certain features are more imporiant in their environment 1§
perfectly all right, expected, and desired. The “most
important features with the laghest muliiptier factors are
printed in felics so the reviewer clearty knows what is
thought o be key w thut category, As they are provided
with all of the objective data and the evaluation criterin and
algorithm, they can calculite thelr own ratings. Meanwhile,
reviewers who just want a first blush cing, can gel an
educated guess of what might he most useful. The Software
Tools Report serves only as a guide and is absolutely NOT
intended to be a final word for everybody,

& Legend

A variety of symbols are used in the document. Some of
the more interesting ones can he seen in Figure 2,

It may seem logical o think that either a tool has 4
feature or it does not, but unfortnately even technical
evaduations are not always that simple. During our

eviluations, we found that we had different assessments as
to whether a wol had a feature or not. Oftentimes, the same
functionakity can be derived {rom a wol with one or more
extra user steps. In the cases where the data is in a suitable
form for sccessibility and the functiopality to easily
manipulate the data into useful information s provided, the
custinization symbol.(see Figure 2) is used. Whenever a
feature has one of these instead of a check mark, an

wagsocimed--comment-+1s-usually--attached = with-{urther

explimation. The Divisions and vendors validated that this
is a fair way 1o go, It properly represents vendors whn have
vnze-step push button access w the information (they get a
check marky and gives appropriate credit (o the vendors
whu basically have the functionaliyy through a couple of
exin user Siop, b Sttt

I;i';,? indicatas the antry Is part of the minimal crileria.
— Enlry / function does not apply or is missing from
J Levsl 3 indicalor: entry / funclion is available as

part of the standard oif-the-shell offering,

Level 3 indicator: entry / function is availabls only
#3 after customization performed by the usar or
vendor,

- Lavel 3 indicatorn entry / function will be availabls
as part of the slandard product al the nexi release,

Level 1 and Leval 2 Category rating symbuols from
Batter to Worse (lop to bottom) with the ‘o” symbal
indicating the minimal crilera has baen mal.

Figure 2.

Anuther hurdle overcome was related o “futures”,
Maay times the vendor would say they have the feature in
their next release. [t seemed uniair to them 1o ignore their
input but at the same time, we did not want to teli the
Divisions that the functionality was there when it was not,
We finally settled on a symbol that indicates it is planned
to come out next release, Again, this is fair 1o the vendor
andd betier for vur Divisions as they can then plan their

<ot Hewlett=Packard:-One- of - the-firsi-tasks-undertaken o+

70

purchase based on whatever the latest information is.
(Oftentimes, the purchase of a tool is not ummediale and
gecurs 4 few months iater anyway.)

9 Conclasion

Program - Understanding 15 recognized. to be a key
techuoiogy in the internal softsare engingering processes

promote Program Understanding in the company was to
produce o taxonoiny of Program Understanding features.
Thiz is psed for o varlety of purposes ineluding simple
phone consulting, long term consulting, needs analysis,
wiorial development, Tool Information Packets, Usage

other information deliverables regarding Program
Understanding. The most imporant of these is the
Software Tools Report. It provides feature set comparison
of a variety of progrm understanding toois. It greatly aids
in the cvalumion, selection, spresding and adoplion of
Program Understanding téchnology in the compaiy.

References
£17 T. Corbi, IBM Systems Journal, Vol. 28, No, 2, p 296,
{1989)

E. Swanson & B. Lientz, Soflwure Muintenonce
Manupement, Addison-Wesley Publishing Co.,
Reading, Ma. {1980)

C. Sitenauer, D. Dyer, G, Daich, Soffwure Be-
enpineering Report, Sofiware Technical Suppon
Center, Hill AFR, Llah (199 1)

H. Holbrook & S. Thebaut, & Survey of Software
Maintenanee Tools that Enhance Program
Understanding, Software Engincering Research
Cenier, Computer & Information Systems
Department, University of Floruda, Ganesville

N. Zvegistzov {Ed), Software Muintenunce News,
Vol 9, #8, p 23-27, Los Altos, Ca{Aug 1990

151

Acknowledgments

Special thanks to Ron Becker for the actual construction
and a very significant eontribution to the format that mikes
up the Software Tools Report as well as for the creation of
the figures used in this report,

Recovering User Interface Specifications for
Porting Transaction Processing Applications

EDS Research, Auvstin Laboratory

e T

Austin, Texas 78701

lvs@austin.eds.com

Abstract

The Reverse Engineering group ai EDS Research huas
developed software tools to mechanically assist in
reengineering rransaction processing applications, We
are applying the software tools 1o assist i converting a
very large minicomputer application written in COBOL
1o run under CICS on an IBM mainframe. The two
platforms provide very different user interfaces and
computational environments. The user interacts with the
sminicomputer one field ar a time, but interacts with CICS
a full screen at a time. This and other major differences
demand that any successful mechanical conversion
straregy employ sophisticated feature extraction and
restructuring techniques. We describe the problen of
recovering the user inferface specification and using the
recovered specification fo create the appropriate user
interface in the target environmert, Technigues such as
data flow analysis and other formal analysis 1echnigues
appear to be too weak 10 guide the conversion, and that
a priori programming knowledge must be encoded and
appiied 1o obtain a successful conversion.

1. Introduction

We first describe the problem of converting large
minicomputer application to run under CICS on an IBM
mainframe. We discuss our approaches o translation
and to the problem of creating new screens for the new
environment.

We next describe a specific wask within the larger
project, the problem of recognizing and restructuring
block of code that read in and validate values entered by
the vser. Our initial approach to this recoguition sk
used a hierarchical collection of recognition rules. The
recognition task also tried to find the largest structure in
the code that {it a certain pattern using a fixed-point
computation. This approach worked on some programs,
but ultimately failed because of the complexity and
variability of the COBOL code. Instead of extending this
approach, we instead encoded a priori knowledge of
programming for transaction processing applications as
heuristic rules. This later approach has proved very

0-8186-4042-1/93 $03.00 @ 1993 IEEE

lig@ austin.eds.com

71

amb@austin.eds.com

successful in producing usable transiations for a wide
variety of programs.

2. Background

EDS Reverse Engineering Group

The Reverse Engincering group at EDS Rescarch is
developing tools with the goal of extracting "high level”
descriptions of existing transaction processing
appliciations from the source code. Examples of high
level descriptions include data models, data integrity
constraints, user interface specifications, and standard
data processing paradigms such as "update a file” or
“sum a column”. These high level descriptions are used
in a wvariety of tasks, inciuding re-engineering
applications for new computing environments. :

‘Tools and Representations

A COBOL program is first translated to a set of Prolog
clauses. The Prolog representation provides an abstract
syntax tree which can be manipulated for program
restructuring and also provides direct access to every
COBOL statement using Prolog's indexing mechanisms.
Other Prolog programs compute a control flow graph,
extensive cross referencing and data structure
information, and data flow information. Prolog rules for
extracting bigh level descriptions, or plans [APU,
Hartman], refer to the abstract syntax tree, the control
paths, and the data flow information, We have done
preliminary work on a simple symbolic evaluator and a
weakest precondition generator,

Project Description

EDS has a contract with a federal agency 1o
consolidate many applications onto an IBM mainframe.
The consolidation will save a large amount of money and
provide improved service to the applications’ users.
Several large applications comprising over two million
lines of COBOL must be moved to the mainframe under
CICS. The conlract requires that ;

» the converted code be functionally equivalent, but

+ the converted code not emulate functionality not
inherently available in the target environment, and

» the user interface shall not have additional complexity.

Within these requirements the conversion process should
minimize conversion costs and maximize the efficiency
of the converted code. For best performance it is
imporiant to use "pseudo-conversational” programming
on the mainframe. The goal of the project described here
is o provide automated tools to help the engineers who
are doing the conversion, In the following sections we
describe the main differences between the source and
target environments, the difficulties these differences
impose on the conversion, and the approaches we have
used, The transiator as it exists today automates a greas
deal of the conversion process.

3. Source and Target Environments

~Minicomputer User Interface

A minicompuler application progrum interacts with the
user one field at a time. The program can display a
prompt string at any location on the sereen and can
display multiple strings at multiple focations with a
single operation, A typical program will display a

formatied screen, such as the one depicited in Figure 1,

with a single display operation. The definition of the
screen format includes felds in which the user can type
values, o o

The program can then place the cursor at any {icld on
the screen and accept values typed hy the user, The user
can type in a value followed by a RETURN, or can
simply type retum. Instead of typing a value in a field or
pressing RETURN, the user can press the ESCAPE key,
Most minicomputer programs Jefine the ESCAPE key
allow the user o retarn 10 a previews field,

The program can respond © cach value that the user
types. The program could, for cxample, use a value that
user typed in to look up a record and displny the contents
of the record before the user types any other values.
Each value that the user types in can be checked for
validity immediately, and the user can be Torced 10 type o
valid value before going on 1o any other fields,

Mainframe User Interface

On the mainframe uwsing CICS, in contrast, the
program inieracts with the user a full screen at a tme.
The program can display & fonmatied screen that comains
character strings, variable data, and control characiers
that define fields in which the user can type values, Such
a formatied screen is called a map., The operation of
displaying a map is called a send. The operation of
reading the dala typed by the user is called a recedve.

When the program sends a map, the user sees the
formatied screen. The user then types in all the values in
all the fields. The user can use the TAB key (o move the
cursor {rom one field to another. When the user is
salisfied with all the values on the screen, the user then
transmits the entire screen contents to the progeam. The
program receives the map, then checks the values for
validity. The program can report errors o the user in a

72

number of ways, but a common method is to highlight all
fields that are in error and display a message describing
the first error.

Minicomputer Coniro! Structure

The minicomputer program begins exccution and
continues execution until final program termination.
Conceptually the program is always executing, although
in reality it may be interrupted and swapped out while
waiting for input. During an interruption for user input
the variables retain their values, Figure 2 shows a
fragmeni of minicomputer COBOL code that accepts
user input. The Appendix has a brief explanation of the
semnantics of the minicomputer COBOL verbs.

14

DOCUMENT MAINTENANCE

FODZA

TYPE:

[

-

Figure 1 Formatted screen
Mainframe Control Structure

Mainframe programs are written in what is called
pseudp-conversational style. A pseudo-conversational
progeun exits completely whenever it interacts with the
user. Pseudo-conversational programming is the
reconunended style Tor mainframe transaclion processing
applications because it allows the most efficient use of
the mainframe and therefore the largest number of
simulianeous users. When a pseudo-conversational
program stops execution io accepl user input, the values
of all program variabies are lost. When the user
transimiits a screen full of data, the pseudo-conversational
program begins execution with initial values for all
variables. The program can store a block of values
before it stops execution and can recover that block of
values when i stants up execuiion again, Figore 3 shows
in pseudo-code the usual structure of a pseudo-
conversatonal program.

Restructuring

‘The differences in user interface and conurol structure of
the 1two types of programs preclude any simple syntactic
or local translation of the COBOL code. Insiead,
automated tools must recognize the funciion of large
picces of the minicomputer program, (ranslate the
recognized pieces, and place the translated pieces in the
proper place in the new program. In some cases a

1 040-RECID.
2 ACCEPT SC-RECID ON ESCAPE
3 GO TO 130-FINISH.
4 (050-READ-FILE.
5 READ PCS-REC INVALID KEY
6 GO TO 110-RECORD-CHECK.
7 DISPLAY SCREEN~DATA.
.8 ... MOVE "C" TO RECORD-FLAG.
9 060-GET-SSN.
10 DISPLAY SCoSSN. o
11 ACCEPT SC-SSN ON ESCAPE
12 GO TO 020-CLEAR-SCREEN.
13 061-GET-NAME.
14 DISPLAY SC-NAME.
13 ACCEPT SC-NAME ON ESCAPE
16 GO TO 060-GET-SSH.
17 062-GET-REGION.
18 DISPLAY &C-REGION.
19 ACCEPT SC-REGION ON ESCADPE
20 GO TO 061-GET-HAME.
21 063-GET-COST-CTR.
22 DISPLAY SC-COST-CTR.
23 ACCEPT SC-COST-CTR ON ESCAPE
24 GO TO 062~GET-REGION.
25 064-GET-DOC.
26 DISPLAY SC-DOC.
27 ACCEPT SC-DOC ON ESCAPE
28 GO TO 063-GET-COST-CTR.
25 IF NOT (PC-DOC = 12 OR 14)
30 MOVE "INVALID DOC TYPE® TC
11 ERR-MSG
32 DISPLAY SC-ERR-MSG
33 . GO TO 064-GET-DOC.

Figure 2 Fragment of minicomputer COBOL program

1 IF FIRST-TIME

2 PERFORM INITIALIZATION

3 ELSE

4 RECEIVE SCREEN FROM USER

5 RESTORE SAVED VARIABLES

& SWITCH (SAVED-STATE)

7 CABE 1:

8 PERFORM CASE-]1-PROCESSING
G MOVE 2 TOC SAVED-STATE

16¢ GO TO SEND-SCREEN

11 CASE n:
12 PERFORM CASE-n~-PROCESSING
i3 MOVE m TO SAVED-STATE
14 GO TO SEND-SCREEN

15 END-SWITCH

15 END-IF.

15 SEND-~SCREEN,

16 SAVE SELECTED VARIABLES
17 SEND SCREEN TO USER

18 GOBACK.

Figure 3 Pseudo-code generic mainframe program

73

recognized piece of the minicomputer program must be
split into separaie pieces and this requires a control
restructuring of the pieces.

4. Creating New Screens

The minicomputer program can display any string at
any location on the screen, and can determine at run time

“whichstrings 'm"'diaplay;' asin-Figired:-In-this-example

the string duplayu} in line 5 overlaps the two strings

~“rdisplayed-in-lines 8 and 10,50 thé“mainframe program -+«

would require two separate maps or clse the original
fields must be rearranged to form one map

Our conversion tools must determine what maps are
needed in the mainframe version of the program, To do
this, the wols must analyze the control paths that display
prompts, determine which prompts and input fields
physically overlap, and deterimine how many unique
mips can actually be generated by the program. Each
user input block uses one map, but a single map may be
used by more than one user input block.

Analyzing control paths through a typical program
with several thovsand statements is combinatorially
explosive. We do the analysis in several stages, First we
analyze all COBOL DISPLAY statement in the program
and determine which characters on the screen they affect.
Then we analyze all pairs of DISPLAY (o determine
whether the pair conflicts, that is, writes the same
characters on the screen. If two DISPLAY statements do
conflict, we attempt (o resolve the conflict. We end up
with a list of conflicting DISPLAYSs that is used in
finding user input blocks described in section 3.

For example, in the example in Figure 4 the
DISPLAYs on lines 5 and 8 could be resolved because
both are displaying constant strings. The area on the
screen that is used by both DISPLAYs can be made a
variable and the appropriate constant strings can be
moved (o the variable before the map is presented to the
user, Some conflicts cannot be resolved. These are
typically conflicts where a DISPLAY writes a constant
string or variable data to an area that is also used as an
input field,

1 DISFLAY "NAME: * AT LINE 3 COL 2.
Z DISPLAY "SSN: " AT LINE 4 COL 2.
3 DISPLAY “ADDR: * AT LINE 5 COL 2.
4 IF COUNTRY = "USA"

5 DISPLAY "ST: Zip: "

3 AT LIME & COL 2

7 ELSE

8 DISPLAY “PROVINCE:®

g AT LINE €& COL 2

10 DISPLAY "POSTAL CODE: *

11 AT LINE & COL 18

12 END-IF,

Figure 4 Fragment of minicomputer COBOL program

5, General Translation Rules

That part of the conversion task that does not deal with
user input is quite large in its own right, To date, we
have implemented about 150 restructuring rules which
currently perform about 953% of the wanslation work.
Software engineers then examing the result of the
translation, test the new program, and make any changes
necessary. The rules typically look for a particular type
of COBOL statement or a group of related statements,
and substifute a new set of statements, The statements
being replaced may be nested within other statements, 30
the replacement statements must merged into the abstract
syniax tree al the correct place, Each rule has g unique
H) ;md p{,rfﬁrmﬁ; a speci ’%c task. En oréu 10 pmvide an
Lmnslauon the change is marked- hy the ID of LhL rulc.
applied, the original code that are supposed o be deleted
are marked as comments. Any new staicments inserted
are marked with special labels

The software engineers pmv;u feedback in terms ;:af
how the translation may be improved so thal we can add

- or revise the translation rules.. :

The general translation rules have pmvu w ht, very
helplut to the software engineers and have significantly
reduced the manund effort required {or conversion.

6. Converting the User Interface

Dielinition

Identifying blocks of staiements in the minicomputer
program that interact with the user is an important
recognition task, For efficiency, the mzzini"mmf_ PIOZIAm
should bave the minimum aumber of sends and regeives
of screens. We need 1o 1dentify the lurgest block of user
interactions in the minicomputer program that can be
combined into a single send and receive of a2 map in the
mamframe program. We call such a block of code a user
input Block or wib

We defing a user inpa Mlock as a block of code such
that
* The block contains a sequence of ACCEPTS,
= The block may contain code 1o check validity of values

typed by the user, or edits.

» The block may contain DISPLAY s of values of fields
and messages,

« In the absence of input errors and ESCAPE keys
control flows {rom one ACCEPT in the bhlock to
another ACCEPT in the block.

o if the user presses the ESCAPE key then controd goos
1o an ACCEPT in the block.

» I the user types invalid values then contral goes 1o an
ACCEPT in the block,

« There is a control paih from every ACCEPT in the
block 1o every other ACCEPT in the block.

A user input block defined this way corresponds
roughly to a single mainframe receive. On the

74

“added to the uib is guite complex.

minicomputer within the user input bieck the user can
type in values for fields, and can move to any other field
using some combinaton of ESCAPE, typing values, and
RETURN. On the mainframe within a map the user can
type in values for fields, and can move to any other field
using some combination of TAB and typing values.

Recognizing User Interface Blocks

Recognition of uib’s is done by 'growing' the uib from
an initial ACCEPT. The recognition algorithm i a fixed
point computation - slatements are added to the uib if
they have a certain relation to statements already in the
block, The added statements may in furn cause other
statements (o0 be added, and so on until no more
siatement can be added.

The relation that must be satisTied for a slalement o be

To be added 10 tie
uib, a statement must satislfy constraints on coatrol flow,
data flow, and screen conflicts, The control constrainis
are those in the definidon of a uib above. The data flow
constraints are that DISPLAY’s must not be data
dependent o an ACCEPT in the uib. The screen
conflict constraint is that DISPLAY s must not have an
unresnivable conflict with other DISPLAY s in the block.

Translating UIB's

Onee a uib is rauwmze,d it must be Lr“mshlcd 0a
send and recetve and (mmmlul code, To do a correct
granslation, vartous parts of the uib must be separately
identificd. The general form of the wansiated cods 18 as
shown in Figure 5,

To do this wanslation we must identify withia the uib:
= staipments that display values of flelds belore

ACCEPT
= plils, ii;{ax: statements that check values for validity,
= slatements thay display error messages.
= siptements within the ON ESCAPE

ACCEPTS,

The DISPLAY's of fields, which are separaied within
the uih, are grouped together and transiated into a set of
MOVE's, The edits are retained almost intact and
inseried at the appropriate point in the transialed code.
‘The DISPLAY's of error messages must be analyzed and
associated with a particular field. The statements within
the ON ESCAPE clauses are discarded, excepi for the
first one in the block, which ysually takes control out of
the uib,

clauses of

Ultimate failure of UIB recognition

The approach 1o recognizing uid's described above
ultimately falled 10 work on many programs. Many
programs have been maintained by several programmers
over many years. Many of the programs were created by
heavily modifying existing programs, but forcing the
new program inio the structure of the original program.
As a result of these practices, the COBOL programs

contain extreme variations of coding styles and structures
and many examples of poor coding practice.

We show in Figure 6 a simplified example of one
control structure that we encountered in several
programs. ‘The code is just reading values typed by the
user in a serics of fields, but the excessively complicated

control structure makes this difficult to determine

“manually; let alone automatically.

The uib recognition techniques described above

e

We first distinguished between fields that are
associated with records in permanent files, and fields that
arc associated only with data in the program’s memory.
We also distinguished between fields that are keys of
records and all other fields in & record. We assume that
fields associated ealy with data in the program's memory

are for control and modification of the program's state. ..
The heuristics we developed are:

Mields that are keys .

“Hworked twellon the mitial “set of programs “that “we

ranslated. However, when we attempted to apply it to
programs witly drastically different control structures,
such as the program shown in Figure 6:-it was clear that
the recognition methods would have to become much
more complicated and specialized to deal with all the
variations in the set of programs. We decided that doing
automatic recognition of uib's in all the programs would
not be possible,

I¥ FIRST-TIME
PERFORM INITIALIZATION
ELSE
RECEIVE SCREEN FROM USER
RESTCRE SAVED VARIABLES
SWITCH {(SAVED-~STATE}
CASE 1:
Format values for DISPLAYs
Move values to map buffer
MOVE 2 TC SAVED-ETATE
GO TO SEND-SCREEN
CASE 2Z:
Execute adit tests from UIER
IF there are errors
Mark all errors
Display message associatad
with first error
MOVE 2 TO BAVED-STATE
GO TO SEND-SCREEN
EL&SE
MOVE 3 TO SAVED-STATE
END-IF
CASE 3:
Code following the UIB

END-SWITCH
END-IF.
SEND-SCREEN.
SAVE SELECTED VARIABLES
SEND SCREEN TO YUSER
GOBACK.

Figure 5 General form of the translated code

Heuristics for user interface translation

We have taken a new approach of applying a priori

knowledge in the form of heuristic rules,

Separately,

non-key fields in records should be read together as
one block,

ficlds associated only with data in the program's
memory should be read in separately,

-

1 10C0-GoTO.

2 GO TC 106-DEPENDING-LOGIC,

3 19Z-RETURN.

4 ACCEPT ESCAPE-CODE

& FROM ESCAPE HEY..

6 IF ESCAPE-CODE = HELP-KEY

7 PERFORM GET-HELP

& GO TO 100-GOTO.

g IF CHANGE-NO NOT = ZERO
10 SUBTRACT 1 FROM CHANGE-NBR
il GO T0 100-GOTO.

12 GO TO 180-EXIT.

13 106-DEPENDING-LOGIC.

14 G0 TO 110-GET-S58N

1z 120-GET-NAME

15 130-GET-REGION

7 DEPENDING ON CHANGE-NBR.
18 110-CET-53N.

19 DISPLAY 5C-88N.

20 ACCEPT 5U~-5SN ON ESCAPE
21 DISPLAY 5C-58M.

22 GO TO 102-RETURMN.

23 126-GET-NAME.

24 DISPLAY SC-NAME.

25 ACCEPT SC-NAME ON ESCAPE
25 DISPLAY SC-NAME.

27 GO TC 10Z-RETURN.

48 130-GET-REGION,

29 DISPLAY SC-REGION.

30 ACCEPT SC-REGICHN ON ESCADE
31 DISPLAY SC-REGION.

iz GO TO 10Z-RETURN.

33 1IB0-EXIT.

34 EXIT.

87 PERFORM 100-GOTO THRU 150-EXIT

88 VARYING CHANGE-NBR FROM 1 BY 1

a8 UNTIL, CHANGE-NBR > MAX-CHANGE-NER
Go OR ESCAPE-CODE NOT = CR-KEY.

Figure 6 Fragment of excessively complex code

A second set of heuristic rules deals with the order of
reading fields, In the program in Figure 6 it would
almost impossible to automatically determine what order
the fields are read in. However, {rom the analysis of the
screen layout the program can determine the physical
order of fields on the screen. We assume that the
physical order is the order in which fields should be read
and processed. This heuristic lets us ignore all the
problems of analyzing controf and data flow and simply
gxamine the screen layout (o determing processing order.

These few simple heuristics have proved very
effective in guiding the conversion of the programs and
in producing translated code that is quite close 10 the
final product. :

1. Analyzing Control Paths

The recogniton of uib's and the creation of maps both
require analysis of possible control paths, Automaling
this analysis has been a very interesting, but difficult,
problem.

The minicomputer source code has a wide variation of

-coding. styles and.conuol structures.,
programs have been modilied and mainiained for years,
In many cases new programs have been created by
modifying existing programs. ‘The modifications olten
leave blocks of code that can never be executéd.

A central problem has been reducing the number of
possible control paths we need to examine by using
knowledge of COBOL. semantics o eliminaic potential
conirpl paths. Consider this block of code:

1 I A = 1

P4 MOVE 2 TO B

3 END-IF.

4 IF a =2

5 MOVE 7 TG B

& COMPUTE € = A * B + 5
7 BND-TF.

A superficial analysis of this block of code would
coastruct a possible control path of {1, 2, 4, 5) when in
fact this path could never be executed. Wo have
developed a preliminary represeniation of COBOL
semantics that we can vse 10 reason about control paths
and reduce the number of possible control paths our tools
must examine. Given a conurol path, we can compule o
form of weakest precondition on that path. If the
formula we compute is not satisfiable, then the path can
not be executed. In the sbove example the {formula for
the proposed path (1, 2,4, Sy wouldbe A =2 & A =1,
which is clearly not satisfiable.

8. Conclusion

Many of the application programs {o be converted are
guile simple. Some, however, are very complicated,
Several application programs have over 300 condlicting

Many of the

pairs of screens and involve a dozen or more CICS maps.
Analyzing these conflicts without any mechanical aid
would be a daunting challenge. It would be similarly
difficult to determine solely by manual inspection which
variables must be saved across program invocalions,

The tools we have developed have proved to be
adaptable and effective in attacking the conversion
problem described here. The conversion problem has, in
turn, driven the development of more refined {ools to
understand and analyze source code. A knowledge-
based approach to recognition and analysis has proved
vital to success in this project.

References

_ {APU] Van Sickle, Larry and Harunan, John E., 1992,

Introduction to the First Workshop on Artificial
Intelligence and Automated Program Understanding,
Notes of the Workshap on Artificial Intelligence and
Automeated Program Understanding, Tenth National
Conference on Ariificial Intelligence, San Jose, CA.

. Hartnman] Hartnae, John E. 1990, Automatic Control .

78

Understanding for Natural Programs. Phi. dissertation,
Dept. of Computer Sciences, University of Texas at
Austin,

Appendix

Semantics of minicomputer COBOL

* ACCEPRT field ON ESCAPE staltement
Move the cursor (o field, which bas a specified location,
and abiow the user W type an input value. 1 the user

presses ihe BESCAPE key, then execute siement,
otherwise assign the inpul value to the variable
associaled with figld.

® ACCEPT field FROM ESCAPE KEY
Assign 1o field a value which reflects the tast key typed
by the user.

® DISPLAY field
Display the value of the variable associated with field on
the screen at the specified focation of field,

® READ record INVALID KEY statement
Read a record from the fike associnted with record. 1f the
reguested record iy not found, then execute statement.

® MOVE scource TO destination
Assign the value of source destination.

* G0 TO label

Transier control 1o the statement immediately following
tabel.

- ';3; : Cemp}_’EhfeﬂS:l@n II

Chair: Vaclav Rajlich

From Program Comprehension to Tool Requirements for
an Industrial Environment

A. von Mayrhauser

Dept. of Computer Science
Colorado State Universily
Fort Collins, CG 80523

Absiract

A T?!&jDT poriion of the maintenance Eﬁof‘i 18§ spent
understanding exisling software, We present an inle-
graled code comprehension medel and our ezperiences
with i in an indusirial setling. We use audic-laped,
think-aloud reporls fo investigale how well our inle-
grated code comprehension model works during indus-
trial maintenance activilies ranging from code fizes lo
enkancements, code leverage, and reuse. We analyze
the lapes for mformai:mz needs during mainienence
ecliviites and derive tool capabilities accordingly.

1 Introduction

A significant portion of the maintenance effort in-
voives the code comprehension process, Typical tasks
that require understanding lnclude troubleshooting,
code leverage (reuse with modillcation), and program
enhancement. .

The first step in satisfving a maintenance engi-

neer’s anformation needs is to define a model of

how programmers understand code. The iiterature
1, 2, B, 7,13, 15, 16, 17}, provides two approaches
Lo romprehension: cognitive models that emphasize
coganition by wha! the program does (a Funclional ap-
proach) and a conbrol-flow approach which emphasizes
how Lhe program works.

Chapin's Software Maintenance Life Cyele [3]
divides maintenance into sub-tasks depending on
whether the lype of maintenance 15 adapiive, perfre-

free, or rorreclive, or whether we are Icrfmqmg or

reusing code. Eacl: 1 activity has it's own objective and
presumably, it's own most effective method of under-
standing code to complete the tasks. Existing cog-
nition Literature smien that cognitive results are best
when code is systematically understood [9] at the same
level of thorough detail. For large scale software this
does not seem feasible nor desirable. We need a better
model te understand code cognition in an industrial
setting,

We investigated two existing comprehension mod-
els: Soloway & Ehrlich {16, 17} a top-down con-
prehension model, and I’enmng,ton s {12, 13] control-
How and funciional program Uﬂd{’fbt?l[l(;iﬂé models s{a
bottom-up comprehension model). Each model con-
tains a comprehension process, the information or
knowledge which are input to these processes, and
the mental representation of the program. A signif-

0-8186-4042-1/33 $03.00 © 1993 IEEE

78

A, M. Vans

Depi, of Computer Science
Colorado Siate University
Fart Collins, CO 80523

_icant limitation of these models is that all validation
experunents were done using small programs. The

Soloway and Ehrlich experiments used programs of
about 20 lines of Pascal code. In the Penaington
e\perzz‘mut‘; programrners studied 200-line programs.
Purther, time requirements lmposed artificial restric-
ticns on the comprehension process during the exper-
iments.

lo indusiry; large:sscals programs are the more-

prevalent focus of maintenance activities. We have
observed Lhat malulainers frequently switch between
top-down and bottom-up cornprehension. This re-
quires a model that includes both types of understand-
g processes. Further, we have reason to believe that
mumimn doring maintenance is a reverse engineering
activity ti al re-builds an existing design (‘i}w h}ghf'
leval model) from the code, a design E'*ﬁ?s, Cruindon,
at.al {6 have shown that dfﬁ‘*:i“il“fb frequently switch
between levels of detail for their desizn as design pro-
gresses. Thus we would expect something similar to
happen during code €Ogniﬁma

This report describes an integrated code compre-
hension model combining both approaches. Rist [14
found ihat when programs are complex, construction
of a mental representation of the program needs top-
down {functional) and bettonme-up {control-flow} un-
derstanding. Additional factors under consideration
for this model are a high level of programmer exper-
tise, n focus on maintenance tasks for industnal sofi-
ware, and model classificalion by maintenance task.
Section 2 describes our integrated model in more de-
tail. Section 3 explains the experimental method. Sec-
tion 4 deseribes our Gi)serntions "md protocol analysis
results. 1t also deseribes the need 5or pmgmm under-
biandmg twols based on the integrated model. Section
5 lists the tool capabilities derived from the observed
cognition <.1a’iwat;e . In conclusion we argue that our
industrial experience with an integrated code compre.
hension model points to the need for tools thal sup-
port the cognitive proress, rather than ;mpow soine
process on programmers that is not justified by a val-
idated cognition model.

2 Integrated Model
2.1 Building Blocks

First we to define a comprehension model detailed
enough to identify specific maintenance tasks and task

1
!

.

sequences. The second step identifies information re-
quiremnents and tool capabilities for each task.

Existing program understanding models agree that
comprehension proceeds either top-down, bottom-up,
or uzing some combination of the two. Our observa-
tions indicate that compreliension involves both top-
down and bottom-up activities. Soloway and Ehrlicli’s
- [17] model forms the basis for the top-dewn component
(the domain model} while Pennington’s {12, 13] model
inspired. the program and situation. models. . Our .in
tegratéd “code comprelension modsl cansists of "the
following major components: {1} Program Model
(2)Situation Model | (3y Top-Down Model {or domain
madely, and (4) Krowledge Base. The first tliree are
compreiension processes. The fourth is necessary for
successfully hutlding the three models. Program, sit-
uation, and top-down {(or domain} medel building are
the three processes that together construct an under-
standing of code. Any of these comprehension pro-
cesses may be activated from any of the other pro-
cesees. Beacons, goals, liypotheses, and strategies
determine the dynamics of the cognitive tasks and
the switches between the models. Each process com-
ponent contains the internal representalion {mental
model} of the program being understood. This repre-
sentation differs in level of abstraction for each model.
We also find the strategy to build this internal repre-
sentation, The knowledge base furnishes the process
with information related to the comprehension task.
It also stores any new and inferred knowledge.

The Top Down model of program understanding
is typically invoked during the comprehension process
if the code or type of code 1s familiar. The top-down
model or domain medel represents knowledge schemas
about the application domain. For example, a do-
main model of an Operating Svstem would contain
knowledge about the components an OS has (mem-
ory management, process management, OS structure,
ete.) and how they interact with each other. This
knowledge often takes the form of specialized schemas
including design rationalization {e.g. the pros and
cons of First-Come-First-Serve versus Round Rabin
scheduling}. Obviously, a new OS will be easier to un-
derstand for a maintenance engineer with sucl knowl
edge than without it. Domain knowledge provides a
“motherboard” into which specific product knowledge
can be integrated more easily. It can also lead to ef-
fective strategies and guide understanding (e.g. to un-
derstand high paging rates, | need to understand how
process scheduling and paging algorithms are imple-
mented and whether a given system limits the number
of pages allocated to processes.)

When code to be understood is compleiely new
to the programmer, Pennington {12, 13], found that
the first mental representation programmers build is
a control flow abstraction of the program called the
program model. For example, operating system code
may be understood by determining the control flow
between modules. Then we may select one module for
content analysis, e. g. a scheduoling model. This may
use an implementation of a doubly linked list. The
code representation is part of the program model. The
abstraction of the scheduling quene as a doubly linked

et

79

list is part of the situation model representation.
Once the prograrn model representation exisis, a
situation model is developed. This representation, also
built from the bottom up, uses the program model to
create a data-flow/functional abstraction. The inte-
grated model also assumes that maintenance engineers
unfamiliar with the domain first start building 2 pro-

~grantmodel. However, to assume:that a full program

model is built before abstracting to the situation or

work on (40,0004 lines of code). Rather, what we
expect is abstraction of program model information
at the situation and domain level as it helps the pro-
grammer remember how the program works and what
iz does.

Any of the three sub-models may be evoked at any
time during the comprehension process. A program-
mer may recognize clues {called beacons) in the code
mdicating a conunon task such as sorting. A beacon
is an index into knowledge and can be text or a com-
ponent of other knowledge.! If, e.g., a beacon leads to
the hypothesis that a sort is performed, we switeh to
the top-down model. The programmer then generates
sub-goals to support the hypothesis and searches the
code for clues to support these sub-goals. I, during
the search, a section of unrecognized code is found,
the programmer jumps back to building the program
model. Figure 1 illustrates the relationships between
the three sub-models and the related knowledge.

The definition of the integrated maodel allows a re-
finement in terms of tasks and tasks sequences for each
of the three comprehension processes. We also find
task strategies: the systematic bottom-up, the oppor-
tunistic top-down, and the situation model {system-
atic/opportunistic) task strategies,

A systemaltic approach applies a systematic order
to understanding, e.g. code comprehension, one line
al a time. An opportunistic appreach stadies code
in a more haphazard fashion, te. there is no logi-
cal erder to understanding. Littman et al [9] found
that pregrammers who used a systematic approach to
comprehension were more suecessful at modifying code
{once they understood it) than programmers who took
the opportunistic approach. Although the systematic
strategy seems betler or safer, it is unrealistic for rea-
senably large programs. We just cannot expect a fully
systematic approach when understanding large-scale
code. A disadvaniage io the opportunistic approach
is that understanding is incomplete snd code mod-
ifications based on this understanding may be error
prone [9]. Writing code designed for opportunistic un-
derstanding is one solution to this problem. Building
tools that help male opportunistic understanding tess
error prone is another.

2.2 The Program Maodel

When code is completely new to the programmer
Pennington {12, 13], found that the first mental rep-

'E.g. a beacon may be the characteristic pattern of value
switches. Or it may be the name of the function (such as

QSORT).

domain level would create.cognitive.overload forsoft-. oo

“ware products such as the ones we saw professionals

[ZETSSE—

Vit armnany il
- rennaas

I Bt (F)

B Bttt
P gy

O pportunistic

T e T orve s

A

Frrogsasn
ToLaweymd ¥y
e ar e Somcd g

A Tgoet Bt s e
et sael g
PR g,

Fr. e fasarrledgn
- L. Adgrerrd slarsie.

TS Sra—
P m B

2T EEARG E
-

£
ERR R YT
=3

s

e e of rim T m
ARy Tt - tal E T =

Ciertatet Booiiisss e

Teree Cmdiiom My

Fors g £ cimva 77
Gt vcsn tesivmn
e e b S P Lt
ftrmtegio Pla
1. Tmcticnl e

F2ialwa e
Trmcarsarwe

Fierm et

i

Freobidmuns
Taerraamies
FITP T

{FLanmed WWereded
Bk o Sk g

A Framastiadanl
Mesmmrimid g

—

B -

£ 3m bk Th
T erprramaeas g

Fhgrare 1.

Clacds ormipralioraaioty Model (Lewval G2

prmrrsean it
Goin b g
S arameyamrio W .
asssnameinm
ranaes §

resentation built 1s a control flow abstraction of the
program {the progrem model).

Vessey, [18], developed a model of debugging that
identified tasks that can be mapped into the program
model. These tasks include: - i
L. Rmdinb commenis or other related documents
2. the micro-siruciure 1s the current focus, then
mv comprehender examines the next module in text
sequence. This is logieal since micro-struciure devel-
opricni 1s defined as the understanding of statements
and their interrelationships.

3. If the macre-siruciure is the current focus, then
the comprehender examines the next module in a
vontrol-flow sequence. Macro-stricture consists of ab-
stracted chunks of micro-structure components which
are identified by & label and structured to correspond
o the control-flow of the program text. Asalyzing
the neyt module in o control-flow sequence is ren-
sonable here because code examined when building a
control-flow absiraction as part of the program model
vitl mot typically reside physically in sequence. Fur-
ther, examining control-Bow implies that some micro-
structure has leen construcied because something
must be known about the surrounding code before a
control-flow thread can be meaningfully followed.

4. Data-structures are examined.

4. Dataslicing. This involves tracking changes to var-
able contents during program execution.

These first five fasks constitute the matching portion
of the program model. The knowledge base can be
used through oui the matching process. Specific data-
structure knowledge is necessary Lo examine the data-
structures in the code.

6. The last step lnvolves chunking the learned infor-
mation and simuoitaneously storing i 1n the current
mental representation and long-term memory {knowl-
edge base). A jump to the sibuation model is also
possible,

Let us illustrate program model building using op-

80

erating system process sched ulmg as an exam;s!e' 5eCn
tions of code that take a job from the ready queue, put
it into the runmng, state, monitor elapsed time, and re-
move the Job after the time gquantum has mp;rcd are
recognized and then abstracted with the label round-
robin scheduler. This information then becomes pagt -
of the situation model.

2.3 Top-Down Model

Kovpemann and Roberlson [7] show that program
cas:n;‘;z’eﬁi ension as a goal oriented, hypothesis-driven,
problemesolving process. The top- zir)wn IZ}DLE(‘! of pro-
Eratn U!id(r‘:tcliitilf g is normally ovoked during un-
derstanding if the :a.;)piimimn area s already familiar,
For instance, suppose an experd prograimmer, whose
specially is operating systemns, is asked o maintain an
operating system she has never beflove seen, As an ex-
pert, she can immediately decompose the new system
inko elements she knows must be implemented the
code: a process manager, a file manager, an 1/0 man-
ager, and a mermory manager. Bach of these can be
decomposed: e.g. process manngement includes inter-
process comfmunication and process scheduling. Pro-
cess scheduling could be implemented through: round
robin, shortest job first, or priority scheduling, etc.
The expert operating systems programmer conbinues
top down until she recognizes a block of code, in this
case, the precise process scheduling algorithm. It is
not necessary to re-learn this algorithm line by Line.
The engincer must only recognize that the appropriate
code exists.

Tasks tdentified in this model map into the top-
down element of the integrated model. The top-down
understanding process consists of:

1. Gaining a high-leve] overview.

2. Defermining the next program segment lo exam-
ne,

4. Determining relevance of the code segment to cur-
rent mental representation or hypothesis,

4. Generating/revising hypothesis. The programmer
generates hypotheses about the functionality of the
program segments under consideration while scanning
code. A jump to situation model building occurs if an
hypothesis is confirmed.

2.4 Situation Model

- Fhe: situation - model ‘can-be-constricted ~hy ‘map-e

ping functional knowledge acquired through oppor-

considered experienced by their peers and willing to
participate in the study. We gathered a wide variety
of cognitive behaviors. For purpose of explanation of
results, we will explain the cognition behavier of two

- of our participants,

Prior to the programming session, the engineers
were. asked to find. a maintenance task that included
a code comprehension component. Two of the ses-

tively, it can be bullt bettom-up as mappings from Lhe
programn model in the form of lower level abstractions
of actual program code.

The knowledge structures in this model reflect real
world knowledge that can be grouped into different
domains or Pennington’s plan knowladge for the situ-
ation model. The knowledge domains are Brooks’ [2]
knowledge dornains.

For example, at the domain level we may have a
picture of a process control block {PCRY. with the
types of information it might contain. At the situation
model the PCE may be represented as a table. Al the
program model level we see a C-structure and how it
is used/updated in the code. Actual OS modules at
the program level are recognized, then abstracted, and
used as information at the situation model level.

2.5 Knowledge Structures

The knewledge base, also known as long-term mem-
ory, is usually organized as schemas. The large trian-
gle in figure 1 represents this knowledge base. Schemas
are grouped into partitions specifically related to the
comprehension processes. Situation medel structures
are associated with the situation model, program
model structores are used in program model build-
ing, and top-down structures are applied during top-
down construction. For exaraple, knowledge of dis-
tinctive algorithms {situation model information) or
data-structures are used by the program model build-
g process, while knowledge about objects in the
real-world {domain information) are typically used by
the situation model. Specifically, Pennington’s [12, 13]
text-structure and plan knowledge is used when con-
structing the program model. Soloway and Ehrlich’s
[16, 7] strategic, tactical and implementation plans
with rules of programming discourse are used when
developing a top-down view of a program. The knowl-
edge base also acis as a repository for any new knowl-
edge gained. We associate newly acquired knowledge
with the corresponding model,

3 Method

After model definition, the next step is model vali-
dation and analysis of experimental results. We audio
taped work sessions which were later transcribed.

3.1 Participants

Our participants were professional maintenance
programumers working with large size code, from 40K
up to H00K lines of code. We classified them inte
domain and language experts, domain only experts
and language only experts. We also distinguished by
levels of expertise, types of maintenance tasks, and
accumulated knowledge about the code when the ses-
sion started [21]. These maintenance engineers were

wedninisticaunderstandingato high-level.plans.cAlternaz

81

.sions involved debugging activities, the first a simple
bug fix, the second debugging after an enhancement.

From an industrial perspective most were relatively
srall) about 40,000 tines of code, Compared (o exist-
ing cognition experiments this is large. We recorded a
twe hour session and later transcribed it for analysis.
The engineers’ statements were studied for a high-level
verification of the integrated meodel and for 1dentifica-
tion of information needs.

The first debugging session involved fixing a bug
found by a customer. The engineer had just recently
assumed responsibility for the system and was not
familiar with the domain or program itself. He had
studied bug reports and talked with the engineer who
had responsibility {or the system previously. The engi-
neer’s lack of domaln expertise characterized this ses-
sion.

The other session was part of the testing phase of
an enhancement. The engineer was an expert in the
operating system with which he was working. He was
alse a language expert. He previously implemented
an enhancement to the operating system and was in
the process of testing the enhancement when he found
several bugs.

3.2 Procedure

The participants were asked to think aloud while
working. We audio taped them. Sessions were typi-
cally two hours long. This is not erough to understand
a large scale software product. This is why we decided
to find participants with varving degrees of prior ex-
perience with the code as this wounld give us the widest
degree of coverage over the code comprehension pro-
CE8S.

The audio tapes were then transcribed.
analysis was divided into the following:

i. Enumeration of cognitive activitics as they relate to
the integrated cognition model of section 2. We also
analyzed for possible new activities or interactions be-
tween model componenis.

2. Segmentation of the protocols as to which part of
the integrated model is invelved in the code under-
standing (domain, situation, or program model).

3. ldentification of information and knowledge items
and their aggregates, This included identification
of beacons, domain schemas, hypotheses, strategies,
and switches between domain, situation, and program
model.

Verbal protocol analysis is an exploratory observa-
fional technique for research in a new domain. The
study of cognitive processes during software mainte-
nance and evolution is such a new domain.

Similar to [6], we faced three issues in determining
the validity of generalizing results from our data to
other maintenance situations:

Protocol

1. Task. The tasks (and the code the participants
tried to understand) were all representative of mainte-
nance tasks commonly encountered in industry, While
not all participants were doing the same task, they
were all trying to understand industrial strength C
code to maintain 5, As we begin to understand
whether and how cognition differs, we can move to
more specialized tasks to explore each situation bet-
ter.

2. Sampling of participants. How representalive are
our participants of the larger population of software
engineers who work with existing code and need to
understand 117 There is no reliable answer given the
current maturity of the field. We attempled fo get a
broad sampling of maintenance tasks, prior work with
the code, and programmer experience in domain and
language At this point we cannot clalm that these
protocols represent the full range of cognition behavior
of the population of soltware maintenance engineers.
It iz more likely that the description of this population
will nead to be assembled from many {future} studies
similar to ours.

3. External validity. This concerns the degree to

. which the conditions under which our data were col- .

lected are représentative of those under which actual
maintenance occurs. Code cognition for malntenance
purposes takes more than two hours. This we consid-
ered by including different amounts of prior prepara-
tion in our study, Further all tasks studied represent
actuai work assignments. Both of these strengbhen the
zeneralizability of our findings.

4 Observations

White we é,l\é‘ examples of two of our subjects, we
can report-similar observailons [rom ciher program-
ing sessions,

Our subjects worked at all thres model levels: d%e
domain, situation, and programming model level. Ta-
ble 1 shows the number of references {0 ecach of these
mode! components. It also identifies some of the in-
termediate cognition goals o support mode] building,

At the ond of two hours the engineer performing

the bug fix did not yel have a great understanding of

the bug and, as a result, was unable to lmplement a
correction. in fact, he had determined that the in-
formation he received characterizing the bug was in-
correct and that the engineer who previcusly had re-
sponsibility had not understood the bug. The engi-
neer spent almost half of the time (48%) developing a
situation model because he lacked the necessary real-
world knowledge. Most of the remaining time (45%)
was spent in building the program meodal with compo-
nents ab the program model level used as drivers for
situation model construction.

I contrast, the engineer working on the enhance-
ment net only fixed several bugs during the scssion,
he was also able to identify additional bugs he did not
kuow about. He spent a majority of the time {70%)
developing a }ro;bmm model, and substantially less
tirne (20/5) in the situabion model. This makes sense
because he wrote the faulty code and needed fo revize
the program model. 1t did not function according to
his original program model developed during the en-

hancement irnplementation. Very few references Lo the
situation model were necessary because the engineer
was an expert in the domain algerithms and did not
question his understanding of the operating system.

Both engineers referred to the top-down model in-
frequently. This is expected since the nature of the
debugging activity 15 one of focusing in on a specific
problem rather than developing a high-level view. In
other experiments, especially general undersianding
by engineers who are taking responsibility for a plece
of code, the top-down model was referred to at least
one third of the time, [21].

Hypotheses are lmpsrt"m drivers of cognition,
They drive further investigation. Thus generaling hy-
potheses about code and investigai,ing whether they
hiold or not is an important facet of code understand-

“ings Hypotheses miay canse aswitcl to another model

level. In our example analysis we found 33 hypotheses
of which 3 failed during the debugging session while
L1 out of 31 hypotheses failed during the enlmucenwm
session. :

The integrated model assumes that these switches
can oceur bebwesn any of the model components at
any time. We spacifically do not assume that under-
standing is built from top down (i. e. full domain
model l)t"-’fOi'L going to situation and program model}
or from bottom up {full program model bLfOI@ g:mn;7
up to situation model).

Table 2 shows that the integrated model is correct,
We find indeed a significant number of switches be-
tween levels. Let us illustrate these switches between
levels with an example.

One of our :mi)jects was developing an elsbarate
theory about the function of 2 particular type of datn
structure called “Debug control strings”. He devel
oped seversl hypotheses ab several levels of absirac
tion while switching bebween sifuation, prograin, and
top-down model mental representations. “They ap-
parently have some things here that control other
routines...” Reading the comments he gets confused.

“I was buile ling a tae@m that debug control strings
were used to prind §eimg sing output and the res-
son they Eai img, control sim;gﬂs} imw state is because
when they.” <He then explains how they behave us-
ing control-Bow languager. “Ounly now this sentence
abiout appearing on the shell command line and passed
into other application programs has confused me a bit.
S0 { guess [really still don’t undersiand what they are
for”

5 Tool Capabilities

We found that maintenance engineers need to build
a mental program model, a situation model and a do-
main model, They switch frequently between these
three levels. Understanding s facilitated when pro-
grammers have domain and language experience, as
tiiey provide specialized schemas. This guides the
understanding process. Specialized schemas act hke
a “motherboard” inte which the acquired knowledge
can be integrated, Specialized schemas also support
strategies and building and refining of hypotheses.
They f{acilitate retention and cesrieval of knowledge
about the code.

; Hug | Enhance- E
i Model Code FProcess Task Fiz ment i
Opportunistic | OPI Gain HigheLevel Overview of Program i 1
Top-Down QP2 Determine next program segment ta examine 4 3
OP3 Generate or revise nypothesis about functisnality 2 1
OF4 Determine relevance of program segrment 1 [
NN | DEUTOOPPPRPPRIN BN ¥) 1Y Determine if this program segment needs deiotled understanding [40 3 60
OPO Dietermine understunding strategy O o
CGP7 [nivestignte Oversight [K
- " :_'E&ﬁ@dnﬂiﬁﬁﬁ;ﬂ“ R B I S A i b e bbbl et (S P e
Blental Simulation [Q
Top-Down Rnowledge & i4
Systermatic Sysl Rend mtroductory wode comments any related documents Z 2
Program Syad Dietermine next program segment 10 examine . 1 &
Medel Sys3 Fxaming next module in ssquence 13 34
Sysd Examine next module in control-flow 1 12
Syab Examine Dats structures and deflinitions i P
hysa Shoe on Doty 4] [
Sys¢ Chunk & store krnowledge i L -
Sysd Generate Hypothesis a3 31
Sysd Construct Liall lree 2 i)
bysio Determine understanding strategy 14]
o oysil Gienerate new task i it 15
SysiZ Generate Quaestion i)]
sysl3 | Determine if looking at correct code [i] 2
Systd | Change direction 1 2
Sysih | Generatefconmder alternative code changes 1] 3
Sysl6 Answer question 1] T
Sysly | AdafAdter Code 1] 15
S5ps18 | Determine focation to set breakpomnt [i] 10
Sysld | Falled Hypothess 3 i1
Sys20 | Determine errorfomitted cade to be added 1] il
Sys21 Mental Bimulation [5] K
Program Madel Knowledge 16 5
Situation Sitl Guain Situation Model knowledge as 3
Modat 52 Develop Quastions 13 H
Sit3 Dietermine answers ta questions & 1
Sid Chunk & Srore EH [
S Determine relevance of situation knowledge 4 3]
Sith Determine next nfo to be guined E) [3]
ST Generate Hypothesis [E]
S8 Determune understanding strategy 7 i
Sty Determine if error exists {missing tunctionality]) 2
Sitiy Failed Hypothess K3 a
Sitii Mental Simulation 2]
Situation Model Knowledpe 25 !
; Table 1: Task Counts for Debugging and Enharcernent
As our maintenance engineers worked with code of layers of program moedel until the situation model level
significant size (40,000 plus lines of code), cognitive ~ can be reached. This is cognitively taxing.
lumta'{.lvaus play a big role in the ‘umlers%an(dmg pro- Lack of specialized knowledge is also associated
cess. We need better tools to alleviate capacity limita- with a lack of cognitive knowledge structures support-
tions of short-term merory. We also need fools that ing memory during cognitive activities. For example,
make retrieval of information from long term mem- a maintenance engineer needs to remember postponed
ory mare reliable, for example by representing domain hypotheses and the tests for them, as well as the re-
maodel schemas and situation model schemas 1n a user sults of hypothesis tests.
understandable form. Most of the tools our maintenance engineers have
Lack of relevant specialized knowledge leads to today emphasize support for building a program
stower code cognition, partly because understanding model. A few reverse engineering tools support as-
has to procesd mostly bottom up with small chunks pects of domain and situation models. Yet they all
[10]. 1t alsc is slower, because strategies are inefficient: can be considered single level tools. In our expe-
the maintenance engineer does not have the higher rience, maintenance engineers frequently switeh be-
level functional knowledge about what the code is sup- tween these three levels as they build and test hy-
posed to do and how one commonly implements i, potheses and find beacons that trigger retrieval of
This precludes identifying strategies for opportunistic knowledge at a different level of abstraction.
understanding. 1t also takes longer to build hypothe- While a comprehension model allows us to un-
ses. Further, chunking in small pieces leads to many derstand how programmers go about comprehending

83

Number of Number of Model Susiches - Debugging Model Suatches ~ Enhancement
References References ’ Top-Down | Futuatien | Program Top-Diown | Sttuation | Program
Diebugging FBnhancerment Aodel Model l Afodel Model Medel Model | Model Model

22 E¥] Top-Blown | NJA 14 3 Tap-Down | NJ/A [16

143 58 Szuation 14 N/A 25 Situation] N/A 17

133 ELE] Program 3 24 NSA Program 17 20 NSA

Table 2: References and Switches Between Models

code, 1t does nothing to make this process mare pro-
ductive. Tools are needed to support and speed up
the comprehension process. Such tools must guickly
and succinctly answer programmer questions, extract
imformation without extraneous chilter, and represent
the information at the level at-whicl the programmer
currently thinks {20]. Thus tool information should
be available at the program maodel, situation model,
and top-down model levels. Tool inforination should
accommodale the relevant knowledge structures, and
should aid in switching between components of the
code compreliension model.

_ Unfortunately, most tools fall far short in these re-
spects. They either emphasize code analysis capabili-
ties like control and data flow {companents useful for
the program model), or stay at higher levels of abstrac-
Aion (some CASE {ools). Even for each single model-
ing component, we frequently do not see all relevant
aspects tool-supported (such as defining hypotheses
about the code, or identifying a strategy on how to
recognize code). Nor is the informalion represented
sucginetly as an answer to a specific question (e.z.
@ full data-flow table as compared to showing data-
flow of a specific variable throngh code highlighting
and/or code elision). Connections hetween the three
levels of code comprehension are not coramonly tool-
supported. What is worse, we still seo attitudes re-
flected in tool builders” munds that if we just teach
prograrmimers to understand code the way they ought
to {Le. the way their tools work), the understanding
problem will be solved [4].

Mainienance prograrumers work at all levels of ab-
straction. Indeed, we can argue that cognition is close
to reverse enginesring, as in both cases we must de-
velop a higher level absiraction of existing code. Thus
our current best bet to supporting code understanding
for maintenance engineers al the situation and domain
level is the current state of the art of reverse engineer-
ing tools.

Table 3 shows a partial tool capabilities matrix we
extracted from analyzing cognition behavier and in-
formation needs. For a more detailed tools capabii-
ity table see [19]. This table is based on the obser-
;ations reported in this paper and contain domain-
specific items. Some information items will need to be
replaced by other domain-specific items. T.g., inter-
nal support routines and utility functions will change
based on the application dormain under consideration,

While some tools with these capabilities exist, tool
availability thins when we go to the situation and do-
main model level. (A / mark next to a tool capa-
bility in table 3 indicates that such tools exist.) We

84

also find too few that are able to support switches be-
Lween levels. No tools are capable of formulating and
keeping track of hypotheses, representation of domain
knowledge and specialized domain schemas, cognition
strategies, and analysis of hypothesis failure.

& Conclusion

We rnust support the natural process of under-
standing code with owr {ools, née hinder it. With
the information gained from our integrated madel and
from our experiments we developed a tool capability
matrix which relates compreliension tasks to mdivid-
ual tool capabilities.-- e RN

Many maintenance tools are designed to enforce a
prescribed maintenance process. We suspect that dif-
ferent work styles of programmers (e.g. systematic
study of all related information, focused study ouly
ot information perceived to be related to ihe task at
hand, or dynamic execution of program} affect the
actual task sequence during maintenance activities.
When tools support mainienance processes that are
defined in terms of $ask sequences Lhese Lools may ac
tually hinder the understanding process.

some of the fool capabilities we found are pon
irivial, such as the need for a function classification
scheme that 1s not textual and crosses several levels
of abstraction, or the availability of a domain expert.
Purther progress in tool support for maintenance eagi-
neers will require facilities for representing hypotheses
and switches between domain, situation, and program
models. We also must represent strategies and help
the maintenance engineers to remember postponed hy-
potheses and the tests for them as well as the results of
testing hypotheses. In summary, we nsed betier tools
for representing the intermediaie results and dynami-
cally defined steps of code understanding.

Acknowledgements

Thiz research was supperted by the
Packard Co.Inc,

Hewlett-

References

[1] Ruven Brooks, Townrds a theory of the cognitive
processes in computber programming, In: Inter.
national Journal of Man-Machine Studies, 5(1977). pp.
T3T-T51.

Ruven Brooks, Towards a theory of the compre-
hension of computer programs, In: International
Journal of Man-Machine Studies, 18(1983), pp. 543-
554,

1 Task 1| Sub-task | Information Needs [Tool Capability |
Gain Study function call strusture Isplay of call graph Full System Display/
High-Level Determine file structure Directory layout forganization Source Text
View include files, main file, support Reformatter f
{(Top-Down files, library' files
Modet} General Understanding at Muintenance manual, info Un-line documents

“highslevel -

- fromeprojact-documgnts -

Tmcrozs dovs.

with keyword search

Dete

ne most {re

Lbansins and reubines T

{Tount ol Function calls

Function Counts,/

b ddentdy wtihiby fufctions oo

Lihty function Bst -~ -

Narrow down

Organtzed functions into

List of functions

Next passibilities catagories in which categorized according
Maodule to functions are related. to specifie clagsifi-
Examine cation scheme
{Top-Dlown] In call graph, et nd of extra Trining of call treg
Meadel} info not relevant, o, orror tased on specified
routines, 170, functians not in categaries
specified category)
Want to see overall structure Structure of relevant functions Pruning of call tres
without irrefevant information enly at different levels of based on specified
ahatraction categorios
Lok at one function in a A peneral clhasification of List of functions
proup of functions to get an routines and functons so cutegorized arcording to
idea of what and how all that if ons s understood the specifie olassification
functions in group work rest in the group will schame
be understood ‘
Generate Determine if the routine Ioutines that do most of the DNgplay doman
Hypothesis performs vital function application domain type work, applicable functions,
{Top-Down Determiine 1t function s Tist of tnternal support Dispiay Internal
Model) internal suppert function functions support routines

Gaire Situstion
Maodel Knowledge
{Situation Model}

Reonll previously learned
information ’

Situation knowledge

Seratch filesy/
annatatable code

Dictermine nature of bug
and characterized.

Bug behavior isolated

On-line bug reports o/

Truplicate bug

Haw to dupheonte bug

Simulate behavior,
steps to reproduse
include data

Bevelop
Questions
{Situation Model}

Determine what a spectlic term
means in the Situation Model

Definitions of terms/cancepts
in the application domain

Oneline docs with
key-word search |/

Betermine next
Info to be Gained
{Situaticn Moded}

Understand a demain concept

Saurces an domam knowledge
knowledge

On-line access to
ref manuvals explaining
doemain concepts

Domain expert

Glenerate Dretermne meaning of acronym Acronym Defintions Acronym definitions
Hypothesis of asronym using functional
{Situation Modal} . definitions
Determine Next Search for calling procedure Use of ebject v a On-line Cross
Program Segren to see how object was used specific pracedure reference

to Examine
{Program Madel}

Return to previous cotde SegIment

Toast place n code Defore
preceding branch

Fhstory of browsed
{eoations o/

Chunk & Store
{Program Madeal}

Uetermine how o particular
procedure fits together with

surrounding & adjacent provedures

The nesting level of a particular
procedure or function

Fan-z/Fan-out)/
Functian Level

{Generate
Hypothesis
{Program Model}

Bretermine i a word is & reserved
reserved worsd

List of reserved words

On-line language
docs with hypertext

Look nt one gbject use in & group
of ohject uses to get iden

of what & how the object is

used in all references

A genernl description of how the
obrject s used including

any deviations from expected
use

On-line documens
tation with key- /
ward search

Construct Call
Tree
{Program Modesl}

Determine cali-tree structure for
a specific object.

Call-tree graph for o specific
ahject

Graphical display call-
graph with prumng for
specific abject, /

Dretermine
Understanding
Strategy
{Program Model)

Determine if a program
language construct is different
from constructs in stmilar
languages

List & explanntion of constructs
that deviate frorn standard
program ianguage stmts and
constructs

On-line language
documents with key-
word search &
hypertext /

Tietermine if all calls to objects
will be investigated

Frequency count of references
to a particalar object

Source Uode Metrics
Number of entities

Determine best code segment to
examine next when confused

Ciood direction to follow given what
is already known, pessible program

segments to examine

Inteifigent agents
give advise based on
what hns been done.

Table 3:

Tool Capabilities

85

[3] Ned Chapin, Software Maintenance Life Cycle,
In Couference on Sof&ware antenance 1988 PP -

Program Comprehension Workshop — CSM-92,
Workshop notes, 1EEE Computer Society, Conference
on Seftware Maintenance, November 9, 1992, Orlanda,

Florida. E

Edward M. Gellenbeck and Curtis R, Cosok, An In-
vestigation of Procedure and Variable Nanes as
Beacons during Program Comprelension, Tech
Report 91-60-2, Oregon State University, 1991,

(4]

Raymonde Guindon, Herb Krasner, and Bili Cartis,
Breakdowns and Processes During the Early
~Activites of Software-Design by Professionals;
n: Empirical Studies of Programmers:Second Work-
shop, Eds. Olson, Sheppard, and Soloway, (©1957,
Ablex Publishing Corporation, pp. 85 - 82,

Jurgen Koenemann and Scott P Hobertson, Expert
Problem Solving Strategies for Program Com-
prehension; Ins ACM? March 1991 pp125:1300

Stanley Letovsky, Cognitive Processes in Program
Comprehlension, [u: Empirical Studies of Program-
“mers, Eds. Soloway and Iyengar, ©1988, Ablex Dub-
lishing Corporation, pp. 58 - 78,

David €. Lithioan, Jeanvine Pinto, Stanley Letovsky,
Efliot Boloway, Mental Models nnd Sofiware
Maintenance, In; Empirtical Studies of Programmers,
Eds. Soloway and lyengar, 51958, Ablex Publishing
Corporation, pp. 80 - 98,

and

[16] Katherine B. McKeithen and Judith . Reitman,
Kuowledge Grganization and Skill Differences
in Computer Programmers, in Cognitive Psychiol
ogy, 13(1981}, pp.307-325.

P Paul W, Omay and Curtis B, Cook, The Book

Paradigo: for Improved Maintenanece, In: [EEE
Software, Jannary 1980, pp. 39-45,
[12] Nancy Penninglon, Stimulus Structures and

Meutal Representations in Expert Comprehen-
sion of Computer Programs, In Cogaitive Pay-
chology, 18{1937}, pp.295-341,

[13] Nancy Penningion, Comprehension Strategles in
Programming, In: Empirical Studies of Program-
mers:iSecond Workshop, Eds. Obon, Sheppard, and
Soloway, ©1987, Ablex Publishing Corporation, .
160 - 132,

[14] Robert 8, Rist, Plans in Programming: Defini-

tion, Demonstration, and Development, ln: Em-

pirical Studies of Programmers: 1si Workshop, 1088,

Washington, D.C., pp. 28.47,

85

[15] Ben Shneiderman, Software Psychinlogy, Human
Factors in Cmnputer and Information Systems,
In: (‘iiapter 3, @1‘58(] V\’mthrop I“‘ublisizub, Em:, Pp-
'3’3 62

[16] Elliot Soloway and Kate Ehelich, Empirical Stud-
ies of Programming Kuowledge, In: [EEE Trans-
actions on Software Engineering, Sepig mher 1984, Vol.
S5E-10, No. 5, pp. 595609, :

[17] Elliot Soloway, Beth Adelson, and Kate Blhrlich,
Knowledge and Processes in the Comprohen-
ston of Computer Programs, In: The Nature of Fa-

periise | Eds. M. Cli, R, Glaser, and M.Farr, §19588,
Lawrence Erlbaum Associates, Publishers, pp. 129-

152,

[18] Iris Vessey, Expertise in debugging computer
programs:A process analysis, In: International
Journal of Man-Machine Studies, (1985)23, pp.459-
494,

[19] A. von Mayrlauser and A, Vans, Code Compre-
henston Model, “Technical - Report C5-92:145,
1992, Colorado State University, Fort Collins, CO.

[20] A. von Mayrhauser, Should CASE Care about
Saftware Mamfmmnce or Why We Need Code

Processing, Inv Procs. CASE 90, Dec. 1999, lrvine,
{: § P 2.
[21] A ven Mayrhauser and A. Vans, An Indusirial B

perience with an Integrated Code Comprelien-
sion Maodel, Technical Report #f (08-92-205, 1892,
Colorado State University, Fart Colling, CO,

{227 Susan Wiedenbeck, Processes in Computer Pro-
gram Comprehension, In: Empirical Studies of Pro-
grammers, Bds. Soloway and Iysngar, ©1888, Ablex
Pullishing Corporation, pp. 48 - 57,

Model-Based Tools to Record Program Understanding

E.J. Younger & K.H.Bennett

~ School of Engineering and Computer Science, University of Durham, South Road, Durham

Abstract

Tools to record the knowledge gained by mamicin-
ers engaged in undersfanding an exisiing program are
deseribed. These toels are based on a medel of the
comprebension process and of reverse engineering as
a whole. They form a part of an integraled reverse
engineering loolsel based around a central repository.
Using these tools new documentation for an exisling
soffware system may be buill up tmerementally by suc-
cesstve mainieiners who work on fhe sysiem.
Keywords: Program comprehension, documenta-
tion, reverse engineering, incremental redocumenta-
tion.

1 Introduction

The twin problems of understanding existing soft-
ware systems and the frequently poor quality of their
supporting documentation are generally accepted to
be among the greatest facing software maintainers
today. The two are related — good quality document-
ation can greatly aid the process of understanding an
application, and iis absence f{orces the maintalner to
spend a great deal of time in studying the application
code in order to rediscover elements of the design of
the systerm which could have been betier recorded by
its developers and subsequent maintainers.

The process of understanding an unfamiliar system
has beer shown to be the most expensive part of a
typical maintenance task [1], and software maintain-
ers frequently cite poor documentation as the greatest
hindrance to them in their work [2]. Despite this fact,
the understanding gained by mantainers working on
a system is rarely recorded for the bensfit of their sue-
cessors. This compounds the problem of concentration
of knowledge about an application in a small nurnber
of “experts”, who have worked on the same system for
years ancd have now become indispensible, having an
intimate knowledge of the system which is inaccessible
to others.

This paper describes research carried out into the
process of understanding software and the recording
of this understanding, as part of the Esprit il pro-
ject REDO [3], and the teols developed to record the
undersianding gained by successive maintainers who
work on a particular application. This knowledge be-
comes part of an information base stered with and
linked lo the application itself.

0-81864042-1/93 $03.00 © 1993 IEEE

87

2 Problems with documentation

Many applications in use today were developed 15
or 20 years ago, before the advent of well-defined de-
velopment methods, and certainly before there was
much concern aboul the problem of mainienance,
Such systems very often have little or no documenta-
tion of use to a maintainer.

Major software development projects are frequently
behind schedule and over budget. Towards the end of
such a project, the pressure is on the development
team to meet deadlines for the release of the software.
The result is thai anything considered non-essential
to the relecase is postponed, often indefinitely. Gen-
erally, documentation {other than that which accom-
panies the released system) is considered to fall into
this category. Development documentation therefore
becomes out of date as refinements and amendments
are made to the system and never documented — this
also applies to the post-release maintenance phase of
the product’s life. In the worst case some documents
are never written at all.

The advent of IPSE’s and software engineering
databases allows documentation to be stored in a com-
rion repository with the rest of the application. This
in itself goes some way towards overcoming the above
problems: the status of the documentation is impli-
citly elevated to that of an integral part of the applic-
ation, rather than a optional extra. It is also possible
to include the documentation in the same quality as-
surance procedure which is, or ought to be, applied
to the application as a whole. Similarly, where a com-
puterised configuration management system is used to
manage a system the documentation can be brought
under its contro! also. .

This technology is however very recent. Existinﬁ
applications were with very few exceptions develope
without the aid of such systems, and so the document-
ation is typically stored separately from the rest of
the application, either online in a separate document
preparation system, or much more probably on paper
only.

Even good guality decumentation may not be use-
ful to the maintainer if it does not convey the inform-
ation required to carry out the task at hand. System
documentation is generally restricted to two types:
development documentation and user documentation.
Whilst both provide information which is useful to a
maintainer, neither are produced with the needs of
maintainers in mind. and therefore do not necessar-
ily present information in the best form for use i
maintenance. Even the best development document-

ation certainly does not contain all the information
needed to understand an unfamiliar systern. Much
background information, concerning for example the
application domain, rationale for design decisions, ete.
are typically omitted. This is especially true when
the application has been developed by specialists in a
particular domain, who will have substantial undoc-
umented knowledge both of the application domain
itself and of the optimal design of systems to mest its
L.requirements.

Thus the maintainer approachmg anunfdmlllarsysn o

tem is typically confronted by documentation which
is incomplete, out of date, inconsistent, difficult to
access, difficult to understand, or in the worst cases
inaccurate. In many cases the documentation is so
poor, or the maintainer has so little confidence in its

accuracy, that it is not used at all, and the maintainer. ..

relies solely on the source code to understand the sys- -

tern. It is this situation which redocumentation seeks
to rectify,
3 Program comprehension theories

The process of program understanding has been
" studied almost exclusively by observation of program-
mers at work on real or “artificial” problems which
require them to develop an understanding of an unfa-
miliar system. These experiments have varied in their
approach; some have encouraged the participant to
“think aloud” while studying a program, and have re-
corded and analysed the results [4]. Others have al-
lowed a period to study a program or set some task
such as a simple modification to force the participants
to develop an understanding of the program, and sub-
sequently set tests to to determine the level of un-
derstanding developed, the nature of the information
used, and the concepts in whose terms knowledge of
the program is expressed { eg. [B]). As a result, nu-
merous theories have been expounded covering various
aspects of the comprehension process.

Brooks has suggested that comprehension is based
on a system of mapping between the problem domain
and the programming domain [8]. The developer con-
structs these mappings and the maintainer has to re-
construct them, using whatever information is avail-
able (which may be only the source code). It is argued
that this process is a bottom-up activity, rather than
the top~down approach taken in the development pro-
cess. The bottom-up approach to comprehension is
also described by Basili and Mills [7]. Letovsky argues
that the comprehension process typically is a2 mixture
of both bottam—up and top~down procedures, the pro-
grammer switching between the two and exploiting
one or the other on the basis of cues in the available
information [4].

It is widely accepted that an understanding of pro-
grams is developed in terms of plans {also variously
known as clickes or schemata). A plan is a typical
action sequence in & program which implements some
common function [8] [9; {10]. Plans are lower-level
concepts than algorithims, which are typically imple-
mented by combining a set of plans [9]. In under-
standing a program, an experienced programmer at-
tempts to identify plans in the code, This process may

B8

be complicated by the fact that the statements which
make up a plan can be distributed in the code [11].

3.1 Knowledge types and representations

Knowledge stored in human long-term memory can
be subdivided into the two categories of factual and
semantic knowledge. (See for example [12]). Factual
knowledge is concerned with such information as the

-spelling-and-pronunciation: of words; telephone pum- -

bers, syntactic constructs in languages, ete. Semantic
knowledge is concerned with the meaning and inter-
pretation of factual knowledge, and with its organisa-
tion into structures and models of reality.

Factual knowledge appears to be stored in a flat,
unstructured form. It is specific, i.e. it is not {rans-

ferable to-a domain other than that of its origin: The- -

nature of the access paths to factual knowledge is not
clear, but it has been observed that the less frequently
factual knowledge is accessed, the “weaker” the access
paths become. There is no evidence that knowledge
ever disappears from the brain, however the access
paths may become too weak to be found.

Semantic knowledge conversely is structured, the

structure itself being a part of the knowledge. It ap-

pears to be represented as a network of links repres-
enting semantic relationships between facts. It s also
layered — networks of related information at onelevel
may be treated at a higher level as a single item.

Whereas factual knowledge is common between in-
dividuals (there being no alternative representations
for the correct spelling of 2 word, for example], se-
mantic knowledge is highly individual. The difference
between novices and experis in a particular field Hes
largely in their semantic knowledge. Novices may be-
gin with much the same body of factual knowledge,
but the lack of structure in their knowledge means
that they are unable to make the logical connections
between facts that allow an expert to reason sbout
problems or to transfer knowledge by analogy between
related domaing, As experbise is gained it is mani-
fested in an increasingly rich network of semantic re-
lationships built over the unstructured factual know-
ledge.

3.2 Knowledge types in comprehension

Schneiderman and Mayer [13] identify three type of
knowledge used in program comprehension:

1. Syntactic knowledge of programining, This
includes all programming language-, operating
system—, and hardware-specific facts and rules,
such as the grammar of the programming lan-

guage.

2. Semantic knowledge of software engineer-
ing. This includes knowledge of programrming al-
gorithms and plans, data structures, etc. This
knowledge is language independant. It also in-
cludes sirategic knowledge about the appropnate
application of this knowledge.

3. Semantic knowledge of the application do-
main This is knowledge about the real-world do-
main in which the program operates. For ex-
ample, it might be knowledge of accountancy
practice, physics, air-traffic control procedures
ete. Any knowledge of the business-rules of the
users of the program fits into this category. It
also includes knowledge of typical use of software

engineering semantic knowledge in a particular

It appears from the experiments described above
that the major differences between novice program-
mers and experts lie in the types of knowledge which
they possess. Novices begin with syntactic knowledge
and a small amount of software engineering semantic
knowledge. They then spend their careers in gaining
more and more semantic knowledge of software engin-
esring and application domains. Novices have insuffi-
cient semantic knowledge to enable & top-down com-
prehension strategy to be used, and are forced there-
fore to rely predominantly on syntactic knowledge and
hence a bottom-up approach. They also typically
tack domain knowledge and are thus unable to relate

rogram functionality to the real world. Pennington
E’s} has demonstrated that programmers whoss mental
meodels of a system incorporate concepts from both the
application domain and the program/software engin-
eering domain develop a better understanding of the
systern than those who rely heavily on one or other
type of knowledge.

3.3 Comprehension strategies

Littman et al. [14] have described two strategies
which programmers were observed to use when study-
ing small programs with a view to making changes to
themn. In the first strategy, the systematic approach,
the programmer studies and atfempts to understand
the entire program before beginning to modify it. In
the second, as-needed strategy, the programimer stud-
ies and understands only those parts of the program
which are deemed necessary to carry out the partic-
ular task., The writers conclude that the systematic
approach leads to superior performance. However the
study was restricted to small programs. In the case of
a large application, it is impossible or at least imprac-
tical for a maintainer to gain a complete understand-
ing of the entire system, and as a result an as-needed
approach must necessarily be adopted.

In the as-needed approach, it is necessary to
identify the parts of the application which are relevant
to the maintenance task. It is possible to do this in
either a top~down or bottom-up fashion. The bottom
up approach begins by analysing the syntax of pro-
gram statements in order to derive semantic informa-
tion. More abstract constructs are then developed by
grouping statements which together implement plans.
The top~down method involves searching the program
for those plans which are ezpected to make up the func-
tionality of the program. This process is an iterative
one of hypothesis refinement and validation. Brooks
[6] introduces this process, and it is further expounded
by Gilmore [15]. The programmer begins with an ini-

tial hypothesis about the functionality of a program,
routine or module based for example on its name or
on application domain knowledge. Software engineer-
ing knowledge suggests ways in which this {unction-
ality may be impiemented, i.e. which plans are to be
expected. The programmers then tests this initial hy-

...pothesis by exam%_nin% the code, and refines the hypo-

89

thesis iteratively until it matches the actual code (see
fig 1). Formation of an accurate initial hypothesis is

e argdt] v gsdisted i thespecification dnd “desigi of the e

program are well documented.
The important factors for our model to emerge from
this research are

1. the process of comprehnsion is iterative and not
linear, even {or a small program: for which a com-
plete undersianding can be developed

2. for larger programs, the maintainer develops an
understanding of the program only to the extent
necessary to allow the maintenance task to be car-
ried out. Large parts of the program typically
will be omitted from this process, while a detailed
knowledge of other parts will be acquired.

The design of appropriate and useable tools both for
program comprehension and to record the understand-
g gained must take account of these factors.

4 Redocumentation

Redocumentation is the process in which new docu-
mentation is generated for an existing system either Lo
replace or augment any documentation whick already
exists. Recording understanding gained about a pro-
gram is a form of redocumentation — it is concerned
with making avaiiable Lo other maintainers the inform-
ation required to understand the system.

The approach to redocumentation adopted will
vary depending on the aim of the activity. Redocu-
mentation may take place in response to a variety of
triggers, for exampla:

o In response to a maintenance request, parts of
the system may be (wholly or more probably par-
tialiy} redocumented as a side effect of the main-
tainer’s efforts to understand the system.

e As part of a full-seale reconstruction of the ap-
plication Lo improve lis maintainability, complete
redocumentation of the application may be car-
ried out. The reconstruction process may itseif
be triggered by various stimuli. [16]

These two scenarios correspond conceptually to the
two system comprehension strategies discussed in sec-
tion 3, namely the as-needed strategy and the sysiem.
atic approach. The latter is a very expensive under-
taking, and in practice occurs very infrequently. In by
far the majority of cases, redocumentation occurs as
a side effect of some other maintenance activity. The
process of understanding a large application is as we
discussed earlier both iterative and incremental. Iter-
ative in the sense that it is based on a cyclic process of
refining and validating hypotheses, and incremental in

Symractic
knowledge of
programming

Code and
documentation

Application Probl
dormain o
knowledge staternent

Software engineering
semantic knowledge

3

Bental representation
of progrem

Mental representation
of prbb‘.rcx:ﬂ?

. Evaluate

Figure 1: A model for program comprehension

the sense that only parts of the application are stud-
ied during a single maintenance task. Tools to support
the recording of understanding must take account of
this in their design.

Maintainers engaged in satisfying particular main-

tenance requests must gain an understanding of paris
of the application in order to modify it. The under-
standing required is guiie wide-ranging and at vari-
ous levels of abstraction. A general understanding of
the high-level design may be needed to identify those
modules which need to be modified. Partial know-
ledge of the control~ and data~flows may be required
to identify potential side—effects elsswhere in the ap-
plication. A detailed knowledge of the implementation
in the vicipity of the change%s} is of course essential
{assuming that is that the application is maintained
at the implementation level, rather than (partially)
re-implemented from a medified design).

This knowledge may be gained using a variety of
methods, 2.g. code-reading, analysis of code using
software tools, etc. The knowledge gained is very ob
ten not recorded for the benefit of fuiure maintainers,
resulting in duplication of effort - research has shown
that large parts of a typical application remain stable
over time while particular “hot spois” are modified re-
peatedly. Failure to record the understanding gained
represents a waste of resources, which could be avoided
if appropriate tools were available.

We define incremenial redocumeniation to be the
recording of knowledge about the application as it is
acquired. It will generally be a side effect of some
other mainfenance activity rather than a task in iés
own right, We are not aware of much research in this
area though tools have been reported which allow the

0

user to enter informal texi and link this to program
code [17] [18]. If this approach is adopted then an in-
formation base of knowledge aboui the application will
be built up as a natural part of the mainienance pro-
cess, concentrated on exactly those “hot spots” which
are most likely to bethe subject of future maintenance
activities.

An information base which is subject to mainten-
ance, in the sense of cosual updabing, is likely to de-
grade with time just as applications do. Good practice
in the maintenance of both can combat this trend, but
is unlikely to eliminate if completely. A iool which
supports the casual incremental addition of informa-
tion is likely to speed up the degradation of quality
unless steps are taken to prevent this. Factors which
could contribute to deterioration of guality include

¢ mainéainers entering incorrect, inconsistent, du-
plicate or conBlicling information.

s modification of ihe application without corres-
ponding changes to the documentation.

¢ proliferation of information, resulting in duplic-
ate or redundant information, and a poorly strue-
tured database with “spaghetti” links.

A degree of consistency checking between the ap-
plication and its documentation may be performed
automatically if appropriate links are set up in the
database. This might be at the level of flagging code
which has been changed without a change to the cor-
responding documentation. Correctness and consist-
ency of ithe documentation itself can be maintained
by a quality control process for the application as a

whole, and by version and configuration management
procedures. It is essential that the maintainer can
have confidence in the correctness of any document-
ation which is used as a basis for understanding the
application, otherwise it is likely that the docurnent-
ation will simply not be used. There is a clear need
to mark documentation so that information which has

been quality~checked and foiind t& be reliable can Bs ™

identified as such. This applies equally to existing doc-

~-umentation-which-has-been-tmported-into the mgige =

tenance environment, and to new documentation gen-
erated by users of the system. Proliferation of inform-
ation is perhaps a consequence of ease—of-use in this
case. The aim of the tools is to encourage users to
record the knowledge which they gain about the sys-
tem for the benefit of their successors. Restricting
the update facilities offered by the {ools according to
the identity of the user can go some way to controlling
this, but a periodic restructuring/reconstruction of the
database might still prove necessary.

The desirable features of a {re}documentation sys-
tem for software maintenance can now be summarised
{see also [17]):

1. Integrated source code

Traceability from documentation to the related
source code is essential in maintenance. The dir-
ect embedding of documentation in the code itsalf
is possible, using either the commenting facilities
of the language or systems such as WER {19] but
is not desirable for the reasons discussed above.
The system should thersfore use some farm of
linking between separately stored code and doce
unentation.

2. Integrated technical documentation
Technical documentation should be linked both
to the code and to other documentation in the
system, to allow it to be used efficiently.

3. Integration of existing documentation

It should be possible to tucorporate any existing
documentation for the application, whether on-
line or on paper, into the system. This should not
require the re~typing of all existing documenta-
tion, as this will prove expensive, but it should
be possible to incorporate references to external
raterial unavailable on-~line.

4. Incremental documentation
It should be possible to build up the document.
ation for the application gradually over time, as
described above, and the system must be useable
despite the documentation being incomplete,

5. Informal update

It must be easy for the maintainer to add informe-
ation to the documentation base while engaged
in studying the application. The intention is ta
provide a system which encourages maintainers
to record their understanding of the application
as it emerges. A system which is cumbersome to
use or which causes the user’s train of thought to
be broken is not likely io be used in the manner
intended.

g1

§. Quality assurance

In order to prevent degradation of the document-
ation over time, quality assurance procedures are
essential. These can be alded by stamping new
information with the identity of its author and
the date and time its entry. Existing information
_can be consolidated and summatised periodically

~ to prevent the documentation base from growing
uncontrolledly.

-3

- Configuration management

Where an application 1s evolving or where dif-
ferent versions exist, configuration management
must allow the documentation appropriate to a
particular software version to be recovered.

8. Information hiding
The documentation base for a well documented
application of even moderate size will be very
large. It must be possible to view this informa-
tion at various levels of absiraction, and to screen
out unrequired parts of the documentation.

§. Team use
The team involved in maintaining or reverse—
engineering a typical application will have many
members, Therefore the documentation system
must support concurrent access and update by
rultiple users.

5 Requirements for tools

We can now begin to formulate some requirements
for documentation tools, based on the analysis in the
the preceding sections of this paper. It is important
that we base the design of cur tools on a sound model
of the task which they are to support. In our case
ihere are two related tasks: system understanding and
redocumentation. In the former process tools are re- -
quired which the maintainer will use to access exist-
ing documentation as an aid to system comprehension,
and in the latter tools which support the addition of
information to the database of documentation.

We concluded in our earlier analysis that the pro-
cess of system understanding both lierative and in-
cremnental, using 2 mixture of top down and bottom
up approaches and is based, for large systems, on an
“as-needed” strategy wherein the understanding de-
veloped is confined to those areas of the application to
which the maintenance task is related. As a result of
this process knowledge about the application is gained,
and this knowledge needs to be recorded for the be-
nefit of future maintainers. Since the comprehension
process is an iterative one, the tools for recording this
knowledge must support tncremental recording or re-
doeumentation.

5.1 The REDO maintenance environment
The maintenance tools produced by the REDO pro-
ject are integrated around a shared database known as

the System Description Database or SDDB. This data-
base is implemented using the Eclipse toolbuilder’s kit

from Ipsys Software ple. [20], which provides repos-
itory facilities based on the PCTE Object Manage-
ment System data model [21}, extended to provide
fine-grained data modelling below the level of PCTE
objects. The date model is essentialy a network model
with object-oriented extensions,

A populated SDDB contains a representation of the
application code stored as an abstract syntax tree dec-

_orated with semantic information [16]. In addition it

contains documentation for the application. This'in-

cludes “conventional” docwmentation in the form of
lifecycle documents (specifications, design documents,
user documentation ete.), documentation exiracted
from the application {control and data flow, ete.), and
also some more novel forms of descriptive material
. _made possible by the SDDB itsell. A populated SDDB

can be regarded as self~documenting, in the sense that

an SDDB instantiated to reverse-engineer a particular
application will also contain information to describe
the appiication. This will include pre-existing doc-
umentation (if any} which has been loaded into the
SDDB, and information generated incrementally dur-
ing the iterative process of reverse engineering and ad-

ded-to-the SDDB.-—
5.2 Documenting relationships

Reverse engineering is defined by Chikofsky and
Cross [22] as the identification of the components of
a system and their inter-relationships. This decom-
position of a system into componenis may in prin-
ciple be done in a variety of ways according to various
paradigms. Such decompositions constituie an ab-
stract view of the system which can be regarded as
a design. Since the redocumentation tools form part
of a reverse engineering toolkit, the users of the tools
will usually be performing reverse engineering tasks,
Therefore the tocls should be capable of document-
ing the results of these tasks, which will include the
relationships between components of the application.
This requirement supplements the requirernent to re-
cord and represent relationships between componenis
of documents, and between documeniation and the
application. Since the application and documentation
are stored in a repository /database, the pessibility ex-
ists to represent relationships by links in the database.
Some of these can be set up permanently when the
database is loaded; others may be built up increment-
ally as part of the comprehension and redocumenta-
tion process.

The nature of these relationships are many and vasr-
izd. Helationships will exist between documentation
representing the development process, of refining spe-
cifications through designs to implementation, and the
nature and semantics of these are well defined. Other
relationships will exist which are less generic in nature,
and in many cases are peculiar to the individual ap-
plication. Their semantics cannot be specified a pri-
ori. In designing a tool to represent relationships we
are therefore faced with a choice, We may choose to
define a set of semantic relationships between com-
ponents of a system, each of which is represented in
the database by a unique link type. This approach
has been adopiad by the EPSOM project in the ESF

_ ferent terms to describe essentially the same semantic

- geribed above, it does however require a means for

92

(Eureka Software Factory) programme. [23] The dis-
advantage of this approach is that it restricts the docu-
mentation tools to represent only relationships having
the semantics represented by one of the predefined link
types. In order to provide a sufficiently rich choice of
semantics the set of link types will necessarily become
large. .

Alternatively, we may provide a single generic link
_type, and leave it to the user to define the semantics =~

of the each link, 1.e. the nature of the relationship
which it represents, when it is created. This has the
advantage that only a single link type is required, and
relationships of any kind may be represented. The dis-
advantage is that, since the user defines the meaning
of the link, it is possible for different users to use dif-

relationship , with the effect that one user’s descrip-
tion may be misinterpreted or not understood by a
subsequent user. There is therefore a need, if this al-
ternative is adopied. for an agreed standard use of
terms among the users. o ' '
This latter approach has been adopted In the
REDO toolkit, since it conveys the advantages de-

the user to define the semantics of links on an indi-
vidual basis. The most general method possible has
been adopted: the user eniers a textual description
of the relationship which the link represents. This is
attached as an attribute to the link itself,

The links themselves are completely generic, in that
they are in principle able to hnk any twe types of ob-
ject in the SDDB. These might be nodes in the ab-
stract syntax free of the original source code, com-
ponents of documents, or abstractions created by the
reverse engineering tools. The resulting network of
ohiects connected by links representing relationships
between them corresponds well with the above defini-
tion of the alm of reverse engineering.

5.3 Incremental documentation

Incremental documentation tools provide the main-
tainer with the means to record information about
the application as il is acquired, during the process
of understanding the application. The tool for doc-
umenting relationships discussed above falls into this
category; & tool is also required to enable the main-
tainer to add new fextual documentation to record
knowledge gained about the application. This text is
attached, as an autonomous object, to the component
of the application which it describes. In this respect
the tool represents an advance on the DOCMAN sys-
temn [18] in that text may be attached to any node in
the syniax iree of a program, or in principle to any
object in the SDDB. As a distinct object, this text
or note may in principle have relationships with other
components of the application, its documentation, etc.
which may be represented using the link creation tool
discussed above,

These notes may be used for several different pur-
poses, for example:

1. as temporary annotations for the mainiainer’s
own personal use only

2. as permanent additions to the documentation of
the application

In addition, when a large number of notes is attached
to particular object, it may be appropriate to create
a note which summarises the existing notes, without
replacing them.

~‘The type of a note(permanent; temporary ‘or sum="""""

mary) should be made visible to the user, as should

«..the author.date and time of creation; and Q.Avstatus.. -

{see below), as these may influence the interpretation
of the note text. As large numbers of notes may exist,
the user may wish to see only notes of a particular
type, only quality-checked notes, only notes by a par-
ticular author, etc. The tool which displays the notes
ought to provide such filiering facilities.

5.4 Quality assurance

The need for quality asssurance of documentation
was identified in section 4. Notes and links each have
a set of attibutes which are used for Q.A. purposes.
Each note or link is marked automatically with the
date and time of its creation and the identity of the
user who created it A third attribute is set if the note
or link has passed a quality inspection. This attribute
can only be set by a member of a set of priveleged
users: this is enforced by the tools.

The text of a note or the annotation of a link may
be edited after creation, but in the interests of main-
taining quality this may only be done by the creator
of the note or link or by a priveleged user. Similarly,
notes and links may be deleted from the database only
by their creator or a priveleged user.

6 The REDO documentation tools

In addition to the tools described in detail below,
the REDO toolkit includes a browser/editor for con-
ventional structured documentation, which is stored
online in the ceniral repository together with other
components of the application. The approach taken
in this tool is similar to that used in structured doc-
umentation tools such as SODOS [24]. The toocls
deseribed in this paper represent a different, com-
plementatry approach to information recording and
presentation.

6.1 Note tool

The Note Tool supports incremental redocumenta-
tion of an application using notes, as described above,
The note tool is always invoked from another tool,
which displays the “target” object, i.e. the object to
which the note is to be attached. Typically this would
be done by selecting the target object with the mouse
and selecting from a pop-up menu. The documenta-
tion browser provides such an interface, as does the
related source code browser.

Each note comprises of a set of structured informa-
tion, including the date and time of creation, author’s
identity, quality status etc., and an unstructured body
in which the text of the note is stored. The Note Tool

23

has two functions: to browse through existing notes
and to add new ones. The tool has two subwindows for
these functions, each with its related “control panel”
containing buttons and information fields (see figure

'The two subwindows are respectively for the display
of the text of existing notes (note display window), and
for the entry and editing of the text of new notes (text
edit window). The message window displays informa-

tion or warniig fessages from the tool. The existing "

notes are displayed one-at-a-time, starting with the
most recent summary note if one exists or the most
recent note otherwise, The “Next” and “Previous”
buttons are used to step through the set of notes, in
chronological order. The “Make Link” button invokes
the Link Tool (see below) to create additional links to
or from the displayed note,

The “Set Filters” button accesses a subwindow
which allows the user to restrict the set of notes which
are displayed on the basis of their Status, Quality and
Author attributes. Only those notes whose attributes
have the selected values will be displayed, for example
only summary notes which have been vetted for qual-
ity. With the exception of the Author attribute, these
values are selected from pop-up menus. Where there
are a large number of notes, this facility is useful to
restrict the tool to only those types of notes which the
user wishes to see.

Two further options are available only to the author
of the current note or to a priveleged user. The “De-
lete” button rermoves the current note, and the “Edit
Note” button allows the text of the current note to
be edited in the text edit window. If the current user
does not have the necessary priveleges then these but-
tons are removed {rom the control panel. The values
of the other attributes of the note, such as its status
or quality attributes, may be altered via the control
panel fields. The quality and status fields ench have
an associated set of possible values, which may be se-.
lected via a pop-up menu.

The text edit window provides a mouse-driven edit-
ing environment for the entry of new note text or the
editing of existing notes. The type of the note can
be set via & menu acsociated with the “Note Type”
field. Only a priveleged user may ereate a note of type
“Surnmary”. The default note type is “Temporary”,
and all new notes are created with quality attribute .
set to “Not.Veited”.

6.2 Link tool

The Link Tool supports the documentation of rela-
tionships between components of the applications, by
creating links between these components and storing
these in the SDDB. A link is in fact an object in its
own right, which is connected to its “source” and “des-
tination” components using the linkage mechanism of
the underlying database. Again, the Link Tool is in
practice always invoked by another tool, which dis-
plays the object to whick the link is to be connected.
In fact, the two objects which are to be linked must
be displayed, though nct necessarily in the same tool
or even simultancously on the screen. As is the case
with the note tool, the object which is to be linked

. | Dt [
A —————r . . Q\}AE; Mot vensd |
[at I 2 {Veed [pacnee 1l
Temporary
‘ Loz | oeee ||
Previous { Da i T Delse
Mleonzage window

Now display window

1 Tempamy

Pommanent

Summary

Ealit pontrol panet

Teat Bdit window

| Cuoice2 Tert fisdd with pick e
1 Tt i

Pigure 2 The

from is selected, and “Create Link” Is selected {typic-
ally from a pop-up menu, though this may depend on
the invoking tool). This starts a copy of the link tool,
whose window then appears on the screen. The object
to be linked fo is then selected in its display window
and the proeess is repeated. The information for the
“destination” objact is added automatically into the
Link Tool window {see figure 3. Text to annotate or
describe the link can then be typed into the appropri-
ate field in the teol window; clicking on the “Create
Link” button completes the link, which is added to
the database. A reverse link may then be created;
the annotation text for this is created by the tool by
prepending the string “Inverse of” to the annctation
for the “forward” link, though this can be edited or
changed by the user,

In addition to the date and time of creation and
identity of the link's creator, a third sttribute records
the quality status of the link. It is set to FALSE when
the link is created, as in the case of a new note, to
indicate that the link has not yet undergone a quality
inspection.

Note Ton! window

24

7

Conclusions

The tools described in this paper support the re-
cording of knowledge about an application which
is gained by maintainers during the performance of
maintenance tasks. These lools are conceptually
based on a model of application understanding as an
iterative and incremental process. The goal of this
process is, ultimately, to “reverse engineer” the ap-
plication to produce a more absiract view, expressed
as a set of components and their inter-relationships,
The tools support the incremental addition of inform-
ation to a repository of knowledge, linked 1o the ap-
plication itself, and also the documenting of relation-
ships, as they are discovered, by the creation of links
withint this central repository which helds the applic-
ation and its documentation. The resulting network of
components and relationships represents the emerging
abstract view of the application. Existing information
in the repository, entered during earlier maintenance,
is made available via a siinple and intuitive user inter-
face. Quality assurance facilities mean that users of
the system can have confidence in the quality of the
information on which their own understanding of the
application may be based.

The system is in some senses incomplete and in

{.ank From

Lk To

{auuree of lisk}

(deatingtian of Lek)

| usto [1| | RevemmsLins

L

Link Type
Qy)

Abory

I [emmotrtons text)

RN YN

Figure 3: The Link Tool window

need of further development, While the facility exists
to document relationships between components of the
application, the capability to navigate to related in-
formation by following the links in the repository is
presently missing. There is no great technical diffi-
culty in adding these facilities, however this was not
possible during the original research project due fo
shortage of resources. Also lacking at this point is an
evaluation of the tools in a commercial software main-
tenance environment. This is to be expecied during
the exploitation of the REDO toolkit by the commer-
cial partners in the project.

References

{11 T.A. Standisk, “An essay on software rpuse,” IFEE
Transactions. on Software Engineering SE-10 (1984),
4947,

E. Chapin, “Software maintenance: a different view,”

National Computer Conference, AFIPS Conlerence

Proceedings 54, 1885,

P.S. Katsoulakos, “REDO, CASE 84, Fourth infer-

national workshop on computer aided sofiware engin-

sering, Irvine, California (December 1898).

S. Letovsky, “Cognitive Processes in Program Com-

prehenston,” in Empirical Studies of Programmers, E.

Soloway & 8. Ivengar, eds., Ablex, Norwood, NJ, 1984,

58-79.

[51 N. Pennington, “Comprehension Strategies in Pro-
gramming,” in Empirical Studies of Programmers:
Second Workshop, G.M. Olsen, 5. Sheppard & E. So-
loway, eds., Ablex, Norweod, NI, 1987, 1006-113,

R. Brooks, “Towards a theory of the comprehension
of computer programs,” International Journal of Man-
Machine Studies 18 (1983}, 543-54.

V.R. Basili & H.D. Mills, “Understanding and docu-
menting programs,” IEEE Computer {October 1882).
E. Soloway, “Learning to program = learning fo con-
struct mechanisms and explanations,” Communica-
tions of the ACM 29 {1986}, 850-8.

R.C. Waters, “The Programmers Apprentice -
knowledge-based program editing,” IEEE Transactions
on Software Engineering SE-8 (1982},

95

[16] W.L. Johnson & E. Soloway, “PROUST - knowledge
based program understanding,” [EEE Transactions on
Software Engineering SE-11 (March 1985), 267-275.

S. Letovsky & E. Soloway, “De-localised plans and pro-
gram comprehension,” [EEE Software 3 (1986), 41-8.
W. Kintsch, Memory and Cognition, Wiley, 1077,

B, Schneiderman & B. Mayer, “Syntactic/semantic in-
teractions in pregramming behaviour,” International

Journal of Computer and Information Science 8 (1979},
219-38.

D.C. Littman, J. Pinto, 8. Letovsky & L. Soloway,
“Mental Models and Seftware Maintenance,” in Empir-
ical Studies of Programmers, E. Soloway & S. Iyengar,
eds., Ablex, Norwood, NJ, 1986, 86-98.

D.1. Gilmore, “Models of debugging,” Proceedings of
Fifth European Conference on Cognitive Ergonomics,
Urbino, Italy (September 1898),

H.l. van Zoylen, ed., The REDO Compendium of
Reverse Engineering for Software Maintenance,, John
Wiley, Chichester, 1993,

N.T. Fletion & M. Munro, “Redocumenting Software
Systems using Hypertext Technology,” Prec. Con-
ference on Software Maintenance, Phoenix, Arizona
(1988).

IR, Foster & M. Munre, “A Documentation Sys-
tem based on Cross-Referencing,” Proc. Conference on
Software Maintenance, Austin, Texas (1987},

D.E. Knuth, “Literate Programming,” The Computer
Journal 27, 97-111.

0] Ipsys Software plc., Toclbuilder’s Kit 2.5, 1991.

] ECMA, “Poriable Common Tool
Environment {PCTE): Abstract Specification,” ECMA
Standard ECMA-149, 1950.

E.J. Chikefsky & J.H. Cross, “Heverse engineering and
design recovery: a taxonomy,” IEEE Software T{Jan.
1990).

E. Miror, “Resalts from the ESF EPSOM project,” 6th
FEuropean Software Maintenance Workshop, Durham,
UK {September 1992},

E. Horowitz & R.C. Willamson, *SODOS: A Software
Documentation Support Environment - Its Definition,”
IEEE Trans. Software Engineering SE-12 (Aug. 1986},
84959,

A Hybrid Approach to Recognizing Programming Plans

Alex Quilia
Department of Electrical Engineering
vone University of Hawailab Manoa ..o ww s

Honolulu, HI 96822 *

Abstract

Most curreni models of program undersianding are
unltkely o scale up successfully, Top-down approaches
require advance knowledge of what the program. is sup-
posed 1o do, which s rarely available with aging soft-
ware systems. Boltom-up approached require complete

-melching of the program egainst a Library of program-

ming plans, whick is impraciical with the lorge plan
libraries needed to undersiend programs thal coniain
many domain-specific plans. This paper presents a hy-
brid approach to program undersianding that uses an
indezed, hierarchical organization of the plan Rbrary
to limii the number of candidaie plons considered dur-
ing program undersianding. This approach is based
ot chservations made from siudying student program-
mers ottempt Lo perform bollom-up undersianding on
geometrically-orienied O funcitona.

1 Infroduction

Our current research in antomated program under-
standing concentrates on the problem of automatically
extracting geometric objects and operations from size-
able C programs. In particular, we're primarily con-
cerned with recognizing:

s The representation and use of cbjects such as
polints, lines, circles, squares, and polygons.

¢ The implementation of operations that involve
these objects, such as finding the distance be-
tween two points, determining whether two lines
intersect, noticing when a point is contained
within a circle, and deciding whether a particular
triangle is & right triangle.

* An carlier version of this paper appears in the Proceedings
of the 1953 IEEE Conference in Reverse Engineering, Baltimore,
MD, May 1993.

0-8186-4042-1/93 $03.00 © 1993 IEEE

86

The ultimate goal of our project is to be able

 to automnatically recognize these objects and opera-

‘tions, and then to replace them with libraries contain-

ing human-generated object-oriented code written in
C-++. We've chosen this particular project as & study
for automated program understanding for several rea-
sons. First, even if we can only automatically recog-
nize and replace a small portion of the many objects
and operations in a set of real-world programs, it's &
win over attempting to revise these programs entirely
by hand. And second, doing this task by hand re-
not unreasonable to assume that information about C
implementations of these classes can be provided while
constructing the replacement classes.

Qur approach to this task has been to study student
programiners attempting to understand short C func-
tions and then to try to build a program that mimics
the process they go through. This paper describes the
resulting model.

2 Background

Most recent approaches to program understanding
i4, 6, 7, 10, 11, 14, 15] feature:

s An internal representation of the actual program
instructions and the data and control flow be-
tween them.

s A library of programming plans or cliches [12].

& A process for mapping program actions to these
plans.

The final result of their understanding process is usu-
ally some sort of tree {or lattice) structure, with pro-
gram instructions at the leaves, programming plans in
the nodes, and the goals the program achieves as the
root,

The process of understanding can usually be clas-
sified as either top-down or bottom-up. The top-
down approach starts from knowledge about the goals
the program is assumed fo achieve, determines what
plans can achieve these goals, and attempts to con-
nect these plans to the actual program instructions.

‘Typically, this-includes using-matehing Tules to-de- -

tect how these instructions achieve various subgoals

they differ from the instructions expected by a plan.
In contrast, the bottom-up approach starts with the
instructions themselves, determines which program-
ming plans might have these instructions as compo-
nents, attempts to infer higher-level goals from these
plans, and repeats the process until the programmer’s
actual goals are recognized.

Both of these program understanding approaches
have shown significant promise, but both also have ob-
vious limitations. The top-down approach requires de-
tailed advance knowledge about the goals the program
is supposed to achieve, which is often unavailable for
many real-world programs. It alse is not well-suited
for performing partial understanding, since it under-
stands a program fragment only when it’s connected
to a top-level goal. On the other hand, bottom up ap-
proaches tend to suffer from a combinatorial explosion
of possibly relevant plans. Each program action may
be part of a variety of pians, which themselves can be
part of a wide variety of plans, and so on. This ex-
plosion greatly limits the length and complexity of the
programs that can be understood with this approach,
unless a methed can be found for Hmiting the search
space, an area that has so far received litlle atiention.

Previous program understanders have avoided wor-
rying about the size of the search space by either
performing top-down searches for a limited number
of plans or by performing bottom-up searches with a
library containing a limited number of largely domain-
independent plans. Unfortunately, understanding ex-
isting, aging programs in the geometric domain re-
quires a bottom-up search and a large library. That’s
because these programs are most naturally described
in terms of domain-specific objects and operations,
which necessitates recognizing not only those pro-
gramming plans that carry out these operations but
also the programming plans representing the objects
being manipulated. As a result, a program under-
stander can’t rely primarily on a library of general
programming plans, such as READ-PROCESS-LOOP
or COMPUTE-SQUARE, although these are often
necessary. Instead, it must also have a library that
contains a variety of domain-specific operations, such

rwithin e plat,and differenceé Fules te fedegize haw™

a7

as DISTANCE-BETWEEN-POINTS, IS-POINT-ON-
LINE, IS-POINT.IN.CIRCLE, and soc on, as well
as information aboui objects such as POINTS and
ARRAY-OF-POINTS.

These domain-specific operations and objects form
a domain model that’s absolutely critical for under-

standing the programs built on top of them. Unfortu-

nately, however, as soon as domain-specific plans are

“netessary, the plan library tends to incréase dramatis

cally in size. And as the plan library grows, so does the
need to limit the number of plans that are considered
during the program understanding process. Unlike
current automated program understanding systems,
human programmers appear to do this quite sucess-
fully. That’s led us to observe student programmers
performing bottormn-up program understanding and to
create a mode! of program understanding based on the
process we've observed. Our belief is that capturing
the process by which hurnans focus their search for
programming plans has the potential to significantly
improve automated plan recognition techniques.

3 A Study Of Student Programmers

We've studied a small group of student program-
mers attempting to understand a set of geometric
funetions. Figure 1 shows one of the functions given
to the students to understand.

The point of this study was to discover which plans
from the plan library were considered during program
understanding and what indices triggered the consid-
eration of these plans. We deliberately chose the ge-
ometric functions we used for this study fo be novel
compuositions of plans the students were likely to have
seen before. This allowed us to focus on plan reirieval
and recognition techniques without worrying about
the additional problems inherent in understanding un-
planful cade [2]. We also deliberately chose relatively
simple funciions without global variables rather than
more realistic complete programs. This allowed us
to avoid worrying about complications such as delo-
calized plans [8]. Finally, we deliberately chose im-
plementations for our funciions that minimized the
available syntactic indices to plans [13], such as vari-
able names that accurately describe the use of a vari-
able. This allowed us to focus on conceptual indices:
particular combinations of actions that suggested con-
sidering a particular plan.

!The reader should try to understand what this function
does before continuing. That way the reader can compare his
or her understanding process to the process that we observed
in our student programmers.

/*

Mystery function
*/

#inciude <math.h>

#define BIG_DOUBLE 1.0s38
double mystery{int all, int BL}, int n)y

{
e ol ey Qe by B @ e

int j, k;
j=0;
r = BIG_DUOUBLE;

- while {j < n-1)
{

T
while {(kx < n)
{
t1 = alj]l - aikl;
t2 = blj]l - plkl;
k=k + 1
d = sgri(tl = t1 + ©2 % £2);
Lif {d <.y RS
r = d;
¥
J++;
refurn r;

¥

Figure 11 An unknown C function.

Cur methodology was to take think-aloud protocols
of stundents attempiing to understand these functions,
Studenis were told io verbalize any question or hy-
pothesis they generated about the code, as well as
any conclusions they drew and what led them to draw
that conclusion. They were given no advance knowl-
edge of what the funchions were supposed to do, and
were old to iry provide as succinct a description as
possible of what the program actually did. To betier
undersiand the process, we frequently asked them to
explain why or how they generated & hypothesis or
reached a conclusion.

3.1 How Siudents Undersiocod This Ex-
ample Funciion

We now describe the process students went through
in undersianding this program.

The first plan most students recognized was that
the outer while was iterating j from 0 to n — 1 by
1. Protocols and later questioning suggested that the
students reached this conclusion by going through the
following sieps:

98

1. Skipping over the initial declarations and assign-
ment statements. That is, they didn’t try to
match the assignment statermnents against any
plans (athough several students puzzled briefly
over what BIG DOUBLE was before continuing).

-2, Noticing that the outer-while contained a rela-
tional test involving a variable. Most hypothe-

-« -gized-that-this-loop-was performing-an-iteration

on j {the plan ITERATE-OVER-RANGE), al-
though one suggested that it was instead iterat-
ing on n. Mo students immediately hypothesized
an iteration by 1 {the more specific plan FULL-
ITERATE-UP-OVER-RANGE)

3. Confirming that a variable in the test (j) was
initialized before the loop and updated during the
loop. Af this point, most concluded that j was
the iteration varighle, and that this plan was to
run j through all values from O ton ~ L

4. Verifying that the other variables in the test
weren’t changed during the loop body, that the
iteration variable was only updated once in the
loop, and that the loop contained no hidden exit
{such as a break). This step was actually done by
2 only a few of the students.

After recognizing the function of the outer loop,
students then fock an almost identical approach to
recognizing that the inner loop was performing a sim-
tlar task.

Studenis next tried to figure cut what the com.
bined loops were doing. Most students quickly con-
cluded that the loops were generating pairs of j, k

values (the plan GENERATE-PAIRS). Students then™

proceeded to determine exactly what these pairs of
values were. For most, that invelved actually writing
these pairs until & patiern emerged that they could
classify.? A few, however, examined the iniial values
and test fow, howaver, examined the inital values and
test cases and concluded that these loops were gener-
ating unique pairs {the plan GENERATE-UNIQUE-
PAIRS) between 0:1 and n~1:n {0:1, 0:5, ..., Oin, 1:4,
1:3, 1:n, and so on), Some then hypothesized that
ihe plan was examining the top half of & matrix, but
quickly discarded that hypothesis when they realized
the loop didn’t contain a two-dimensional array.

?This process is known as concrete simulation [9]. It appears
to arise frequently when programmers are dealing with unplan-
like situations and are trying to evalute the external coherance
between plans {2]. Iis occurrence suggests that our geometric
functions contained plans that some students had never before
encountered,

Students then proceeded to try to figure out what
heppened inside the loop. No one formed a hypothe-
sis or drew any conclusions about the subtractions,
When they encountered the sqrt expression, how-
ever, they ell recognized several plans. They began
by trying to understand the subexpressions in its arga-
ment. They recognized that the multiplications were
actually computing squares {the plan COMPUTE-

"SQUAREY) and that the addition was compuling the

sum of these squares (the plan SUM-OF-SQUARES).
At this point, almost all students hypothesized that
this expression was computing a distance {the plan
COMPUTE-DISTANCE) and went back to verify that
the values being squared were the result of subtrac-
tions.

After recognizing the distance computation, stu-
dents jumped rapidly to conclusions. First, that the
combination of alj] and bijl formed a point (the
ptan POINT) and, similarly, that the combination of
aix] and b[k] formed another point. Second, that a
and b were arrays representing a collection of points
{the plan ARRAY-OF-POINTS). Third, that j and
were indexing POIN'Ts in this array of peints. Fourth,
that the loop was therefore generating indices which
were used to select pairs of points. And finally, that
the loop's job was fo run through and compute the
individual distances between cach of these pairs of
POINTs.

After recognizing the loop's primary function, most
students then examined the if and the assignment it
contained. Students used the 1£’s relational test of
two values and its assignment of the smaller value to
hypothesize that a minimum was being saved. Most
verified that variable to have been assigned belore the
iteration and some explicitly noted they now under-
stood the purpose of BIG.DOUBLE. Students were then
satisfied they understoed the purpose of this funciion.
The usual student summary was something like: “The
function returns the distance beiween the closest pair
of points in a set of points.”

3.2 Some Lessons Learned

From this informal study, we've learned several
lessons that have significantly influenced ocur model
of the process of program understanding.

First, student programmers don’t match every pro-
gram action against every programming plan that
might contain it. Instead, they attempt to recop-
nize a program plan only when they are reminded of
it by a combination of program actions or program
plans. For example, the combination of a while and
a relational test involving a variable and any rela-

99

tional operator other than equality consistently caused
students o consider the the plan ITERATE-OVER-
RANGE. Similarly, the combination of a FULL-
ITERATE-UP-OVER-RANGE contained in another
FPULL-ITERATE-UP-OVER-RANGE caused them to
censider the plan GENERATE-PAIRS. And the com-

“bination of 2 SUM-OF-SQUARES contained in a
SQUARE-ROOT caused them to consider the plan

COMPUTE-DISTANCE. None of the students imme-

diately considered ITERATE-OVER-RANGE when
they encountered assignments, nor did they consider
COMPUTE-DISTANCE when they noticed subtrac
tions, even though assignments and substractions are
steps in these plans.

Principle #1:

FProgram understanders require explicii in-
dezes from combinaiions of program actions
to entries in the plan library. They should
match only indexed plans agoeinst o given
code fragment, not svery possible plan knoun
to contain thel code fragment,

Second, student programmers try to specialize the
programming plans and actions they encounter in
the code before moving on to the next program
fragment. For example, after students recognized
the plan GENERATE-PAIRS, they then proceeded
to try to discover exactly what iypes of pairs it
was genersting, and most eveptually realized that
what they had was the specialization GENERATE-
UNIQUE.PAIRS. Similarly, after recognizing the plan
ITERATE-CVER-RANGE, all students realized that
the iferation variable was going up by one each time,
and noted that they bad the more specizlized plan
FULL-ITERATE-UP-OVER-RANGE. And all stu-
dents specialized the multiplications of t1 and t2 to
instances of the plan COMPUTE-SQUARE.

Principle #2:

Program understanders reguire o specialize-
tion hierarchy of programming plans, They
should then iry lo specialize eny recognized
program action or plan os fzr as possible be-
fore trying Lo understand the role of the nest
program ectton or plan.

Third, student programmers attempted to draw
conclusions after recognizing plans. For example, af-
ter recognizing the plan COMPUTE-DISTANCE, all
students immediately realized that this meant that
the values being subtracted represented coordinates
within POINTs. And after recognizing that points

were represented as elements from a pair of arrays
with the same subscript {the plan ARRAY-POINT),
all students realized that the arrays themselves were
an instance of the plan ARRAY-OF-POINTS. These
realizations were the crucial ones in understanding the
real purpose of the C function they were given.

Principle #3:

"Program understanders require thal grogram-" "
ming plans contain ezplicil knowledge aboul
additionel plans that can be inferred once
they are recognized. They should make fhese

inferences before continuing on o iry to rec-
_ogmize other plans,

Essentially, what our study suggests is organizing
the plan library as a specialization hierarchy of plans,
with explicit indices from combinations of plan com-
ponents to plans, and with explicit implication links
to other plans whose presence they imply.

4 Our Plan lerary

Qur approach to constructing a plan hbrary has
been to extend the representation and organization
used in the well-described plan library developed by
Andersen Consulting for understanding Cobol pro-
grams [6].

Essentially, this work represented programming
plans as data structures containing twoe parts. The
first is & plan definition, which lists the attributes of
the plan that are filled in when instances of the plan
are created, The plan ITERATE-OVER-RANGE, for
example, has five atiributes:

INDEX: the index variable.

START: the expression that calculates the initial
value of the index varizble.

END: the teat for whether to go through the loop.

UPDATE: the expression that computes a new value
for the index variable.

SEQUENCE: the set of staterments to be iterated.

The second part of 2 programming plan is 2 plan
recognition rule, which lists the components of 2 plan
and the constraints on those components. An in-
stance of the plan is recognized when ail its com-
ponents have been recognized without violating the
constraints, Consider the plan ITERATE-OVER-
RANGE. To recognize this plan, it's necessary to find
the following components in the code:

LOOP-STATEMENT: a language looping construct,
INIT-EXPR: an asstgnment expresslon, .

END-TEST: an expression o determine whether to
stay in the loop,

UPDATE-EXPR: an expression that assigns a new
va%ue t:) a vanable

.The constramts are that the INITﬂEXPR rnust pre-

106

cede LOOP-STATEMENT, the LOOP-STATEMENT
has 2 data dependency on INIT-EXPR, the UPDATE-
EXPR must be contained in the bedy of the loop
and update the variable assigned to in the INIT-

“EXPR; and the END-TEST must-appear-as pari-of

the LOOP-STATEMENT's test.

This description of a programming plan is not suf-
ficient to support the process used by our student pro-
grammers. [n particular,

1. It lacks indexing information about under what
circumstances it is worth checking for the plan’s
presence, This means that a bottom-up search
is stuck trying to match all possible plans that
might have a particular program action as a com-
ponent.

. It contains no explicit representation of the dif-
ferenices between plans at different levels in the
hierarchy. This means that to recognize 2 spe-
cinlization of a recognized plan, 1t’s necessary to
do o complete match against the components and
constrainis of that specialization.

]

3. It contains no knowledge about other related
plans that can be inferred once the plan is recog-
nized. This means that additional matching must
be done o try to recognize these other plans

To alleviate these difficulties, we provide three addi-
tionzl pleces of information with each programming
plan: indices, specialization constraints, and a list of
implied plans.

4.1 Plan Indices

Bach plan can index other plans in the library. An
index consists of a set of tests and a pointer to a par-
tial instantiation of the indexed component. The tests
are represented with arbitrary predicates, as are con-
strainis. The partial instantiation is represented as set
of bindings to that plan’s components.

For example, the WHILE action has an explicit
index to the ITERATE-OVER-RANGE plan. The
index’s test i1s: Does the the WHILE s test involves

o gsingle relational operator olher than egualily end
coniain o varighle? The index points to an in-
stance of ITERATE-OVER-RANGE, with its LOOP-
STATEMENT bound to the WHILE, its END-TEST
bound to the relational test, and its INDEX bound
to the variable. (If there are muliiple ways to sat-

isfy the index test, multiple instances of I[TERATE--

OVER-RANGE are generated.)

4.3 Implied Plans

Each plan may have a list of plans that are im-
plied by its recognition. Tor example, recogniz-
ing COMPUTE-DISTANCE implies having recog-
nized three new plans: two instances of POINTs

-.and one instance of PAIR-OF-POINTS thaf combines

e B adtion o “plan T inEy Tndex e ey el Bthvr

plans. For example, the WHILE action also indexes
the FLAG-CONTROLLED.ITERATE plan. That in-
dex’s test is: Does the WHILE's test involve o single
varicble and an egualily or inegualily tes! against 2
numeric consiant?

The idea behind indexing is to perform index tests
when each program action or plan is examined and
to match only the indexed plans against the program.
This focuses the search and has the potential Lo greatly
reduce the search space. In addition, since the index
is to a partially recognized plan, only the compenents
noi already recognized need to be searched for in the
code, speeding up the matching process.

4.2 Specialization Constraints

Each plan may be linked te a plan it specializes.
This link describes the additional constraints on it
that cause it to differ from the plan it specializes.
For example, the plan FULL-ITERATE-UP-OVER-
RANGE is defined as a kind of ITERATE-OVEHR.
RANGE whose UPDATE-EXPR is constrained te be
an increment. Similarly, COMPUTE-SQUARE is de-
fined as a kind of MULTIPLY, where both attributes
of MULTIPLY are constrained to be equivaleni ex-
pressions.

Each plan may be specialized by a set of dif-
ferent plans. ITERATE-OVER-RANGE, for ex-
ample, is specialized by & set of plans, which in-
cludes FULL-ITERATE-UP-OVER-RANGE, FULL-
ITERATE-DOWN-OVER-RANGE, ITERATE-UP-
OVER-POWERS, and ITERATE.-DOWN-OVER.
POWERS, ameng others.

The idea behind specialization constraints is to al-
low plan recognition to proceed by following an in-
dex to a general plan and then to gradually specialize
that plan. This simplifies indexing, since every plan
does not require an index to be recognized, and allows
plan recognition to take advantage of commonalities
between different plans. But it means that whenever
a plan is recognized, it’s necessary to check all of the
specialization constraints to the more specialized ver-
sions of that plan.

101

these POINTs. These plans are not components of

COMPUTE-DISTANCE since~they do not have o

be recognized to recognize an instance of COMPUTE-
DISTANCE. But once an instance of COMPUTE-
DISTANCE is recognized, these other plans are now
known to exist. Similarly, recognizing the special-
ization ARRAY-POINT of POINT (which is an im-
plementation of point as two array elements with a
shared subscript) implies having recognized another
new plant ARRAY-OF-POINTS {which has the two
arrays as its components, but doesn’t have ARRAY.
FOINT as a component).

The idea behind the list of implied plans is to aveid
having to try to recognize these additional plans bot-
tom up {rom the code. Essentially, it avoids matching
them with the code by taking advantage of the fact
that their existence is implied from plans that have
already been recognized.

4.4 Summary Of Organization

In summary, each programming plan in the plan
library is now indexed by particular combinations of
program instructions or program plans. The program
understander considers that a particular plan might
be relevant only when it encounters the index dur-
ing understanding--not simply whenever some com-
penent of the plan appears in the code. Each pro-
gramming plan is also linked to specializations of that
plan, with explicit tests to determine wheiher that
specialization is present. Whenever a program under-
stander recognizes a particular plan, it attempts to
specialize it as far as possible. This avoids the need
for explicit indexes to each individual specialization.
Finally, each programming plan is also linked to other
plans that can be inferred once its recognized. The
understander can then recognize these plans without
explicitly matching them against the code,

5 Plan Recognition Using This Plan
Library Organization

The first step is the translation of the program into
an abstract syntax tree with frames used to repre-
sent each action in the program and its relationship

to other actions. An action is any unit the trans-
lator recognizes from language constructs, from low-
level multiplication of a pair of values to higher-level
constructs such as a loop with a test and & body. The
contents of the frames and their slots vary with each
type of action. The task of the recognition algorithm
~-1s-to construct-a-plan-hierarchy that-maps entries from
the plan library onto this abstract syntax tree.

5.1 The Algorithm

The recognition szigorithm is straightforward., It
proceeds by removing and examining the first com-
ponent O in a program-component list L, which is

“mined-that the‘outer-wvhile;the assignment to-j-that -

initiziized to the list of the entries appearing in the -

abstract syntax tree. The plan recognizer then does
the following to try to infer the underlying plan hier-
archy P:

1. Checks C's specialization constraints and at-
tempts to specialize € as far as possible. It adds

any specialization to P, with a specialization link

to O

2. Determines whether € or its specialization (if
~ any) index any pregramming plans. If they do,
it tries fo rmatch these indexed plans against the
code. 1f places any programming plans that
match into P, along with links o their compo-
nents. In addition, it adds any recognized plans
to the head of L, preceded by any plans that were
implied by iis recognition,

This process repeats unkil £ s empty.

5.2 An Example

We'll briefiy illustrate how this process recognizes
the first few plans in our example. The recognition
process starts by examining the declarations and as-
signments. None of these can be specialived, nor do
they index any plans, so they wind up being quietly
removed from L.

The recognition process nexi examines the outer
while loop {the WHILE action in the program’s ab-
stract syntax tree). It first checks whether this ac-
tion can be specialized (such as to INFINITE-LOOP,
which 1s & WHILE with the additional constraint that
its test is always true). In this case, however, none
of its specialization constrainis hold. The recognition
process then checks whether any of the indexing tests
associated with the WHILE succeed. In this case,
it successfully indexes ITERATE-OVER-RANGE, so
this indexed plan is added io the front of L.

- new. plan, GENERATE-PAIRS. (The index test is .

102

The recognition process now examines ITERATE-
QOVER-RANGE, It checks whether it can be special-
ized; it can, to FULL-ITERATE-UP-OVER-RANGE.
It then checks whether it or its specialization indexes
anything. In this case it doesn’t {although it would,
for example, if it were contained in another iteration
construct) and so it's removed from L. The result, at
this point, is that the recognition process has deter-

precedes it, and the inerement of j inside it form an
instance of FULL-ITERATE-UP-OVER-RANGE.
The recogaition process then examines the assign-
ment within the loop and finds it can’t be special-
ized and doesn’t index any concepts. It then en-

counters the inner-while loop, which by the-same--

process as before causes it to recognize another in-
stance of FULL-ITERATE-UP-OVER-RANGE. As
befare, the recognition process then precedes io deter-
mine whether it can specialize this plan and whether
it indexes any new plans. This instance indexes a

whether the FULL-ITERATE-UP-OVER-RANGE is
contained within the SEQUENCE of another FULL-
ITERATE-UP-OVER-RANGE.) This new plan is rec-
ognized, added to the front of L, and specialized
to GENERATE-UNIQUE-PAIRS, which is another
dead-end, and is eliminated from L. The result, now,
is that the recognition process has realized the plan-
ning roles played by the structure of both loops and
their loop indices,

The recognition process then examines the subbrac-
tions within the while loop, but they can’t be spe-
cialized and don’t index any plans, so they’re gui-
etly removed from L. I4 then processes the muliipli-
cations in ihe sqrt, specializing them to instances of
COMPUTE-SQUARE, and processes the plus, which
it specalizes to SUM-OF.SQUAREs. Finally, it pro-
cesses the call to sqre, which together with SUM-OF-
SQUARES, indexes COMPUTE-DISTANCE. After
matching COMPUTE-DISTANCE against the code,
it then adds the plane it implies to the program-
component list {the two POINTs and the PAIR-OF-
POINTS! followed by the COMPUTE-DISTANCE
plan itself. It then proceeds to specialize POINTS into
ARRAY-POINTS, which in turn implies the existence
of ARRAY-OF-POINTs, then continues in a similar
fashion from there.

6 Conclusions

This paper has presented a modified bottem-up
approach o the recognition of programming plans.

The approach relies on a highly organized plan li-
brary, where each plan has indexing, specialization,
and implication links to other plans, It uses an algo-
rithm that takes advantage of these indices to suggest
general candidate plans to match top-down against
the code, specializations to refine these general plans

once they're recognized, and implications to Tecognize

_other, related plans without doing further matching.

nal of Man-Machine Studies, 18, 1583,

F. Detienne and E. Soloway. “An Empirically-
Derived Contro} Structure for the Process of Pro-
gram Understanding”, International Journal of
Man-Machine Studies, 33, 1990.

"8 Fickasand H. B’rti’ék"s"":“Récogniiibn’"ﬁz"A Pro-
~ gram Understanding System”, in chceedmgs of__ o

“{¥hile others have pointed out the potential usefuiness
of indices (or “beacons”) {1, 3}, they have used them
within a top-down approach to suggest plans other
than the ones found by refining and decomposing a
set of initial plans presumed to be in the code.

Qur appreach to hybrid bottom-up/top-down
recognition is based on observations of student pro-
grammers undersianding code. It has the potential
to greatly reduce the number of plans that a program
understander must try to match against the program,
But by using indexes to make guesses about which
plans might aciually appear in the code, it is trading
completeness (the ability to recognize every instance
of every plan in the plan library that appears in the
program) for efficiency (the ability to quicky recognize
those plans it recognizes).

How well this approach will actually work in prac-
tice will depend significantly on whether it will be
possible to accurately determine indexes to plans in
the plan library and whether the necessary indexing,
specialization, and constraint tests can always be Im-
plemented efficiently. Our approach to determining
indices for our plan library has so far been to infer
them from observations of programmers understand-
ing programs, but this clearly is too time.consuming
and too ad-hoc to be practical for real-world applica-
tions. As a result, we're currently investigating statis-
tical methods for trying ¢o aulomatically generate in-
dices for plans. In addition, our approach uses a wide
variety of different predicates to perform tests, some
of which have the potential to be hideously inefficient
when implemented in their full generality. Anocther
current focus is in trying to construct a clean library
of efficient predicates to use for making these tests.

Finally, we're currently tesiing our approach on a
large library of geometric objects and operations. Our
testhed is two sources: a set of sizeable student pro-
grams, and a set of smaller geometrically-inclined text-
book programs translated into C.

References

[1] R. Brooks. “Toward a Theory of the Comprehen-
sion of Computer Programs”, International Jour-

103

[20]

(1]

the BUh TTCAT, Tokyo, Japan, 1979

1 J. Hartman. “Understanding Natural Programs

Using Proper Decompaosition”, in Proceedings of
ICSE-81, Austin, TX, 1891,

| W. Lewis Johnson. Intention Based Diagnosis of

Novice Programming Errors, Morgan Kaufman,
Los Altos, CA, 1986,

W. Kozaczynski, J. Ning, and T. Sarver. “Pro-
gram Concept Recognition”, in Proceeedings of
the 7th Annual Conference on Knowledge-Based
Software Engineering, Washington, DC, 1882,

S. Letovsky. “Plan Analysis of Programs”. Ph.D.
Thesis, Yale University, New Haven, CO, 1988,

S. Letovsky and E. Scloway. “Delocalized Plans
and Program Comprehension™, IEEE Software,
3(3), 1986.

D. Littman, J. Pinto, 5. Letovsky, and E.
Soloway, “Mental Models and Software Mainie-
nance”, in Empirical Studies of Programmers, E.
Soleway and S. Iyengar (editors), Ablex, Nor-
wood, NI, 1986,

W.R. Murray. Automatic Progrum Debugging For
Intelligent Tuforing Systems, Morgan Kaufman,
Los Altos, CA, 1088,

1.Q. Ning. “A Knowledge-Based Approach To
Automatic Program Analysis.” Ph.d. Thesis.
University of lilinois, 1989,

C. Rich and R. Waters. The Programmer’s Ap-
prentice, Addison Wesley, Reading, MA, 1990.

E. Soloway and K. Erdlich. “Empirical Studies
of Programming Knowledge”, IEEE Transaciions
on Software Engineering, 10(5), 1984.

L.M. Wills. “Automated Program Recognition by
Graph Parsing”, Ph.D. Dissertation, MIT, Cam-
bridge, MA, 1992,

L.M. Wills,
A Feasibility Demonstration.”
gence, 45(2), 1990.

“Autornated Program HRecognition:
Ariificial Intell

Loredanna Mancini
John Foster

Sylvie Cochinal
Alan Padula

Takis Katsoulakos
Roberto Ciampoli

What does industry need in order to un.derstand programs?
(Position Statement)

Loredana Mancini

O.GROUP - Olivetii Information Services
Via B. Croce, 19
00142 Rome

Abstract: The panel has the aim to discuss the
different views on the meanings of program
comprehension, both seen from the resesrch
and from the industry point of view. The

participants will highlight the differcnt |

- perceptions and needs on the problem of
undersianding a sofiware system and s
maintenance.

Sometimes there seemed 1o exist something
Hke a gap between industry and research. It is
not clear if this is because industry peoplke
think that they are 1oo busy in giving concreie
results and cannot allow themselves to follow
"dreams” like research, or because researchers
are always looking for new intergsiing

challenges and do not siop to create, oul of

their interesting results, something really
usable in an industrial context,

Recently this tendency seemed io come to
have been resolved, in fact research people
seem o be tired of having only new
“prototypes” that presented limits in their
applicability in the real world, and they are
looking forward 1o realising usable products,
On the other hand there is a movement in
indusiry that sees companies, at least the
biggest and innovative ones, starting to ask for
something that can help them in their
cveryday work, and that are also willing to
experiment something that can be further
exploited for their purposes.

0-8186-4042-1/93 $03.00 © 1993 IEEE

106

This change is particularly important in
disciptines, like program comprehension, that
arc strongly related with aspects connected
with human perception . and gathering. of
information. Human minds follow specific
recognition patterns in order to comprehend
software and = the understanding and
explicitation of these patierns should be one of
the resulis of the Program comprehension
research,

This panel wants 1o focus on topics like:
"what does indusiry think program
comprehension 157" and "Which are the
industry needs to understand programs, and in
general software systems?”

The participants will present their experience
and their point of view on the topic,
considering also the activities they an
performing in this arca. John Foster (British
Telecom) will discuss the challenges that
industry gives to research, Roberto Ciampoli
(Oliveni) will present the industrial point of
view on the application of program
comprehension tools and iechnigues, Alan
Padula (Hewlett Packard) and Silvy Cochinal
{Cap Gemini Innovation) will give some hints
on their experience in specific projects related
to the theme discussed, and Takis Katsoulakos
{Lloyd's Register) will present the exiended
experience he has acquired as project manager
of a reverse engineering E.E.C. funded
project: REDO

An Industry View on Program Comprehension

John Foster

Abstract

Industry needs program comprehension tools antl tech-
nigues. It looks to researchers to provide them, but will
cheerfully move the gealposts when they do.

1 Comprehend to Compete

If we cannot comprehend programs, we cannot refiably
change them and the business that relies on them stagnates.
Program comprehension enables people to provide 4 rapid
responseto unexpecied requests for change on what are of-
ten very large systems,

Taking those keywords in reverse order:

Large: The complete works of William Shakespeare look
trivial when Iaid alongside the source code of some indus-
trial systems, yet we require programmers to understand
both broad concept and fine detail of these huge works.
No-one can hold so much information in their head. The
sheer size also makes it unreasonable 1o expect “propes”
documentation across the system: the future lies in provid-
ing automated broad coverage, with added human effort re-
served for the detailed investigation of isolated parts.

Change: This is our most common reason for wanting (o
understand a program. It places great demands on a repos-
itory {as commonly used) because of the difficulty of re-
linking human-provided information after a major source
change.

Unexpected: Most changes during the life of a system were
ananticipated when the system was being developed. We
cannot realistically expect the developers to document how
changes might be made, becanse from their point of view
the variety of possible changes is infinife. We also cannot
deal with comprehension tools which expect that their users
will interact with the tools to provide comprehensive docn-
mentation across the system. Withouf knowing in advance
where the changes will come, we would waste an unaccept-
able amount of effort.

0-8186-4042-1/93 $03.00 © 1993 IEEE

167

Response: A response to arequest for change doesn’t count
unless it is an accurate response, with ng new errors intro-
duced. Comprehension methods and tools need to support
desk-checking activities and inspection teams, a8 well ag
the maintainers. An accurate response means the program
must fit with its application domain: domain knowledge is
rightly understood to be a vital part of program comprehen-
sion, hut we know little about how best to automate it

Rapid: When a response is needed, it is needed fast. That,
after all, is just part of being commercial. So there are more
limits on how much we can afford to have the comprehen-
sion tool rely on human input for ifs information.

People: Comprehension is a human activity, and compre-
hension tools and methods only support it. People have
their own ways of thinking and of problem-solving, and
these are not well understood. Good comprehension tools
are produced now, but far better ones shonld be available if
we understood better how mainienance programmers work,
We are wary of the results of studies carried oul on novice
programmers, and yet unwilling to spare the time of expe-
ricneed siaff for experiments. Either way, program com-
prehension research is a multi-disciplinary activity,

2 Towards a Solution

The abilily to parse source code, to derive information
on its structure and to present a variety of different views
on the resulting data is exciting and welcome. It can be
enhanced by extensions to the related studies of how peo-
ple set about the problem solving process, and this research
will feed on itself if that behaviour is itself modified by the
new tools available. Coping with domain knowledge on a
large scale remains a major problem, but researchers who
manage 1o solve even that should comfort themselves: we
in industry, as soon as we are able to cope with the systems
we have, will soon produce even larger ones (o tax the abil-
ity to understand.

Program Comprehension: The Gap between Research and Industry

Sylvie Cochinal
Cap Sesa Sud-Ouest - Space Skill Center
8, rue Mesplé
31036 Toulouse Cedex, France

Introduction

The need for program comprehension in industry is
now clearly recognized and its applications are various

- mainfenance (corrective, evolutive and adaptive)
that represents more than 80% of the need,

- test and quality conirol, that, at its higher and- -

more complex level, expects Lo check the mapping be-
tween the semantics of the program (what it really
does) and the original functional specification,

- reuse, a new domain, that needs to know what
a module does before classifying it and being able to
reuse it in another application.

Various Needs for Program Comprehen-
sian

Al these activities imply the comprehension of the
whole or parts of the program. Depending on the ac-
tivity and the features of the firm, the degree of com-
preqiension is very different,.

For example, high security aspects of some firms
will demand a comprehension ool to give results that
are sure at 100%. This criteria will then be prefered to
a tool for a higher level of program comprehiension that
would understand more, but with a less high validity
probability.

For other needs (mainly in maintenance), the user
will expect the comprehension tos] to be less precise
but to give ideas of what and where to look in the code;
this means to do a first filter on the enormous amoount
of code in order to speed up the user’s comprehension
process,

Sometimes, industry will not need comprehension
automatisation but "just” an ergonomic interface and
storage capacity for stocking, query and retrieval of
what users have already understood in the program,

0-8186-4042-1/93 $03.00 © 1993 IEEE

108

The Gap between Industry and Research

Above, T remarked that industry jusl” requires
storage capacity and an ergonomic interface because
it seems to be simpler than an automatic comprehen-
sion process. But in fact, research is not always well
aware of the different needs of industry, and works
rmore on some complex automated functional compre-
hension than on such basic” realizable” solitions that
could be directly used in industry.

Moreover, as 1 have realized when passing from re-
search in Cap Gemini Innovation to industrial applica-
tions at Cap Sesa, research uses as basic techniques for
program comprehiension some techniques that seem to
be very advanced and not yet very flable for indusirial
point of view. Knowledge bases, capture and modeli-
sation of human expertise, expert systems and so on,
that are used for program comprehension, frightens in-
dustry which sces these techniques as being Loo new to
be applied for industrial purposes. Industrial applica-
tion of program comprehension demands a bigh level
quality and fability that research prototypes don’t,
have. And sometimes, the high complexity of the re-
search result makes the industrialisation phase so diffi-
calt, that very often, it is abandoned due to Lhe effori.
The prototypes, then, stay on the shelf |

Conclusion

On one hand, there is great need of communication
between research and industry to know what the soew
ond needs from the first one. Moreover, to be alle
to make the research results maybe less sophisticated
and more reliable and easy to apply to a rea! industrial
application,

Ou the other hand, research must always keep ong
step in advance on industrial needs and anticipate
whal industry will need in 10 vears. This is the cop-
tinual dilemma and the right dosage has to be found
between responding to current needs and anticipatisg
the future.

L Sessmn G_
Frogr: pr&gsentatwns for
. ?ilfiPreg?am }Cemprehensmn

Chair: Gerardo Canfora

A Toolset for Program Understanding

Panos E. Livadas
Computer and Information Sciences
University of Florida
Gainesville, FL 32611

Abstract

Program understanding is asscciated with the hi-

erarchy of abstractions and interpretations that are

dedused from the code [16]. Therefore, the under-
standing process parallels that of the bottom-up pro-
gramming process in that mainiainers begin by asso-

- ciating small groupings of individual instructions with

higher-level interpretations. The understanding pro-
cess is repeated until the desired level of understanding
is attained.. Co

Program understanding in this context requires the
identification and study of the numerous complex in-
terrelationships thal are induced by the dafa flow,
calling, and funciional dependencies that exist in the
software. Therefore, an environment is needed in or-
der ald the programmer in understanding software,
The internal program representation {IPR) plays =
crifical role in the nature of that environment.

In an earlier paper, we discussed both an infernal
program representation and an environment that con-
forms to the requirements stated above [11] The inter-
nal program representation, the system dependence
graph {SDG), is a directed labeled multigraph that
captures all contrel and data dependences, as well as
the calling context of procedures; it is based on the
one proposed in (8], The toolset is referred to as Gh-
tnsu and 1t supports a number of tasks over a program
written in a subset of ANSI C such as slicing, dicing,
and ripple analysis,

In this paper we will present some background on
the problems associated with program understanding
and show how the Ghinsu toolset can aid the program-
mer in understanding software.

1 Introductien

Software maintenance is an expensive, demanding,
and ongoing process. Boehm [3] has estimated that

0-8186-4042.1/93 $03.00 © 1593 IEEE

Scott D, Alden
Computer and Information Sciences

University of Florida
Gainesville, FL 32611

one US Alr Force system cost $30 per instruction to

“develop and $4,000 per instruction to maintain over

its lifetime, This case may be exceptional, but the
maintenance costs for a large embeddad system seem
to be an average of two to four times the davelop-
ment costs. 1t is generally recognized that the primary
reason that software maintenance is so costly is that

- each modification requires first ‘and foremost that the

1i¢

software be undersiood. A program is said to be un-
derstood if an overall interpretation of the program
15 achieved. Most of the propesed models fall into
one of the two categories: code-driven (bottom-up) or
problem-driven {top-down) [4, 5, 15].

We hypothesize that both sirategies are employed
by the programmers engaged in this activity, We also
support the notisn that different maintenance tasks
require different kinds of program understanding, and
therefore different processes are required, As an ex-
ample, consider the code segment helow,

sum = §;
read{next};
while {next»>=0) do
begin
5UmMm = 5um -+ nexi;
read{next);
dosomethinglnext); */

Ma L) e

/*

end;
write{sum};
write{nexi};

G O0s =1 oh o

i, i | i, e, s,
i it S St St Ve St S g

P
fd

We can identily several different kinds of program
understanding such as the following:

1. Understanding that the definitions of sum that
can directly affect the use of sum at statement
{5) are at statements (1) and (5).

2. Understanding that the definitions that directly
affect statement (5) are at statements (1), {2}
(8), and (6).

¥

3. Understanding that the value of sum at statement
(9} depends on the statements (1), (2), (3), (5),
and (6).

4. Understanding that the segment adds up a num-
ber of input values until it reads a negative value,

“after which it prinits the resultand the last valioe

read.

Given the complexity of the task, is not surpris-
ing therefore that programmers spend approximately
80% of the maintenance time "locking at” code [19].
Therefore one can conclude that maistenance quality
and productivity can be improved by supplying the

..maintainer with a set-of proper-tools that-he/she may

employ for understanding the target software.

5. Understanding that the author assumes that the
source of input values is non-empty.

. Undersianding that the segment determines the
summ of all scores in the recent exam of the class

5201,

This example illustrates the two principal demains
of program understanding: the programming and the
application domain. The first four kinds of under-
standing belong to the programming demain, and rep-
resent an extrapolation of the code’s intent in terms
of standard programming interpretations and problem
solving technigues. The fifth kind belongs to the ap-
plication domain, and differs from the rest because it
represents an abstraction of the code’s intent in ferms
of a specific applicaticn. This domain lies outside of
the domain of program interpretations, and requires
program documentation for understanding.

Program undesstanding is associated with the hi-
erarchy of abstractions and interpretations that are
deduced {from the code [16]. Therefore, the under-
standing process parallels that of the bottom-up pro-
gramming process in that maintainers begin by asso-
ciating small groupings of individual instructions with
higher-level interpretations. The understanding pro-
cess is repeated until the desired level of understanding
is atizined.

Program understanding in this context requires the
identification and study of the numerous complex in-
terrelationships that are induced by the dete flow,
calling, and funciional dependencies that exist in the
software. Program segments are not just as sim-
ple as the example above may erronecusly indicate,
The example contains only localized interactions. As
Letovsky and Soloway [9] have established, program-
mers have difficulty understanding code that has non-
local interactions. For example, if the call io proce-
dure do_something is uncommented, it is not clear
which of the definitions of sum can reach the use of
sum at staternent number (5). The answer to this
question depends on whether or not the variable sum is
defined (as a global variable) in the body of the proce-
dure do_something, or by some other procedure that
do_something invokes (directly or indirectly} before it
returns.

111

found that simply purchasing new tools does not au-
tomatically increase productivity [1]. What is needed
is the creation of a process for each type of under-
standing that uses a set of tools designed within the
framework of this process. These tools should allow
the maintainer to ask questions about & program and
be provided with precise answers.

In order to study tool-assisted program understand-
ing, we must provide an effective environment for un-
derstanding programs. Such an environment should
be integrated with the existing software maintenance
tools and should provide additional facilities to sup-
port other software engineering activities. We have al-
ready developed much of this environment, but some
research issues remain. For example, the answers that
the understanding too!l provides should be presented
to the programmer in a way that best improves the
maintainer’s understanding of the program relation-
ships. This task is not trivial because of the large
amount of dependencies in a software. Furthermore,
the maintenance tools should have a fast interactive
response time. Otherwise, the maintainers will be dis-
couraged from using them.

Realizing the need for such an environment, two
and half years ago we embarked upon the task of devel-
oping such an environment and tools and turning the
theoretical concepts into practical realities, with the
support of the Software Engineering Research Center!.
We have made considerable progress towards these
goals.

The key element of our system is its internal pro-
gram representation {IPR), the System Dependence
Graph, or SDG. The SDG is a parse iree represen-
tation of the program. The nodes represent program
constructs, in and out parameters, call-sites, etc. The
edges represent various kind of dependencies (such as
data flow, control flow, and declaration) among the
nedes to which they are adjacent. The main benefit of
this structure is that it represents a vast amount of in-
formation that could be shared by numerous software
engineering tasks. These applications typically use the

1Funded by the National Science Foundation, the Center's
15 industrial affiliates, and the Florida High Technology and
Industry Council.

-Oretherotherhand anoniberolerganizations igve oy

same kind of information, but use different represen-
tations. Our approach eliminates the redundancies,
Since all algorithms use the SDG as the underlying
structure, they are source language independent.

The environment, referred to as Ghinsuy, supports a
number of tasks such as program slicing, dicing, ripple
analysis, dependency analysis, DU-chain, UD-chain,
and reaching definitions caleulation as well as a host
of browsing activities,

The remainder of this paper is organized as follows,
The next section presents background on slicing, dic-
ing, and ripple analysis. We then briefly describe the
Internal program representation and how it is derived.
Finally we present a tour of the Ghinsu toolset and
show some of its major functions and tools.

2 Background

From our perspective, the most important concept
15 that of a static slice, since it is used to build the
SDG. In addition, a slicing tool can provide useful
information for the software maintainer.

Sheing provides a way to decompose a large pro-
gram into smaller, independent components. Let P
be a program, p be a statement in P, and V be a sub-
set of the variables of P, Weiser defines as a stalic
slice of P relative to the slicing crilerion < p,V >
to be the set of all statements and predicates of P
that might affect the values of variables in V at the
statement p. Weiser reports experimental results that
experienced programmers use slicing when debugging
[17]. Weiser found that programmers remembered the
slice relevant to the bug as having been used or prob-
ably having been used in almost half the cases exam-
ined. When debugging, programmers view programs
in ways thai need not conform to the program’s tex-
tual or modular structures. In particuiar, the state-
ments in a slice may be scattered throughout the code
of the larger program. Yet, experienced program-
mers routinely abstract these slices from a program.
Weiser concluded that since programmers remembered
the relevant slices {rom the program they had de-
bugged, they were probably mentally constructing and
using these slices while debugging. Presumably each
programmer had independently developed the slicing
method. If novice programmers were taught the con-
cept of slicing, they could avoid this reinveniion and
learn debugging techniques Taster,

Since debugging is a process in which programmers
try to betier understand code io find and eliminate
bugs, and since programmers find slices when debug-
ging, it is logical that a tool that automatically creates

112

program slices would be useful not only in debugging
but also in code understanding {17)].

Suppose that during testing, we find that the value
of a certain variable, v, is incorrectly compuied at
statement n. By obtaining a slice of v at n, we may
extract a significantly smaller plece of code than the
entire program in which to locate the bug. If the value
of another variable, w, is computed correctly at state-
ment n, then we may employ a method that was sug-
gested in [13] and is referred to as dicing (computing
the intersection of two slices). The bug is likely to
be associated with one or more statements in a set
referred to as the Fault Prone Stofement Set (FPSS),
which is the set of statements associated with the slice
on v minus those associated with the slice on w. The
FPS5 is obtained by generating the complement of the
slice on w relative to the shce on v.

If alarge program computes the value of a variable
z and the code associated with this function is needed
in another application, then one could slice on this
variable and use the extracted program in the latter
application. Therefore, program slicing aids in code
reuse,

The number of slices, their spatial arrangement,
ete., may hold significant information about the struc-
turing of a program {171 Hence, an assortment of pro-
gram melrics can be computed and their actual signif-
icance investigated. Useful metrics include coverage,
overlap, clustering, and tighiness.

Ripple anulysis identifies the statemnents that will
be aflected when a change is to be made at a given
statement {i.e, ripple analysis is “forward” slicing}. A
program malintainer can examine the ripple of 2 siate-
ment to help determine the passible effects of » pro-
posed modification.

Structured walkthroughs and code inspection activ-
itles would be easier to perform by calculating inter-
procedural reaching definitions (the set of statements
s' which reach a statement s) , DU.chains (a chain
that links a use to all definitions that may reach it),
and UD-chains {2 chain that links a definition to all
of its possible uses).

Furthermore, run-time support can be provided
through automatic data generation (by using the cal-
culated UD and DU-chain information). Dynamic
slictng, and other pertinent tools that can be buit
by using the SDG to instrument the generated code.
Most of our tools can be run on incomplete programs
provided that they are compilable. Hence, these tods
can be used even at the development stage.

We have also developed an ebject finder that uss
information from the SDG to group together related

Cantral B ol AfTzct.Param e Parameter-Isn B = syl
Flow e r—————— Rettitin-Contre] @ ww w e et Parameter-Out e i
Calt [& S Return-Link B e Transiilve B

Figure 1: The SDG corresponding to the code in Figure 4.

types, data, and routines {10, 12]. We note that this
tool can help objectify code and capture the objects
that the original designer had in mind.

3 The Internal Program Representa-
tion

Weiser's slicers [18] were based on a flow-graph rep-
resentation of programs. Ottenstein et al. [14], show
that an infraprocedural slice could be found in linear
time by traversing a suitable graph representation of
the program that they referred to as the program de-
pendence graph (PDG). Horwitz et al. [§] introduce
algorithms to construct inierprocedural slices by ex-
tending the program dependence graph to a super-
graph of the PDG, which is referred to as the system
dependence graph (SDG). This extension captures the
calling context of the procedures which was lacking in
the method proposed by Weiser.

This new approach not only permits more pre-
cise slices than [18], it also permits slicing when the
program contains calls to unknown procedures {pro-
cedures whose bodies are not available), provided
that the transitive dependencies (discussed later) are

113

known. As was pointed out in [14], the internal pro-
gram representation (IPR) chosen plays a critical role
in the software development environment. An exam-
ple of 2 SDG 1s shown in Figure 1

We have developed a prototype thaf accepts pro-
grams written in ANSI C or Pascal and generates a
parse tree based SDG. We have implemented tools such
as a slicer, dicer, ripple analyzer, dependency analyzer,
DU-chains, UD-chains, a reaching definitions calcula-
tor (even if these definitions or chains span procedure
boundaries}, and a browser that utilize this SDG.

The grammar proposed in {7} consists of a single
(main) program and supports scalar variables, assign-
ment statements, conditional statements, and while
loops, but does not support variable declarations. The
language consists of a collection of procedures whose
parameters are passed by value-result, and which end
with return statements. These return statements
can not be arbitrarily located in the procedure, nor
can they actually return values to their calling proce-
dure(s).

We extend this grammar and consequently mod-
ify the SDG as follows: First, variable declarations
are supported. Second, we distinguish between pass-
by-value and pass-by-reference parameters. The same

{33 Flewgmaph

(b} Congrol Flowgrph

{¢) Post-dominatar tree

Figure 2

notation is employed as in C, in order to delermine
the type of parameter passing. However, pointer ocper-
ations are restricted fo those that constilute pass by
reference parameters; le., if x and vy are pointer vari-
ables. we permit assignments of these variables such as
*x = Gand *#y = #x (where * denotes a de-referencing
of the contents of the variables), Third,
of Teturn statements are permitied to

any number
ADPear any-
where in a procedure. These return statemnents can
contamn expressions that may include variables and are
modeled after the return statements in C. Fourth, we
distinguish among functions that return values as op-
posed to those that do not, Fifth, all C constructs are
handled except long jumps. Finally, we use a parse
tree as the basis of our SDG. This allows slicing Lo be
more precise than if the “resolution” of the SDO was
only at the statement level,

Even though the SDG and the slicing algorithm
are based on the work proposed in [8], our methods
are considerable extensions of previcus works. First,
our grammar is a superset of the grammar targeted in
[8]. Second, our method of building the SDG differs
in many respects. Our method eliminates the need to
compute the GMOD and GREF sets of each procedure
tn the systemn and to construct a linkage grammar and

114

its corresponding subordinate characteristic graphs of
the linkage grammar’s nonterminals. Third, we use a
purse iree as the basis of our SDG. This allows slicing
to be more precise than if resolution of the SDO was
only st the statement level. The improved precision
oceurs because the algorithm for slicing [6] requires
the traversal of certain edges backwards, Hence, when
astelement such as x = x + v +foo{&a) is encoun-
tered during the computation of the slice of a, then
the union of the slices associated with x and y will be
included in the slice of a, 1t is also clear that variables
x and y do vot aflect the value of a. By emplovinga
parse-iree-based 8DG, we are able to avoeid this shon.
coming of statement-based SDGs and therefore arrive
at mare precise slices and therefore more precise data
dependence analysis (since the latter depends on the
former).

3.1 Control and Data Dependence
Control Dependence A flowgraph (program
graph) is a direcied graph with an initial node from
which all other nodes can be reached. Nodes corre
spond Lo basic blocks and edges represent transfers of
control between basic blocks. Figure 2(a) shows an ex
ample flowgraph whose initial node has been marked

H The Ghirsu Project : /ret/santa/0/scroil/desc/02 Horwi b, o QR R SRR N RE N

i Ot ;E Eulld 335 !

o] [=w]
CEm] =]

Figure 3: The slice relative to the statement i=1

by “Begin.” Dependences among blogks arise as the
resuli of either control or data dependences.

A node yis said to be control dependent on zif there
exists a directed path from z to ysuch that every node
z on the path (not including z or y) is post-dominated
by v, and v does not post-dominate z.

In order to calculate control dependences, a control
fowgraph of a program is needed. The control flow-
graph’s post-dominators are then calculated which is
equivalent to calculating the dominators of the reverse
control flowgraph (all edges of control flowgraph are
reversed). We then use the algorithm discussed in [6]
te compute the control dependences.

Figure 2{b) and 2(c) show an example of the contral
flowgraph and its corresponding post-dominator tree.

Data Dependence [n order to compute the data
dependences of a program, we must first calculate the
reaching definitions for the entire program. We define
the GEN and KILL sets [2] for each block on flow-
graph. We then use the iterative algorithm presented
in [2] to calculate the reaching definitions. A node r
is data flow dependent from a node yif node y defines
a variable that 1s used in em x.

We now consider the case of routine invocation.
When a call-site is encountered, the flowgraph is an-

115

notated by introducing actual.in and actual out nodes
([12]). The actnal.out nodes are considered as un-
known (U-nodes){11] until the time the called pro-
cedure is solved. The assignment of the actual.out
nodes depends on the corresponding formal out nodes.
Specifically, if a formal.out node is an A-node, we con-
sider its corresponding actualout node to be a defi-
nition. If it is an I-node, the actual.out node is con-
sidered to be a definition, but its KILL set is defined
to be empty. Finally if the formal out node is an IN-
node, then both its GEN and KILL sets are empty by
definition.

When we encounter a call-site, we suspend solution
of the current procedure and descend into the called
procedure and calculation of the reaching definitions
is begun there. This procedure is repeated until one
procedure calls no other procedure. At this point, all
of the data flow dependences of the last encountered
procedure can be calculated since its GEN and KILL
sets are known.

4 A Tour of Ghinsu

In this section we briefly present the Ghinsu en-
vironment and the tools that we have implemented.

rﬁ The nlnaw Project @

et T aanta /07 weral | 7 et Db, R s10n1 .6 NURT i G

frold main()
0l int =¥,
R{ax,s¥);
: = X,

" : -2 7

';'uid Rint *x, int Ay}

Cpen

! Buad 306 [
w1 [aa]
a3
— T

Figure 4: The DU-chain at statement sy=sy+ix,

Ghinsu accepls a source program written in 2 subset
of either ANST C or Pascal as input and produces the
S as described earlier, This SDG can subsequently
be used by any of the available tools,

Figure 3 presents a simple graphical user interface
that we developed using X-Window library routines
that {acilitales user injeraction with the system. A
brief description of the major components of Ghinsu
as well as the tools discussed earlier {ollows. It should
be noted that except for YACC all components were
built “from scrabch”.

YACO: The parser generator YACC is used in the
(zhinsu project to generale a parser that when fed an
ANSI C or Pascal source program produces a parse
tree as output. This step produces the nodes and con-
trol How edges and is the skeletal structure on which
the rest of the systern dependence graph is bujlt. Each
terminal node 15 annotated with 15 corresponding lo-
cation in the source (a line and column number). This
allows us to achieve a mapping from the source file

to/from the SDG.

Dependency Generator: The dependency gener-
ator takes the parse tree {generated by the YACC)
as its input and produces the parse tree based system

118

dependence graph. Figure 1 illustrates the statement?
based SDG produced by the dependency generator for
the program shown in Figure 4.

TGOLS: The tools reside here and will be discussed
shortly.

Graphical Interface: Afler the Ghinsu tool has
been invoked, the user is presented with a window
{not shown} where the files of the given subdirectory
are displayed. The subdirectory can be changed by
changing the Path field in this screen. The file that
contains the desired program can be selected by click-
ing on its filename and subsequently can be opened via
open bution. Before any of the tools are invoked the
user must request that the SDG corresponding to the
file opened should be built; this s accomplished via the
build SDG button. At ihis poini, the user must posi-
tion the cursor on the target statement (and variable)
that he/she wishes o inspect; then be/she should in-
voke the appropriate module (slicer, dicer, ripple an-
alyzer, dependence analyzer, DU-chain, etc.)®.

?We illustrate the statement based SDG as opposed to the
parse tree based for the sake of simplicity.

“The Clear A1l button is employed to clear all highlighted
text; the Quit bulton is used io exit from Ghinsu. Buttons that

i \‘mid saind})
Y
R{&x,5Y¥);

i |

] Dpen I i Bd 306 I
=]

1 ii:xd R(int %x, int *y)

sz = Ax 4+ 1;

elan if (*
e e

I i et |
I msse]

Figure 5: The UD-chain at statement #x=+x-1.

The mapping between the source code, the graphi-
cal display, and the SDG is straightforward. When the
user selects some variable on a statement to have some
action performed on it (such as a slice), the line and
columnn is determined. The SDG is then searched for
a match based on the line and column. If a match is
found, the variable is highlighted; and, its correspond-
ing node is “remembered”. 1f the user subsequently
chooses an action, the node remembered is used as
the target node. The results of the action are reflected
on the display by traversing the SDG and highlighting
the source corresponding to the nodes that are marked
(e.g., in the slice).

Slicer: This module calculates slices on a system
dependence graph. The screen dump shown in Fig-
ure J illustrates the slice of the program relative to the
statement i=i by highlighting the statements that be-
long to that slice. In this context, the maintainer may
use the intraprecedural slice button whenever he/she
wishes to limit his/her view to the scope of one func-
tion. Furthermore, two more buttons related to slicing
are provided. The ascend only tool allows the main-
tainer to limit the slice to only the function selected

are not discussed are used for the tool's development process.
Additionally, the ebject finder buiton is not shown.

117

and the functions that call the selected function. This
operation corresponds to slicing phase one only. Cor-
respondingly, the descend enly tool allows the main-
tainer to limit the slice to only the function selected
and the functions called by the selected function. This
operation corresponds to slicing phase two.

DU-chain: Two more screen dumps are displayed.
Both illustrate the precision as well as the identifica-
tion of the position of the uses and definition of vart-
ables at a given statement even if procedure bound-
aries are crossed and even if recursive procedures are
present. In Figure 4 the statement *ys+y++x has been
selected and the DU-chain has been requested, i.e.,
the determination of all uses for this definition of *y.
Notice that #y is used in the predicate (¥y == 0);
if this statement evaluates to false, it will be used
in the predicate (*y==1). Furthermore, if the latter
predicate evaluates to false, then the variable will be
used at the statement *y=+y~1. Finally, since there is
an execution path that passes through the statement
+*y=+y++x and statement y=y, the latter statement is
captured since y is used there.

Similarly, Figure 5 illustrates the definitions of the
variable x that can reach its use in statement #x=#*x-1.
In that case what reaches this statement is either the

declaration (ud-anomaly can therefore be detected) or
the statement containing the definition #x=%x+1 de-
pending of course on the data,

Calls: This butten invokes a tool that displays the
calling sequence.In addition, the user could query the
system via either the whe calls or calls who buttons.
Specifically, the maintainer selects {via the cursor) a
function such as sample. In the former case, all func-
tions that call the function sample will be identified
whersas the functions that are invoked by the function
sample will be identified,

Dependency: This button invokes the data flow de-
pendence analyzer. It is assumed that already a state-
ment has been selected as we described earlier.The
output 1ndicates the line number, variable name, type
of varizble and the function in which each variable
that may affect the value of the selected variable is
visibla,

Finally, the Show definifions selection causes all
siatements to be identified at which a maintainer-
specified variable has been defined,

5 Acknowledgements

We wish to acknowledge Steve Croll for the imple-
mentation of the Ghinsu Toolset,

Heferences

1] SERC Industrial Affiliates. Personal cormmunica-

tion, 1089-1997.

A. V. Ahe, B Sethl, and 1. D, Ullman. Compil
2r5; Principles, Technigues, and Tools. Addison-
Wesley, Reading, Mass,

B.W. Boehm. The High Cost of Soltware, Practi-
cal Strategies for Developing Large Software Sys-
terns, E. Horowitz {ed.). Addison-Wesley Read-
ing, Mass.

4] V. Basili and H. bills. Understanding and doc-
armnenting programs. JEEE Transactions on Soft-
ware Enginecring, SE-8{31:2370-283, 1982

R. Brogks. Towards a theory of the comprehen-
sion of computer programs. Int'1J. Man-Machine
Studies, 18:543-554, 1983

d. Ferrante, K. Ottenstein, and J. Warren. The

program dependence graph and its use in opti-
mization. ACM TOPLAS, 9(3):319-34¢, 1987.

118

[T} 5. Horwitz, J. Prins, and T. Reps. Integrat-
ing non-interfering versions of programs. In
Proc. 15th ACM Symposium of Programming
Languages, 1988.

{8] 5. Horwitz, T. Reps, and D. Binkley. Interpro-
cedural slicing using dependence graphs. ACM

TOPLAS, January 1990,

[9] S. Letovsky and E. Soloway. Strategies for doc-
umenting delocalized plans. In Proc. Cenf on
Software Mainfenance, pages 144-151, 1985,

PE. Livadas and P. Roy. Program dependence
analysis. In JEEE Cenf on Software Mainie-
nance, 1992,

P.E. Livadas and 5. Croll. System Dependence
Graphs Based on Parse Trees and their Use in
Software Maintenance. In Journal of Information
Seiences, (to appear).

| P.E. Livadas and T. Johnson. A new ap-
proach to finding objects in programs. Techni-
cal Report cis.ufl.educis/iech-reports /1192 /4092-
{37.ps.Z, U. Florida Dept. of CIS, 1992,

JR. Lyle and M. Weiser. Auwtomatic program
bug location by program slicing. In Proc, Ind
International Conference on Compuiers and Ap-
plications, 1987,

K.J. Otienstein and L.M. Ottenstein. The pro-
gram dependence graph in 2 software develop-

ment envirgnment. ACM SIGPLAN Notices 18,5,
1684,

R.E. Sevicra. Knowledge-based program debug-
ging systems, [EEE Soflwoere, 4(3020-32, 1087,

[14]

] 1. Wedo. Structured program analysis applied to
software mainienance. In Proc. Conf. on Software
Muammienence, pages 28-34, 1985,

M. Weiser. Programmers use slices when debug-
ging. CACM, 1983,

[18] M. Weiser, Program slicing. JEEE Transactions
on Software Enginesring, 1984,
[19] N. Wilde. SDTC Lecture Series 1. Software

Development Environments.
1692,

CENET, Goisher

A Combined Representation for the
Maintenance of C Programs *

. David Rinloch

" Centre for Software Maintenance

_Malcolm Munro ~~©

University of Durham

South Road, Durham DHI1 3LE, UK

Abstract

An tmportant aid to the problems of program com-
prehension has been the use of static analysis {ools 1o
provide useful and up {0 daie informaiion on a pro-
gram. Through the use of different views a maniainer
can gain a much clearer understanding of o program.

A drawback of stalic analysis {ools is thal various
representations of the code are required fo consiruct
the different views of the program. A selution is to de-
vise a single combined represeniation conlaining suf-
ficiend informalion o allow consiruction of each re-
quired view.

This paper describes research o exfend an existing
unified interprocedural graph 1o allow the representa-
tion of C programs. Techniques for the dependence
analysis of pointer variables are described and the con-
siruction of interprocedural definition-use information
in the presence of poinler paramelers addressed. A
fine grained program represeniation, the Combined C
Graph {CCG), containing three new edge types is in-
troduced,

1 Introduction

Whenever a change is to be made to a piece of soft-
ware, it is important that the maintainer gains a com-
plete understanding of the behaviour and functionality
involved. This process of program comprehension is
frequently made more difficult by the absence of useful
program documentation. The maintenance program-
mer will often not have been involved in the develop-
ment process or a significant period of time may have
elapsed between development and maintenance. Doc-
umentation will then become of crucial importance.

*This research is supported by the Science and Engineering
Research Council and by the European Gas Turbines Engineer-
ing Research Centre (Whetstone).

(-8186-4042-1/83 $03.00 © 1893 IEEE

119

In many cases the maintenance programmer’s only
reliable description of the software wil]l be the source
cade itself. The process of program comprehension
can then be aided by the use of static analysis tools,
These tools are able to analyse a program without its
execution to exiract information such as call graphs,
control flows, data flows, program slices and cross ref-
erences. By integrating stalic analysis tools, software
maintenance environments have been developed. The
source code is analysed and the resulting information
stored for later browsing by the maintainer. Multiple
views of the program may be presented, helping the
maintainer by providing information in more than one
form and by concentrating the maintainer’s attention
on relevant parts of the software.

Harrold and Malloy[1] identify the problem that dif-
ferent representations of the source code are required
to construct each view of the program. For example, a
representation allowing the computation of interpro-
cedural data flow information may be inadequate to
permit the construction of & program slice. A main-
tenance environment providing different views of the
code will therefore require a variety of independent
program representations and algorithms. These repre-
sentations will contain repeated information and hence
will lead to inefficient use of storage space.

The solution to this problem presented by Harrold
and Malloy[1] is to combine the features of existing
program represeniations to give a single combined rep-
resentation. The resulting representation will contain
sufficient information to construct each of the required
views of the program. A single combined representa-
tion has the following three advantages.

e Eliminates redundant information.

» Reduces access times to different representations.
Any algorithm need only access one representa-
tion.

e Helps comprehension by incorporating all pro-

gram relationships into one representation.

Various existing program representations and the re-
sulting Unified Interprocedural Graph are deseribed
in section 2.

- A limitation of this earlier work 1s the language fea-
tures which may be represented by the unified graph.

Only sealar variables; assignment- statements;while—.

loops, conditional statements and procedures with ref-
erence parameters are permitted. The alm of this re-
search iz to devigse a Combined C Graph (CCQG) to
represent programs written in the C language(?]. This
presents a variety of additional problems. (contains
_many additional language constructs such as pointer
and structure variables and value-returning functions
with pass by value and polnter parameters,

Animportant feature of a combined graph is its rep-
resentation of the program’s data dependencies, Data
dependence information is used to calculate definition.
use relationships and program slices. This paper ad-
dresses the problem of calculating data dependencies
in C where dynamic memory allocation and pointer-
mduced allasing create extra difficulties. Aliasing in-
formation must be taken into consideration in order
to achieve accurate static analyses of the source code.
Section 3 describes the problems involved and dis-
cusses a method for data dependence analysis in the
presence of pointer variables and dynamic memory al-
location. An example is outlined and the application
of this technique to pointer parameters and the caleu.
lation of interprocedural data dependencies addressed.

The C language also allows expressions involving
embeadded side effects, where a variable is defined as
a result of the evaluation of the expression, and em-
bedded control flow. These features require a more
refined analysis of each program statement, Sec-
tion 4 describes the problems involved and introduces
a fine grained graph representation with three new
edge types.

Concluding remarks are given in section 5.

2 Existing program representations

To provide a maintainer with different views of a
program a variety of slgorithms are required. Algo-
rithms such as those {o caleulate data flow informa-
tion and program slices often involve the use of inter-
mediate graph-based program representations. This
section describes a number of these representations.

A simple representation of a program is the call
graph. Nodes of the graph represent procedures, edges
represent call relationships between procedures and

120

i

0%~

-0

¥

O railfreturn nede

O entry fexit node

~ #> binding edge

-z~ reaching edge

Figure 1: Example Program Summary Graph.

edge labels represent actnal parameters, Whilst the
call graph iisell provides important information for
program comprehension, 14 13 evident that it contains
insufficient information for the creation of other pro-
Zram views.

A variant of the call graph, the Program Summary
Graph (PSG) presented by Callahan[3] permits flow-
sensitive data How analysis, i.e. control flow internal to
procedures is taken into account. The PSG represents
programs written in a procedural language with call
by reference parameters. Call information is repre-
sented by nodes for each formal and actual reference
parameter ai procedure call, entry, exit and return
sites, together with binding edges relating these nodes.
Control flow within each procedure is represented by
‘reaching edges’ between the interprocedural control
points. Callahan presents iterative algorithms to solve
a variety of data flow problems, for example whether
a reference parameter may be preserved across a call
site, Figure 1 shows an example PSG. Procedure P
contains a call to @ with actual parameters o and b,
These are bound to the formals z and 3. @ in turn
calls £ with actual parameter bound to v within /.

An extension to the PSG, the Interprocedural Flow
Graph (IFG)[4] allows the calculation of interproce-
dural definition-use pairs. Intraprocedural reachable
use sets are first altached to each entry and return
node. A two phase algorithm then allows this loeal
information to be propagated throughout the graph,

S EE Y
“Vmalioc)

NP,

-z control dependence

flow dependence

Figure 2: Example Program Dependence Graph.

making use of a new ‘inter-reaching edge’ to preserve
calling context. The resulting sets of interprocedural
reachable uses at each IFG node can then be used to
calculate definition-use associations.

The Program Dependence Graph (PIDG) was first
introduced by Ferrante et al[5] as an internal represen-
tation for an optimising compiler. Iis use in software
development and maintenance has been addressed by
Ottenstein and Ottenstein[6]. The PDG consists of
nodes representing program statements and edges rep-
resenting control and data dependencies between these
statements. An example is shown in figure 2.

Ottenstein and Ottenstein present a linear time
program slicing algorithm. A slice at statement s is
computed by determining each statement on which s
has a transitive data or control dependence. This in-
volves a simple backwards traversal of the PDG from
statement s,

An extension to the PDG, the System Dependence
Graph (SDG) is described by Horwitz et all7]. Hor-
witz et al tackle a language comprising scalar varl-
ables, assignment statements, conditional statements,
while loops and an cutput statement, together with
procedure calls and pass by value-result parameters.
Dependence subgraphs are created for each procedure
and are connected by new nodes and edges making
up the call interface. Nodes are introduced to repre-
sent procedure call and entry sites together with the
actual and formal parameters. Additional edges repre-
sent procedure call relationships and binding between
actual and formal parameters. Figure 3 shows an ex-

121

[x)
=N

Q
i
a b i \Q b
.......... it ok gl
' 1 1 t
i i Y | :
! , enter ' :
i 1 Q ' t
! 1 ' ¢
1 I ' '
I
; . i :
b ¥ Y

callfentry site

actual/formal paramater

control dependence

call edge

v v Ol

porameter binding edge

TFigure 3: Example System Dependence Graph esll in-
terface,

ample of the call interface for the call of € from P
shown in figure 1.

A two phase interprocedural program slicing algo-
rithm, again based on a backwards fraversal of the
graph, is presented. A new ‘interprocedural transi-
tive data dependence edge’ is used to preserve calling
context during this iraversal and hence eliminate re-
dundant nodes from the computed slice.

Given the useful information provided by the call
graplh, the applicability of the PSG and IFG to data
flow calculations and of the SDG to interprocedural
program slicing, Harrold and Malloy[1] identify the
possibility of combining these representations to create
the Unified Interprocedural Graph (UIG). Various re-
dundancies between the nodes and edges of each indi-
vidual representation are identified. For example, the
call and return nodes of the PSG/IFG are equivalent
to the actual parameter nodes of the SDG. Similarly
the entry and exit nodes of the PSG/IFG are eguiva-
lent to the SDG’s formal parameter nodes. Both the
call graph and SDG contain edges representing call-
ing relationships between procedures. In each case
the redundant information can be removed and con-
sequently savings made in the storage space required.
Algorithms applicable to each graph remain applica-

ble to the UIG by simply considering only subsets of
the available nodes and edges.

3 Dependence analysis of pointer vari-
ables

“When statically @nalysing a program the effect of

aliasing must be taken into account. The precision by
which these effects can be determined will be a sig-
nificant factor in the usefulness of the static analysis.
'This is especially true of data dependence anzlysis,
where the presence of aliasing creates additional de-
pendencies. Imprecise aliasing information will lead
to further spurious dependencies.

An important componeni of the UG is the flow
dependence. Tor a language without aliasing Horwitz
et al{7] define a flow dependence from vertex u»; to
vertex va, vy —+ vy, to exist when:

e 1y is a vertex that defines variable 2.
s s 15 a vertex that uses variable z,

¢ Control can reach vy after vy via a path in the
control flow graph along which there is no inter-
vening deflnition of z.

This corresponds io the computation of a definition-
use association from vy to vy, The UIG contains edges
to represent intraprocedural flow dependencies.

For fanguages without pointer variables, aliases can
be created through the use of reference parameters and
norn-local variables, An alias will result in procedure
7 whenever a call is made to procedure P of the form
Pz, 2}, where the actual parameter is repeated, or
P(g), where g is a non-local variable accessed within
P. Further aliases can then be created within proce-
dures called from P by calls such as Q{a,b), where ¢
and b are aliases within P. Any alias created will hold
throughout the execution of a callee. Horwitz et al ex-
tend the original definition of flow dependence to deal
with the possibility of ‘potential aliases’ which exists
in a language with reference parameters whenever a
procedure has two or more actuals of the same type,
two or more non-locals of the same type or an actual
and non-local of the same type:

e 1y is a veriex thai defines variable 2.
@ vy is & vertex that uses variable y,

e r and ¥ are potential aliases.

122

s Control can reach vy after ¥; via a path in the
control flow graph along which there is no inter-
vening definition of or y.

The definition presented by Horwitz et al for

definition-use associations in the presence of aliasing

‘relies on the-fact that-an alias holding when-a vari-

able is defined will also hold when that variable is

used: There i a direct relationship between variable —

names and memory locations which does not change
intraprocedurally., This approach, although net dis-
cussed by Harrold and Malloy[1], could be applied to
the reference parameters of the UIG.

In C, assignments between pointer variables allow
aliases to be created intraprocedurally and allow the
aliases holding in a caller to be affected by assign-
ments within a callee. Aliasing information can no
longer be calculated for an entire procedure. Recent
work by Landi and Ryder[8][0] presenis an algorithm
to safely approximate interprocedural pointer-inditced
aliasing, based on the use of conditional analysis tech-
nigues. Pande st al[10] extend this work to give an
approximate algorithm for obtaining interprocedural
definition-use associations in the presence of single
level pointers. Pande et al first calculate the inter-
procedural reaching definitions, again using the con-
ditional analysis technique. The aliasing information
compuied by Landi and Ryder is then used to account
for the generation and killing of reaching definitions
through aliasing effects.

An alternative method for the calenlation of data
dependencies for programs with pointers and heap al-
located storage is presented by Horwitz et al{11]. Hor-
witz et al address the reaching definitions problem in
terms of memory locations, rather than variable names
and aliases:

Program-point ¢ has a flow dependence on
program-poiat p if p writes into a memory
location loc that g reads, and there is no in-
tervening write inte log along the execution
path by which ¢ is reached from p.

Horwitz et al’s algorithm is divided into two phases.
The first phase, the ‘reaching-stores phase’, uses an
abstract semantics to compute at each program-point
a set of store graphs that approximate the possible
memory layouts that could arise during execution.
Program variables, together with any dypamic vari-
ables allocated during execution, are represented by
abstract memory locations. Each abstract memory
location is Iabelled by the programe-point which Tast
wrote to that location. The second phase, the ‘infer-
ence phase’, examines the set of stores reaching each

PROGHAM-POINT

1) x = {int *) malloc(sizeof{int));

BY HE T RO e
. L O { i

4) ¥ 5 oI

} elss {

5} ¥y = (int *) malioc(sizaof(int));g
8) xy = 20;

T} *x = *y;

8) end

USE LABELLED-STORE
] e 1
ox y:
Lo .;...La_ LI
DN ¥
L it wLG 5 '--L'i it
w0k Lo
ISk
Dow y:
L1 : I)j& 2 LJ L
Lo LiLels’
Ii(a- Z' 11.
X: v
© Lo ! H Lx

Figure 4: Hlustration of Horwitz et al's method for the caleulation of flow dependence.

program-point and determines the locations read. A
flow dependence p —+p ¢ exists if g reads a location la-
belled pin any store graph reaching q. Three approxi-
mations are used {o ensure that the set of store graphs
at each program-point is effectively computable when-
ever the program contains a loop.

Figure 4 shows an example of Horwitz et al’s
method. The meaning of the program in the abstract
semantics is the set of all (program-point, labelled-
stores) shown. Flow dependencies are found by exam-
ining the locations used at each program-point. Point
p is flow dependent on each point that labels a lo-
cation used at p. Yor example, program-point 6 uses
location L1, which is labelled by point 5. There is con-
sequently a flow dependence 5 —; 6. Figure 2 shows
the resulting PDG.

This example shows how Horwitz et al avoid the
need for alias analysis. The dependence 2 — 7 arises
in terms of aliases because:

123

e program-point 2 defines #x.
s program-point 4 creates the alias <#x,*y>.
e program-point 7 uses *y.

By dealing with locations rather than object names,
the dependernce arises because:

e program-point 2 writes location L2
e program-point 7 reads focation L2, labelled 2.

The alias <#x,*y> is not compuied explicitly but is
implied by the store graph.

This technique can be used to deal with pointer pa-
rameters. In C all parameters are passed by value{2].
The formal parameter is a copy of the actual parame-
ter. This copy can be changed within the callee with-
out affecting the actual parameter in the caller. How-
ever, by passing a pointer parameter, the formal pa-

PROGRAM.POINT LABELLED-STORE

ol 249

1) ptrpar(a);

v = SRR A
§) end LAO Lb

2} veid prypar(int =£); ©

{

i3
3) =f = 10; L2
i .
4) Teturn; L.g

Figure 5: Calculation of flow dependence for pointer
parameters.

rameter becomes a copy of the pointer. By derefer-
encing the formal parameter the objects referenced by
the actual parameter within the caller can be accessed
within the callee, Since these referenced objects are
not coples, any changes made will remain when control
returns to the caller function.

Figure 5 shows an example of a function with a
pointer parameter. It is assumed that sach variable
visible at program-point 1 has been previously defined
at point 0 (not shown), Point 1 15 a call to phrpar
which has one parameter of type int *. The formal
parameter £ becomes a copy of the actual parameter a
and hence points to location L7, Sincefisa pointer, it
may be dereferenced within ptrpar, allowing access to
location L7, This location is defined at point 3. When
control returns to the caller L7 has been labelled by
point §. The use of location LI at point 5 gives an
interprocedural flow dependence 3 —p b

This example highlights a major difference between
the UIG and the new CCG. The flow dependencies
contained in the UIG are intraprocedural. Interpro-
cedural dependencies are encapsulated within the eall
interface. In the UIG, interprocedural definition-use
associations arise as a result of the cali by reference
parameter passing scheme. A location may be defined
within one procedure and later read within another
procedure only where that location is visible as a re-
sult of its use as a reference parameter. This inter-
procedural definition-use information is not explicitly
contained in the UIG. Instead, the IFG subcompo-

124

nent of the UIG allows reachable use information to be
gathered intraprocedurally and then to be propagated
throughout the graph, making use of the parameter
interface. Interprocedural definition-use relationships
can then be determined,

In C the combination of pass by value and pointer
parameters means that objects can be accessed within

a rallee function without explicitly appearing in the

parameter interface. Interprocedural dependencies are
no longer encapsulated within the call interface. For
example, in figure B location L1 is visible within fune-
tion ptrpar yet does not occur explicitly as an actual
parameter. The resulting flow dependence 3 —, 5
will pass directly from the CCG subgraph for func-
tion ptrpar into that for the caller function. The pa-
rameter interface has been bypassed completely. The
resulting interprocedural flow dependence is shown in
figure 6. Since employing this technigue to determine
flow dependencies explicitly uncovers interprocedural
definition-use relationships, the IPG-based propaga-
tion algorithm used in construction of the UIG is no
longer necessary.

4 FEmbedded side effects and control
flow

Side effects occur when a variable is altered during
the evaluation of an expression. In C, side effects ran
arise as a result of assignment statements, increment
and decrement operators and function calls, Wherever
astatement may contain an expression, side effecis are
possible. For example, the variable y is defined as &
side effect of the test

if {x == (y = BE})
The increment of variable 1 in
vhile (ali++] == 0} ..,

similarly is a side effect. A function call involves side
effects if any variables are definad during the execution
of the function. For exarmple,

103 ...

may involve the definition of variables within function
£,

The ‘reaching stores phase’ of Horwitz et al’[11]
dependence analysis algorithm evaluates approximate
store graphs at each program-point. In each example
given by Horwitzi et al a program-point corresponds
directly to a single statement, However, where a state-
ment coniains an expression with embedded side of-
fects, the variable definitions involved will lead to the

if (x

call
- pirpar

enter
pirpar

califentry site
actualfformal parameter

control dependence

fAow dependence

calf edge

i von

parameter binding edge

Figure 6: Dependence graph with pointer parameter.

creation of new store graphs ab intermediate stages
during the execution of the statement. This preblem
orcurs in the statement

x = (y = 8);

Both variables x and y are defined but there is an in-
terimediate stage at which only the definition of y has
taken place. An additional program-point is required
to represent this intermediate stage. The CCG must
consequently be a more finely grained program repre-
sentation than the UIG.

An expression in C may also contain embedded con-
trol How. This occurs with the conditional expression
operator 7:. The conditional expression,

{a>B) 7Ta: b;

evaluates eitlier a or b depending on the value of
(a>b). The use of short-circuiting in evaluating
boolean expressions similarly leads to embedded con-
trol flow, For example, in the expression

if (x & y &% =z)

if x is false, the value of the entire expression is false
and y and z will not be evaluated. There is conse-
quently a possible change in control flow associated
with the & and || operators,

A fine grained analysis is again required to deal with
these embedded control flows. Additional program-
points must be introduced to represent each possible
flow of control. For example, the above conditional

125

expression requires three program-points. The first
point represents (a>b) and the second and third a
and b respectively, each control dependent on the first.
A statement in C no longer corresponds to a single
program-point but must be subdivided whenever side
effects or control flows are embedded.

Three new edges are contained in the CCG. The
first of these edges is the expression-use edge. The
statement

X:(Y=5);

will produce two program-points, one to represent the
embedded side effect {y = B) and the other to rep-
resent the final assignrent (x =). This assignment
uses the value produced by the expression (y = 5).
An expression-use edge (v = B)—, (x =) indicates
this relationship. Figure 8 contains an expression-use
edge representing the use of the expression *t++ at an
assignment node.

A similar return ezpression-use edge indicates the
relationship between the expression evaluated at a re-
turn statement and its use within the calling expres-
sion. The graph for the call

x = square{a};
shown in figure 7 contains a return expression-use edge
(return £x£)—,.(x =).

An Ivalue is an expression referring to a named re-
gion of storage, its name being derived from the assign-
ment statement, the left hand side of which must be

califentry site
a:_:__tu_zx_!_{'_forma!_parametcr
zontrel deapeadence
‘reticn cXpressioniase edge |

flow dependencs

EEETell

zall edge

\L

parameter binding edge

Figure T: Example of return expression-use edge.

an lvalue. An lvalue definition edge is added whenever
a program-point evaluates an lvalue expression which
is then defined at a second program-point. This situa-
tion may arise when side effects occur on the left hand
side of an assignment statement. With the exception
of the boolean operators 22 and ||, the conditional op-
erator 7: and the comma operator, the order of eval-
uation for operands within is undefined. A compiler
may therefore choose to evaluate the left hand side of
an assignment statement followed by the right hand
side and finally perform the assignment itself. For ex-
ample, the statement

#pre = {x = 10},
ray
s cvaluate the lvalue #p.
e increment the pointer p.
evaluate the expression x = 10,

» assign the value of the expression (x =
ivalue *p,

10) to the

An lvalue definition edge (*p++)—2(=) will resuls.
Figure 8 shows the CCG for the statement

5t = kfob

It is assumed that the order of evaluation is left
to right, The lvalue #s is evaluated first, with the
pointer s incremenied as a side effect. The expres-
sion *t is then evaluated and t incremented as a side

128

.

control dependence

EXpression-use edge

o flow dependence tvalug definition edge

Figure 8: Resulting graph representation for #s++ =
Fpd,

effect. Finally, the assignment is performed. The
expression-use edge (#t++) -, (=) shows that tha
value of the expression #t++ is used in the assignment,
The lvalue definition edge (#s+4) sy, (=) indicates
that the lvalue *s++ is defined by the assignment.

5 Conclusions
A maintainer presented with a variety of views of a

subject program is able to gain a better understand-
ing of that program. Farlier work has suggested the

need for a combined program representation contain-
ing sufficient information to construct each of the re-
quired views. This paper has presented extensions to
an existing combined graph, the UILG, to create the
CCG allowing the representation of C programs.

*An existing algorithn for dependerice analysts
_______Lhe bresence of pointers is described and examples ...
given of its use with C pregrams The poss;blltty of

pointer parameters in C is discussed and the effecis
on the combined graph observed. The graph’s flow
dependencies are no longer intraprocedural and the
interface between functions is no longer encapsulated.
Interprocedural flow dependencies are represented ex-
plicitly on the CCG. -

The possibility of side effects and control flow em-
bedded within C expressions requires a finer grained
analysis of each source statement. New graph nodes
are created where these embedded side effects and con-
trol flows are present. Three new edge types, the
expression-use edge, the return expression-use edge
and the lvalue definition edge are introduced to relate
these new finer grained nodes.

A completed graph for the C language will require
the representation of additional language constructs.
Array variables are currently treated simply as ag-
gregates and any subscript information is lost. Data
dependence analysis for array variables in the con-
text of compiler optimisations has been described by
Pughii2]. In certain cases this detailed analysis of ar-
ray subscripts may be applicable.

FPurther work is also required to preduce algorithms
to extract information from the combined graph. Call
graphs, control dependence and interprocedural and
intraprocedural reaching definition information are
contained explicitly within the CCG. Whilst caleu-
lating the graph’s flow dependencies, it may also be
possible to determine interprocedural ‘may be pre-
served’ information. Where an abstract location
reaches across a call site with its program-point la-
bel unchanged, the corresponding variable is preserved
across that call site.

The interprocedural program slicing algorithm{7]
described by Horwitz et al is based on a two phase
graph traversal, A similar traversal algorithm applica-
ble to the CCG making use of the new expression-use
edge, lvalue definition edge and return expression-use
edge is required. Further work is necessary to investi-
gate the problems of calling context and the elimina-
tion of redundant nodes and edges from the slice.

127

References

1] M. Harrold and B. Malloy, “A unified interprocedn-
ral program representation for a mainienance enviren-
ment,” in Proceedings of the Conference on Software
Mamteﬂarzce 1991, Sorrento Itaiy, pp 138~ 14£ Oc:—

“ipber199107

Hall, second ed., 1988,

D. Callahan, “The program summary graph and flow-
sensitive interprocedural data flow analysis,” in Pro-
ceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation, Atlanta,
Georgta, pp. 47-56, June 1988,

M. Harrold and M. Soffa, “Computation of interpro-
cedural definition and use dependencies,” in Proceed-
ings of the IEEE Computer Society 1890 Inierna-
tional Conference on Computer Languages, New CUr-
leans, Louisiana, pp. 297306, March 1990

J. Ferrante, X. Ottenstein, and J. Warren, “The pro-
gram dependence graph and its use in optimization,”
ACM Transactions on Programming Languages and
Systems, vol. 9, pp. 319-349, July 1987.

K. Ottenstein and L. Ottenstein, *The program de-
pendence graph in a software development environ-
ment,” SIGPLAN Notices, vol. 9, pp. 177-184, May
1984,

S. Horwitz, T. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” ACM Transactions
on Programming Languages and Systems, vol. 12,
Pp- 26-60, January 19%0.

W. Landi and B. Ryder, “Pointer induced aliasing: A
problem classification,” in Conference Record of the
18th Annual ACM Symposium on Principles of Pro-
gramming Languages, Orlando, Florida, pp. 93-103,
January 1991,

W. Landi and B. Ryder, “A safe approximate algo-
rithmn for interprocedural pointer aliasing,” SIGPLAN
Notices, vol. 27, pp. 235-248, July 1952,

H. Pande, B. Ryder, and W. Landi, “Interprocedu-
ral def-use association in C programs,” in Proceedings
of the ACM SIGSCOFT 1991 fth Symposium on Soft-
ware Testing, Analysis and Verification, pp. 139153,
October 1991.

S. Horwitz, P. Pleiffer, and T. Reps, “Dependence
analysis for pointer variables,” SIGPLAN Notices,
val. 24, no. 7, pp- 28-40, 1955.

W. Pugh, ®A practical algorithm for exact array de-
pendence analysis,” Communications of the ACM,
vol. 35, pp. 102-114, August 1992,

=B K_I}_ermghan and D Ritchie, The © Programming 0.
~ Language. fx%g?ewaod Clilfs, New Jersey: Prentice.

An Integrated and Interactive Reverse Engineering Environment
for Existing Software Comprehension

1. De Carlini*, A. De Lucia®, G. A. Di Lucca*, G. Tortora”

* Dipartimento di Informatica e Sistemistica
University of Naples "Federico 11"
via Claudio, 21 - 80125 Naples

® Dipartimento di Informatica ed Applicazioni
University of Salerno
84081 Baronissi, Salerno

Abstract

Software Comprehension is an incremental process to
support the understanding of both the behaviour and the
structure of software sysiem. It uses the existing
documentation of the system and completes it with
information deduced from the code by means of Reverse
Engineering tools.

As pointed out by several authors, the curreni Reverse
Engineering tools produce pre-defined sets of reports and,
in some cases, furnish answers io fixed kinds of querivs,
thus being inadequate 1o completely support Software
Comprehension.

To this aim, in this paper, an imteractive Beverse
Engineering envirenment is described which supporis
information extraction and abstraction processes about g
Joftware systent.

1. Introduction.

Most of the problems regarding existing sofiware are
related (o maintenance operations and software reuse.
These problems are due 1o the parnial or to1al lack of
software documentation or its inconsistency with respect
to operating code. In fact, the source code is ofien the only
available documentation on a software product, This
creates obstacles for software comprehension since we
know very little about its design and structure at various
abstraction levels. Consequential, we cannot easily
determine the components of a sofiware systems and the
relationships existing among them and it thus becomes

This work has been supporied by "Progetto Finalizzato
Sistemi Informatici and Calcolo Parmlielo” of ONR uader

grant 91.00930PF59

128

0-8186-4042-1/93 $03.00 © 1993 IEEE

harder 1o perform maintenance operations and identify

reasable software components,

This situation has led to greater importance being
atiributed to Reverse Engineering (in the following RE)
which is a sect of Software Enginecering theories,
methodologies and techniques supporting the extraction
and abstraction of information from an existing software
product in order to produce software documents, at vardoms
abstraction levels, that are reliable, consistent and coherent
with the operating code. The main goals {1] of an RE
process can be synthesized as follows:

- identification of software components and relations
existing among them;

- creation of software representations at a higher
abstraction level than code {and also at various
abstraction levels);

- understanding and description of software {unctions
and of how they were implemenied (e, "what” the
software does and "how” i does i),

The extracted and abstracted information has 1o be
arranged in such a way that it is easily understood, thus
enabling a faster and more efficient comprehension of the
existing software system. Generally, the information i3
arranged according 1o a chosen program represenisiion
form in order to show the program intermodular and
intramodular structure,

The documents produced by the RE processes usually
are the same suggested by the most widely ased
methodologies for software development. It is worth
pointing out that different documents reconstructed by RE
usually require different kind of information o be
extracted/absiracted and, correspondingly, different program
Intermediate representation Forms {(in the following IF) as
widely discussed in [2}.

In this paper an interactive RE environmen! is
described based on Webs. Webs provide a graphical,
language independent intermediate represeniation form of
programs. Information extraction and absiraction processes

can be written in TDL. TDL (Tool Development
Language) is a language in which Web manipulations can
be naturally expressed.

The paper is organized as follows. Section 2 analyzes
the main problems dealing with current Reverse
Engineering processes related to software comprehension.
Section 3 briefly describes the main definitions and

- characteristics:of the-Web structures that -are proposed-as—

IFs capable of effectively representing all the information

Development Language TDL, which makes it possible to
manipulate Web structures interactively using a graphic
formalism. Section 5 introduces the concept of "direct
refations” and "summary relations” and how they can be
obtained from the Web representation. Some TDL
procedures extracting direct and summary relations are
reported in the Appendix.

2. Intermediate representation forms and
software comprehension.

The RE processes generally used are often inadequate
and unable to satisfy the user's needs, especially as far as
maintenance and reuse activities of the analyzed software
are concemed, There are many reasons for this but it is
mainly due 1o
the lack of information in the produced documents, as
compared to what is actually needed;
the incompleteness of the information extracted and of
the intermediate representation forms adopted;
the lack of flexibility in the tools used,

This is motivated by the the following considerations.

The reconstructed documents, which are highly useful
in the development phases, are not always so useful in the
maintenance phase, or for identifying reusable
components. The documents on the software system
intermodular structure (High Level Design documents) are
too general (and thus useful only for an initial
understanding of the software system), while those dealing
with the intramodular structure (Low Level Design
documents) are too detailed (foo much detail makes it
harder to search for and 1ake out the wanted information).
Moreover, these documents (at any abstraction level) only
point out particular views of the whole system, and
therefore give only partial information about it. It will
thus be up to the vser to select information from each of
them and collect this information into a new and unique
document. Hence the user has continuously to fetch and
validate information from the various reconstructed
documents in order to obtain an "ad hoc” document
summarizing the information he needs. Generally, the
final document is not a "standard" document, like the
reconstructed ones, but a mixed document in which each
piece of information interweaves and complements the
other information.

The Intermediate Forms (IF) generally used are unable
to represent all the kinds of information that can be
extracted and abstracted from source the code nor is it
possibie for some of them to be used to abstract any kind

~-embedded dinvthescode:: Section 4 presents=the: Tool

128

of information at a higher level, None of them can be used
as the unique IF representing all the information and
knowledge embedded in the code.

In [3] the most common [Fs used in RE processes are
described. Some of these can cover several abstraction
levels and/or represent many kinds of information, both
intramodular and interrmodular, but they are always hmlted

“to-a partial view of the software product.

For example, control flow graph {4] {5} nesting; free

[6]:151; algebraic-expression:[7] give useful information «o

about the intramodular control flow of a program and the
nesting of its control structures. Although these IFs can
be enriched with data in order to obtain intramodular data
flow, they give us no information about data dependences
or data visibility. Call graph [8]. call tree [8)], structure
charts [9] give information about modular structure,
calling/called relationships, module relationships ("usés”
and “"composed of" relationships) and intermodular data
flow but no information about pathological connections
[10] or data aliases or module visibility,

Dependence graphs [11] [12] should seem to have
solved this problem. They represent information both at
intraprocedural and interprocedural level: control flow, data
dependencies, intermodular data flow and activation
relationships. We can abstract control structure nesting,
intramodular data flow, call tree and graph, efc., but
dependence graphs give us no information abowt data and
module visibility,

In particular, let us note that almost all the IFs give no
information about data and module visibility. Hence they
can only represent actual relationships between software
componenis but say nothing on the potential ones. This
means that we can know everything sbout Effective
Module Relationships and Effective Data Relationships
[13}, but in practice nothing about Potential Module
Relationships and Potential Data Relationships {13]. In
other words, the information about polential relationships
among software components is totally ignored by most
1Fs, even though they are present in the code.

Potential Relationships is the term we use 10 indicate
the set of links between software components that are not
actually implemented in the code, but which could be
successively set up according to the programming
language visibility rules and are therefore potential links.
An example is the potential link between a subprogram
and a second one when the latter is visible from the former
and then potentially recaliable from it.

The tools genemlly used o set up RE processes for the
extraction and abstraction of information are typically
inadequate due to their limited flexibility and can thus only
produce documents according to how they were designed.
They allow no interactivity to the user, who could drive
the process according to the information already acquired
{by extraction and/or abstraction) and by asking for the
new information he still needs (turning on new extraction
and/or abstraction processes and tuning the whole RE
process). In general an RE process starts from static
analysis of the source code, and possibly of any existing
documentation. In this phase information about the single

components making up the software system and
information about the relationships existing between them
is extracted from source code by an antomatic process.
This information, which in the following we will call
"direct relation” [14], provide a first, language-independent
representation of the software system at a low level of
abstraction. From direct relations we can abstract
information at a higher level of abstraction describing the
other, non-direct relationships between the various
software components. We will call this information
"summary relation” [14]. This process is generally
performed in "batch” mode without user interaction and the
tnols extract and abstract only the information useful for
reconstructing the docurenis for which the tools were
designed. In other words they can only reproduce the
previously established documenis and provide only the
angwers that can be obtained from then.

RE processes, on the other hand, have to work
incrementally, as with the comprehension process, so that
the information extracied and sbstracied can be suitably
iniegrated so as to create documents that are graduaily
enhanced with the information needed and/or prune ot the
superfluous one.

For this to be performed efficiently, the RE process
must be based on an IF capable of representing all the
software system information embedded in the code, and on
the use of tools that allow interactive manipulation of the
IF 50 as to obtain the information that is actually needed
and in the desired form. The use of such tools also allows
a more effective and casier management of the IF which,
due {0 the big amount of information it gathers, will be
more complex than the ones generally used, which include
only part of the information embedded in the analyred
code.

3. Webs for program comprehension,

Let os briefly recall the definitions of relational
structore [15] and Web structure [16].

A reiational structure (briefly a structure) i$ 3 pair
G=(G4 Gr). where G4 is a set of atoms and Gpisa setof
formulas, resulting from formally applying an n-ary
predicate from a set P of predicates to a list of n arguments
from Gy,

A Web structure is a particular case of relational
structure and consists of a supporting tree structure, whose
aloms, nodes of the tree, are colored by means of
predicales from a set Op of unary operator predicates (for
cvery atom n in the siructure there exists a unigue formula
Op(n) with Op € Op). A [ather-son relaiion between
atoms n and m is given by a formula S(n,m). On this wee
structure, a second one is superimposed which consists of
special arcs, called Web arcs, connecting nodes of ihe
underlying tree. Web arcs are labelied by means of binary
predicates from a set Cur of cursor predicates.

By properly choosing the set Op and Cur, 2 Web can
describe a program in any programming language. The iree
structure represenis the synlactical structure of the
program, while the formulas constructed by means of the

130

predicates in Cur provide information about both the
control flow and properties that the tree alone cannot
express. Predicates in Op represent items of a
programming language.

Webs provide a graphical, language-independent
representation of programs. The set Op of operators does
not depend on a specific programming langeage, but it can
be assumed to be large enough to represent constrocts in
any imperative programming language,

Fig. 1 shows the graphical representation of Web items.

Web Item Graphical Represendation
Aoma O’
operator(a) g
cursor(a, b} ’Uﬁ%ﬁ
S{a, b} %,

Fig, 1: Graphical Representation of Web llems

In the following we will congsider the following set of
operator and cursor predicates, referring to a Pascal-like
language:

Jp = {program, procedure, function, declist,
dectype, decvar, deeproc, decformpar, formpar,
valpar, varpar, type, vbl, int, real, bool, char,
record, field, file, id, halt, endproc, endfun,
restype, group, continue, while, repeat, it, ite,
asgn, callproe, califun, actualpar, open, create,
read, write, eof, recfield, plus, minus, times,
div, exp, minusi, and, or, not, ge, le, g, ne, gi,
1t} v {numconst |numconsizs R} o {cheonst |
cheonste Characters) o {true, false)

Cur = {start, next, yes, ng, left, right, del, eall,
receall, actualize}.

Ag an cxample of a Web represeniation of a program,
let us consider the program shown in Fig. 2. Figs 3 and 4
show respectively the graphical Web representations of the
declarative structure and the representation referring o the
piece of code enclosed in the if-then-else control structure
of the MAIN program,

In RE processes we also need 10 know the names of
the sofiware components of a program. Therefore a
relational represeniation of the symbol-table is added to the
Web structure of the program in the following way:

4} a unary predicate name is added to the set Op and a
binary predicate ident is added 1o the set Cur ;

b) each name of a soflware component in the program
becomes a new atom of the structure and is colored by the
predicaic name .

c) each atom of the Web struciure declaring a sofiware
component (in our example each atom colored by a
predicate from the set [program, procedure,

function, formpar, type, vbl, field}) is linked to the
corresponding atom name,
Fig. 5 shows some ident links for our sample program.
Web manipulation is accomplished by means of
production and structure derivation. The formal definitions
of productions and structure derivations rely on the
algebraic framework of the theory of categories. We will
give an informal description of the concepts involved,

“leaving-out the formal details:which can be-foand in [16). =

Here, a production p has the form By B>, where 87 and

substructure B (left hand side of the production) with the
substructure B (right hand side).

As an example, the production of Fig. 6 replaces a
sum operation with a multiplication one.

Given structures G=(G4,Gr) and H=(H 4,HF), a

structure morphism (briefly a morphism) g:G—# is any
pair g=(g4.gr) of maps ga:Ga—»H 4 and gp:Gr—Hp such
that if ¢ (xy,....x5) is in G f then
ER(O(xy,... . Xn)2 0(gAX],....8A%s). The composition of
morphisms is defined as usual,
Given a production p, say B; <283, structures G and H
and a morphism g:8;—G, a direct derivation G =H viap
based on g can be intuitively described as follows: the
morphism g embeds the lefi-hand side of p in G by
searching the substructure of G which matches B;, The
structure /7 is obtained from G by first deleting atoms and
formulas of B; (not occurring in B3) determined by g and
then by glueing a proper instance of B; .

The Web representation of programs is a good
candidate for IF; in fact, with respect to the requirements
reported in Tab. 1 [3], the Web representation:

- provides a transformation support that preserves
information: only the code representation is changed,
not the original semantics of the information incloded
in it; .

is independent of the language used: by properly
choosing the sets Op and Cur, a Web can describe a
program i any programming language:

- provides a complete set of information about what it is

representing at that abstraction level;

program MAIN;
type bill_rec = record
uy_idinteger;
bill_numinteger;
hill_totinteger;
aid:baclean;

end;
bill_file = file of bill_rec;

r
bills: bili_file;
rec:bill_rec;
paid“tm;in!egcn s e s e e e
paid_bill:integer;
delay totinteger,

va

Sy eare Strictures and expressés’the replacement of 4 7 delayZbillinteger S

nrpagiintegen
procedure Print_row (bribill_rec; var parintegen, ppaginteger);
procedure Print_head({pagnrinteger);
begin
end;
begin

E;{ﬁ:mhead{ppag};

end;
procedure Print_Tet (T1, T2, T3, T4:integer);
begin

end:
begin
paid_bill:=0;delay_bilt:=0ipaid_tot=0;delay, tot=0ar=0;
read (bills rec);
while not eof (bills} do
begin
if rec.paid then
begin
paid_tote=paid_tot+rec.bili_tot;
paid_bill:=paid_biti+1;
end
else
begin
delay_tot:=delay_totérec.bill_tot;
delay_bili:=delay_bill+1;
end; :
if nr=0 then pag:=pag+1;
nr=nr+l;
print_row(recnrpag);
read (hills,rec)
end;
print_tot(paid_tot.paid_billdelay_totdelay_bil)
end.

Fig. 2: A simple Pascal Program

Fig. 3: Graphical Web representation of the declarative structure of the Program in Fig. 2

131

2 . mb
e { \
D Cor
dcy] h | g k P
A de "y %
i / left m rght !cft ngh
SRy 7N > \

do hcf; \ ng ~lm‘“
'lnf ng};3 N
delf

g -- . fight
) i8

n

- ts
def

R

Fig. 4: Graphical Web representation of a piece of code of the Program in Fig. 2

)

Fig. 6! An example of production

has a fairly compact form and represents ohiects and
information with a good degres of granalarity;

is able to present different objects with the same
formalism and has eniformity of representation;

allows details to be retrieved in an easy and fnst way
and makes it possible 10 control the degree of detail
and/or abstractions represented in if;

has a good degree of specialization;

An Intermediate form has:

- o provide a transformation support in an information-
preserving way, without changing the original semantic
of information but only their representation;

- to be independent from the language used for describing
the original documents it represents (e. g. the source code)
in order io the same [F can be used for different languages;

- o provide a complete set of information about what it is
representing at that abstraciion level,

- 2 be in 2 compact form and 1o represent object and
information by & determinate granularity degres;

- 1o be able to present different objects by the same
{formalism and to have uniformily of representation;

- 1o allow o retrieve details in s easy and [ast way and then
it has to sllow to conirol the degree of detail andfor
abstractions represented in

-t have a pood degree of specialization;

- 10 have = high expressive power,

Tab. I: Intermediaic Form Requirements

- has a high expressive power.

Objections could be raised about the compaciness of
the Web and the fast and siraightforward retrieval of details
in it. The richiness of information and relntionships makes
ihe Web represeniation more complex than others but # is
this very richness that makes the Web representation 5o
powerful, However we can easily select from all the
relations in the Web siructure, only the ones that describe
the information we need.

4, The tool development language TDL.
In an RE process, successive abstractions are obtained

by applying different tools so that information produced
by one ol is exploited by another one. Starting from the

Web representation of a program, an RE tool enriches the
structure with new information. This information,
expressed in a relational way, can be useful in obtaining
intermediate represeniations of the program at higher
abstraction levels.

In this section we show how software tools can be
created by means of a Tool Development Language (TDL),

In. TDL [17] the fundamental data types are atoms.and ...

" formulas and the elementary statemeni is the Web

.Tewriting rule (Web transformation). TDL can be psed to ..

design open environments [18) supporiing an expandable

set of integrated [ools for RE, restructuring, rense and
reengineering processes. To make the use of TDL simple
and close to the user's intmitive notion, Web
transformations are represenied graphically. _

TDL is provided with an atom type, a predicate type
and a list type. The predicates in Op w Cur are pre-
defined predicate types: their names are specialized in the
particular programming languages in use. The user can
define new predicate types by specifying name and arity.

The type Iist is recursively defined. The empty list is
denoted by < >, A non-empty list L is denoted by L = <a,
sublist>, where a is an atom and identifies the first
element (the head of L) and sublist identifies the sublist of
remaining elements (the fail of L). A list used in a TDL
program is declared in a box at the beginning of the
program specifying the name of a variable of type List.
The operator member is available to wverily the
membership of an atom in a list, A list can be added to a
Web as a new unary predicate specified in the right hand
side of a production. Then, it can be transformed like any
other predicate in the Web. Fig. 7 shows an example of a
production transforming a list, namely deleting its first
element.

Constant predicale names and atom labels are written
in lowercase, while variables are writlen in uppercase.
User-defined data types and variables must be declared at
the beginning of & program.

Productions are the elementary statements of TDL, If

| SampleList = <a, L3 [::>

Fig. 7: An example of a production

I SampleList = L‘

B; = B is a production, its execution implies a direct
derivation via a morphism g determined by a Prolog-like
unification mechanism in such a way that g{B;) is an
instance of B; in the Web G. We say that an elementary
statement B; = B succeeds if there exists an instance of
Bjin G and the application of the production modifies G
{(in other words, if B2 contains some nodes or some
relations which are not in B). Besides the elementary
statements, the langoage provides compound statements,
conditional statements and iterative stalements,

Compound statements
TDL provides a sequential compound statement and a
selective compound statement. The first one has the form:

133

=-'The successful statementsamong 5y,

wSyareintended o
be executed sequentially. The compound statement

ssutceddsifatiledstiong sstarement ameng IS (o S s

succeeds {and then at least one statement is executed).
The selective compound statemnent hag the forin:

execute-the-first
S} N

S,
ol

This statement is performed by selecting and then
executing the first successful statement among Sy...., S,
and it succeeds if such a successful statement exists.
Conditional statement:

The conditional statement in TDL has the form

if Cihen S;

where C is a set of relations and S is a statement. The
siatement S is executed if it succeeds and the relations in
C appear in the structure: in this case the conditional
statement succeeds.

Iterative statements

TDL provides two iterative statements. The first one has
the form:

while Cdo S

where C and S have the same meaning as in the
conditional statement. The statement S is intended to be
iteratively executed while it succeeds and the relations in
C appear in the structure.

The second iterative statement has the form:

repeat S until-modify

The statement § is intended to be iteratively executed
while it succeeds.
Both the iterative statements succeed if § is executed at
least once,

TDL allows procedure calls with formula parameter
passing. A formula passed as a parameter can only be used
as a condition of if or while statements.

5. Direct and summary relations.

We call direct relations the information that can been
extracted directly from the code by simple static analysis

of the code itself. They include the simple relations
existing between pairs of software items without 1aking
into account "dynamic” or "transitive” relations. The
dynamic or transitive relations are successively obiained
by abstraction processes starting from the direct relations,
This abstracted information is referred to as "summary
relation”,

In a traditional RE process, during the static analysis
phase each module is automatically analyzed independently
from the others, and for each module direct relations
provide information about:
ay module names, and types and names of formal

PATAMEICEs |
by variables names and types;
¢) called module names and passed actual pamameters;
gy variables definition;

g) vanables use;

§y constant names;

g} control structures, their nesting and control flow.
Thus, we describe a sofltware system by iis
components and the direct relations among them. For the
suke of simplicity and without loss of generality, in the
following we will refer to a software system composed of
a program with subprograms (procedure and/or functions)
declared in it, that does oot use external modules {such as
ADA packages or PASCAL units),

Let us define the following sei;

PP is the set of program, procedures and functions
names;

TT 5 the sot of user defined type names;

DD is the set of variables names;

KK is the set of constants names;

(S is the set of control structures,

Among these componenis there exist dirget relations
chamcterized as follows:
gy call relation: the reiation belween the calling
component and the calied one. 1 is defined on (PP 2
PP, From ihis relation we can abstract the call tree, or
call graph, and it is useful in abstracting the structure
chart.
declare relation: the relation between the declaring
compenent and the declared one. The declaring
component will be in the set PP, while the declared
one s in the set i, where ii=PP U TT u DDuU KK,
Thus the relation is defined on (PP x ii). The relation
is useful in defining the scope of a component,
according o the source code language visibility rules.
it allows us to know if a procedure can refer a data
item or call another procedure/function and so on.
use relation: the relation holding between an item
refers {o another without changing the latter value. It
will be arelation defined on:
(PP x (TT w DDuw KX w C8)), in this case the
relation means that a data item, a user type, a
consiant or a control structure is used in the main
program of in a proceduref/funcion;
{(TT x TT) when another previously declared user
type was used in & user type declaration;

b}

)

134

{CS x DD) to mean that a daia item was used in a
control structure.

The use relation is useful for determining
injerprocedural and intraprocedural data dependencies.
definition relation: the relations holding between a
variable and the place (program unit, resp. conirol
structure) in which its value is defined or changed.
The relation is defined on (PP x DD}, resp. (CS x
DIN. This relation is useful in determining
interprocedural and intraprocedural daia dependences.
user_type dala relation: the relation existing between &
variable name and its corresponding wser type name. It
is defined on (DD x TT) and it is useful in finding out
all variable names of a given user type in order o
identify dala abstractions (obiect. generic object,
sbstract data fype, generic abstract data type).

value dependence relation: the relation existing
between two variable names when one is used for
defining the value of the other one. It is defined on
(bD x DD and is useful in determining data
dependences.

formal parameters relation: this relation holds between
a variable name and a procedure/function when the first
one is a formal parameter for the second one. It is
defined on (PP x DD} and is useful in determining
interprocedural data_flow.

acinal parameter relation: if says what vaniable names
are passed as actual parameter in a procedure/funciion
call It iz defined on (PP x PP x DD} and is used {or
determining interprocedural data_flow, ipgether with
the relation of the previous point g).

control_structure relation: it is the relntion holding
hetween control structures, of 4 given program unit,
when one of them is nesied in the other one, It s
defined on (PP x ©85 x C8) and is wselul in
recenstructing the nesting of control struciures and
thus the control Aow of each component in PP,

€}

B

g}

hj

These direct relations are the starting poinl for all
successive absiractions. They are usefu! in oblaining and
abstracting information about the other non-direct relations
between the various ilems of the analyzed soltware and
representing them according 1o some IF. For example,
from the relations a), b} and h) we can abstract the call
tree, or the structure chart reporting also the intermodular
data flow. Alernatively we can abstraci the dependence
graph using the relation ¢}, d) and 1),

Direct relations and then summary relations can be
extracied from the Web: the Web structure and the TDL
manipulation language provide a powerful tool 1o perlorm
this process. A ool for extracting the direct relations that
we need is actually a TDL program, which can be written
and execated interactively.

As an example, let us consider the procedure call_exir
shown in fig. B,

The procedure call_exir is used to exiract the call
relations from Web, It works as follows:

the first repeat ... until modify TDL statement iogks
for all the Web atoms representing call statements and
for the corresponding called subprograms;

in the second repeat ... ynti]_modify TDL statement,
the calling subprograms are found, starting from each
"call node™” and going back along the father-son arcs of
the Web. When the calling subprogram is found, a
callpf arc, linking the name atom of the calling

Procedurg call exir
{ The procedure extracts the call relations from the Web]
execute-alt

Iepeal
[Find "cali" atoms]

created. The callpf arc raprcsent thc, "caii" dlI‘EC N

“relations described ata),

The Figure 9 shows the call graph of the sampic
program in Fig. 2, abstracted using the procedure
call_extr.

In the Appendix other TDL procedures for extracting
direct relations from the Web representation of a program
are shown, Figore 10 shows the vser-type relations (sce
usc relation at ¢) obtained by applying the TDL procedure
typeuse _extr given in the Appendix 1o the Web
representation of the sample program of Fig. 2.

In this way the typically "static RE process becomes g
"dynamic" one.

In fact the user interaclively decides which are the
relations 10 be extracted and/or abstracted depending on the
acquired knowledge about the soltware system.

Figure 11 shows the corresponding overall diagram of
the RE process: in the environment a syntax direct
translaior takes care of transiating of the source code to be
analyzed into the Web representation. After the Web hag
been generated the user starts to inguire and manipulate it
in order to obtain the information he needs about the
software system under examination,

The information the user needs is expressed by TDL
procedures describing the manipulation 1o be performed on
the Web in order to extract/abstract the desired
information.

The user can generate TDL procedures and store them
in 4 TDL Library for future use. The TDL peocedures are
writien in a graphical way by means a graphic editor,

6. Conclusions

Current RE processes supporting activities for the
comprehension of existing software have been shown o
be inadequate to the needs of the comprehension process.
This is principally due to
the lack of information, cempared to what is needed
reach the goals, contained in the documents produced
by RE;
the incompleteness of the extracted information, which
restricts the possibilities for successive abstractions;
the lack of flexibilily of the tools adopted, which allow
no interaction with the user.

The enhancement we proposed in this paper is an
interactive RE process that enables the incremental
comprehension of a software system.

This process is based on the vse of:

the Web structure, an intermediate form (based on a
relational strecture) for representing programs that

i35

LIST_FORMULAS

ATERSER LK, <eal], recealls

ute-he-
{Find calting and called subprograms and insert the “callpf™ arc }

LIST FORMULAS
piame . member

AL K, <onll, Tecoalis

LIST_FOAMULAS
Nanx: member
Argnmeny X, CRTCErREm,

Toceiie,
Hc g

Fig. 8: The TDL procedure call_exir

e

eallp exllpf

()

int_row

prnt et

Figure 9: The call graph of the program in Fig 2

main

declpfiype , desipliype

bill rec m bill _file

Fig. 10: The user-type relations of the program in Fig 2

makes it possible to represent all the information
embedded in the analyzed source code;

the Tool Development Language TDL, a tool for
manipulating the Web structure that makes it possible
to extract and abstract interactively the information
needed for the comprehension of the software sysiem
under examination. The required information is
described according to a graphic formalism and the
resulis obtained are also graphically.

The interactivity of such environment supports the

incremental comprehension of software systems thus
leaving to the user the ability of deciding which kind of
analysis is needed and possibly how it must be performed,
depending on the specific context at hand.

| Source

Syntax directed |

Code Transiator
User N TDOL < s TDL
Interface Execuior Libri

Fig, 11: The new interactive RE process

Appendix.

In the foliowing some TDL procedures for detecting direct
relations are shown.

Progedure deliype_exir

{The procedure extracts the relatioas holding between the declaring
component and the declared user defined type name}

fzpeal
{¥Find the declaring component and the declared user type and insent
the "decipfiype” arc}

LIST_FORMULAS

Mamm . fmeshver
Amvers . X, cprogram,
Fioctirns
antil $if
gnd

136

Procedure typeuse_extr

{The procedure extracts the use relations holding between pairs of user
definad type names when a previously declared user type was usedin a
user type declaration}

repeat
{Look for all user type declaration nodes}
B B

cntil-modify

execute-the-first

{Find all the user type declarations using another user type and insen
the "typeuse” are}

Progedure parform_exir

[The procedure extracts the formal parameiers relations holding
between a variable name and a subprogram when the former is 2
formal parameter of the lattes]

mpeat
{Find subprogram names and parameter names and insent the
"pfparform” arc}

LIST_PORMULAS
[Name . mcmmiber

Argments L X, aproveduee,
function»

—
end

Pioceduse dalatype extr

{The procedure extracts the relations holding between o variable mme
and its corresponding user lype name}

iﬂi&‘ai
{Find declared variable names and the comesponding user type
names and insert the "datatype” arc}

Procedure delpf_extr
{The procedure extracis the declare relations holding between
subprograms when the second one is declared by the first one}

17]

... |Find for each subprogmm the names of the declared ones and insert ...

sthe

“dectpl” arc]

sdent

EJIST FORMULAS

Rlam member
Lirprnanit iX, epregmm,

rocedars,
i Hens

LINT_FURMULAY

Flages memier

Apuien Y, edure,

oreBons

R

end

References.

[1]

E. 1. Chikofsky, J.H. Cross II, "Reverse Engineering
and Design Recovery: A Taxonomy", IEEE Software,
val. 7, n. 1, Jas. 1990,

P. Benedusi, A. Cimitile, U. De Carlini, "RE
Methodology to Reconstruct Hierarchical Data Flow
Diagrams”, Proc. of IEEE Ceonf. on Soft. Maint. 1989,
Miami, Oct. 1989,

"Research report on Reverse Engineering approaches,
Tools and Intermediate Forms”, Esprit Project 5111
DOCKET, Workpackage A, Apr. 1993;

B. Beizer, "Software Testing Techaiques”, Vaa
Nostrand Reinhold, 1983,

G. Cuantone, A. Cimitile, L. Sansone, "Complexity in
Problem Schemes: the Characteristic Polynomial”,
ACM Sigplan Notices, vol. 8, n. 3, 1983,

G. Cantone, A, Cimitile, P. Maresca " A new
Methodological Proposal for Program Maintenance”,
The Euromicro Journal, vol. 18, Nos 1.5, 1986,

A, Cimitile, U. De Carlini, "Reverse Engineering:
Algonthms for Program Graphs Production”, Software
Practice and Experience, vel. 21, n. 5, 1991.

LL. Bzer "Graph Models in Programming Sysiems",

-.Current Trends in. Programming . Methodolegies, vol.

3, K. Mani Chandy and R.T. Ych eds., Prentice Hall,

o ERglewond Cliffs, NJ,, 1978,

f10]

[11]

(16}

(17}

[18]

137

E. Yourdon, LL. Constantine "Structured Design”,

Prentice Hall, Englewood Cliffs, N.J., 1979,

P. Benedusi, A. Cimitile, U. De Carlini, "Reverse
Engineering Processes, Design Recovery and Structure
Charts”, Journal of Systems Software, vol.19, nd4,
1992,

K.J. Ottenstein, L..M. Ottenstein, "The Program
Dependence Graph in a Software Development
Environment”, ACM Sigplan Notices, vol. 19, n. 5,
May 1984.

S. Horowitz, T. Reps, D. Binkley "Interprocedural
Slicing Using Dependence Graphs", ACM
Transactions on Programming Languages and
Sysiems, Vol. 12, No. 1, Jan 1990,

A. Cimitile, G. A. Di Lucca, P. Maresca "Maintenance
and Intermodular Dependecies in Pasecal Environment”,
Proc. of IEEE Conf. on Soft. Maint. 1990, San Diego -
Californis, Nov. 26-29 1990;

G. Canfora, A, Cimitile, U. De Carlini "A Logic Based
Approach to a Reverse Engineering Tools Production™
IEEE Tans on Software Engineering, vol. SE-18, n.12,
1992,

H. Ehrig, H.J. Kreowski, A, Maggiolo Schettini, B.K.
Rosen, §. Winkowski, "Transformations of Structures:
an Algebraic Appreach”, Math. Syst. Theory, vol 14,
1981,

A. Maggiole Schettini, M. Napoli, G. Tortora, "Web
Structures: A Tool for Representing and Manipulating
Programs”, TEEE Trans. Soft. Eng., vol. 14, no 11,
Nov. 1988,

A. De Lucia, M. Napoli, G. Tortora, M. Tucci, "The
Tool Development Language TDL for the Software
Development Environment WSDW" 1o be published in
the Proceedings of the 5th Intern. Conf. on Software
Engineering and Knowledge Engineering, S.Fransisco
(U.S.A), 17-19 June 1993,

A. De Lucia, A. Imperatore, M. Napoli, G. Tortora, M.
Tuecel, "The Soltware Development Workbench
WSDW", in Proc. 4th Intern. Ceni. on Software
Engineering and Knowledge Engineering, Capri,
Italy., June 15.20, 1992,

Chair: Horst Zuse

DOCKET: Program Comprehension-In-The-Large

P.J.Layzell, R.Champion, M.J.Freeman

Department of Compatation, UMIST, PO Box 88, Manchester, M60 10D, UK

Abstract

With the growing awareness of the importance of soltware
maintenance, has come a re-evaluation of sofltware
maintenance lools. Such tools range from scurce code
anglysers o serni-intelligent tools which seek to reconstruct
systems designs and specification documents from source
code. However, it is clear that relying solely upon source
code as the basis for reverse engineering has many
problems. These problems include poor abstraction,
ieading to over detailed specification models and the
inability to link other parts of a software sysiem, such as
documentation and user expertise, o the underlying code.

In the last decade the mainstream software engincering
community has recognised the need to develop strategies
for programming-in-the-large. This paper proposes the
need for program comprehension-in-the-large and
deseribes the work of the Esprit DOCKET project which
secks to provide such a support capability.

The DOCKET project has developed a proiolype
gnvironment to support the development of a sysiem model
linking user-oriented, business aspects of a system, o
operational code using a variety of knowledge source
inputs: code, documents and pser expertise. The aim is to
provide a coherent model to form the basis for system and
program understanding and to support the software change
and evolution process.

1. Introduction

In recent years, there has been an awareness that the
software industry is entering a new phase in which a major
proportion of 1T resource is directed to the maintenance
and support of existing systems, Whilst precise figures
vary, there is general agreement that over 50% of software
costs relate lo ongoing maintenance and support [Parikh &
Zvegintzov, 1983]. A number of tools are commaercially
available which assist maintainers suppor! large,
commercial applications, however these primarily focus
upon a syntactic analysis of source code and hence they fail
to adequately address the semantic content of such
representations {Layzell & Macaulay, 1990]. The result is
that current maintenance suppori tools offer litile support
to program comprehension in a business-context, thus
making it difficult for software maintainers to place their

0-8186-4042-1/93 $D3.00 © 1923 IEEE

140

pwn decisions and actions in context. The result in many
cases is poor maintenance, decisions on code changes and
change request prioritisation being based upon short-term
expedients, rather than a properly justified business-
oriented case.

This paper describes the work undertaken by the Esprit
DOCKET -project, which aims to build upon the current
research and ool base and provide an intelligent reverse
engineering toolset, capable of addressing semantic-related
issues. By supporiing program comprehension in-the-
large, DOCKET secks (o provide a more complete conlext
for maintenance decision-making and thus enhance the
quality of the maintenance process.

The DOCKET project consostium consists of four
industrial pariners and two academic partners: Compuier
Logic (Greece), CRIAI (Italy), Software Engineering
Service {Germany), SOGEI (Italy), UMIST (UK) and
Universidade Portucalense (Portugal). The project ran from
October 1990 to January 1993,

2. Knowledge Sources

The aim of the DOCKET project was to produce an
architeclure, toolset and method which enabled
organisations to gain a betler understanding of their
sofiware assels and associated products. This is achieved
by mainiaining explicit links between the source code of
operational systems, technical documentation and system
and domain expertise held by humans.

For the purposes of DOCKET, each of the knowledge
sources are referenced by the naiure of their representation,
level of formality and degree of reliability in describing a
system. This latter factor is particularly important since it
must recognised thal human experts may be mistaken and
documentation can be notoriously ouwt of date. Three
general calegories of knowledge source were defined, as
follows.

Dynaniic Knowledge Sources

The term dynamic knowledge was used to relate to system
knowledge obtained directly from humans, Within this
classification, a number of subdivisions exist: domain
experts, system IT experts and user experts.

The knowledge obiainable from a domain expent such as an
administraior concemns general aspects of the domain and is
likely to contribute to the higher-level understanding of a
system, such as its goals, general components and how it
relates to the business.

Knowledge obtainable from a system IT expert such as a

3. Background Technologies

In order to captore owtput from the various knowledge
sources and build an integrated model of a system, a
variety of background technologies had to be employed.

Source Code Analysis and Reverse Engineering Techniques

~systems analyst or & system designer concemns the degigny s

and 1mplemenmuon aspect,s c}f a cempumr-based sysiem

.The knowiedge obiamablc from user experis such as

clerical staff concems the user’s view of the use and
implementation of a system. As such it is likely 1o
conmribute to the knowledge about the generml design of a
system, ii5 interface and use.

Informal Knowledge Sources

Informal knowledge is defined in DOCKET to be anything
represented in a semi-structured or informal notation, other
than directly from humans, This gives the source certain
characteristics in terms of consistency. although not
necessarily accuracy. and as such can be distinguished
from human experts.

A variety of documented knowledge exists about a system
and can be classified as belonging to one of three general
categories: domain documentation, system documentation
and change request documentation.

The knowledge obtainable from domain documentation,
such as a shareholders’ report, is of a general nature and
relates to the domain in which the computer system being
analysed by DOCKET operates, rather than to the system
itself. System documentation such as sysiem and program
specifications or user guides, on the other hand, relates 1o
the design and implementation aspects of a computerised
system and can therefore form the basis of a more
formalised view of the intemal aspects of a system. Finally,
the knowledge obiainable from change requests relates to
alierations requested by the users of a system, These could
arise either because the system is operating in a manner
other than that intended or because of reguested
enhancements or alterations to the system.

Formal Knowledge Sources

Formal knowiedge is used to refer to documentition-based
descriptions, but represented in a formal, machine-
processable language. Whilst it is recognised that natural
language documents may fall into this category, a
pragmatic distinction is made between source code
programs written using well defined languages and natural
language documents whose semantics are much more
difficult to comprehend,

Formal knowledge sources thus include source code,
structured designs and specification documents represenied
in notations such as ER or DFD, together with any
formalised representation of test cases. Such knowledge
contributes {0 the understanding of a system’s
implementation and design limitations.

141

Source code analysis can provide the basic information for

knowledge:--acquisition-about-an-operational-software oo

system. It is in effect a set of informaiion extraction
processes, consisting of static analysis of sources (object
code analysis is excluded) and testing (including object
code).

The output of these processes is a programming-language-
independent, low-level representation of the information
extracted from the operational software system. This means
that the information extraciors also perform a first-level
abstraction from the original sources, whose goal is 1o
preserve the original information content while decoupling
all other, subsequent analysis tools within the DOCKET
toolset from the syntactic details of the sources. This
enables existing socurce code analysers 10 be employed
within the toolset, provided that a translator is written 1o
convert (o the intermediate representation.

Once processed, the intermediate representations of a
source program can be further analysed by reverse
engineering tools- an information abstraction process
which, by combining the results of low-level source code
analysis and additional knowledge, aims 1o reconstruct the
{ollowing typology of targets:

+ representations of software which can be used directly
by the maintainer, and possibly compared with antefacts
of the forward engineering process: candidate outputs
include JSP or Wamier diagrams, daia flow diagrams
and structure charts, ete.

» representations of the information extracted from code
at a level of aggregation, synthesis and abstraction such
that the population of DOCKET's knowledge base and
the integration with oher sources of knowledge would
be facilitated.

In first-generation reverse engineering tools, the issues of
reconstructing relevant links between software components
and the selection and application of appropriate
information hiding, aggregation and encapsulation
techniques are addressed only mechanically, and any
choice is made on the basis of standard, implicit and
generic default assumptions; even many of the existing
knowledge-based prototypes fend to search in the code for
accurrences of very general programming clichés and
concepts. The DOCKET poals include second-generation
intelligen: reverse engineering tools, which tend to drive
and refine the production of abstractions, as well as the
search for occurrences of specific concepts in the
operational system, based on multiple sources of
information which are specific to the user and application
domain,

Knowledge Elicitation

The human knowledge sources avatlable to DOCKET have
been classified into three types: domain expert, sysiem [T
expert, and user expert, The knowledge held by these
groups differs, but each of these sources comains
knowledge about the system which is valuable for
DOCKET to access, and which midy riot be dvailable in any
other form. In eliciting knowledge from these sources,

~agcount has to-betaken of “ergonomicand - practical -

considerations.

It is widely reported that peopie find it hard to know what
they knpw. DOCKET therefore needed 10 create the role
of a knowledge facilitator o scquire knowledge from the
cxperts, and 1o coordinate the input and representation of
the knowledge within DOCKET. The knowledge
facilitator will acguire knowledge from the dynamic
spurces by conducting informal interviews with experts, as
a means of acquiring overviews of the domain and the
system and by acquiring specific knowledge such as
organisation hierarchics from the experts.

Text Processing and Analysis

Central to the processing of informal sources is the ability
to handle natyra! language, The text processing element of
DOCKET therefore had three primary concerns: (i) the
investigation of methods for extracting knowledge from the
variety of textual sources which will typically be associated
with a software system; (i1) the development of appropriate
analysis 1ools and {ii) the subsequent presentation of the
document base back o the maintainer. in a structured
manner.

A UMIST study showed that maintainers whilst relying
upon source code for system understanding, would make
use of documentation if the search space of ihe
documentation could be reduced- by making the
documentation on-ling and by maintaining explicit lnks to
aspects of an operatonal system,

it was established at an early stage of the rescarch that 2
complete syntactic and semantic analysis of the text was
not feasible, given the quantities of documentation o be
processed and the current state-of-the-art in computational
linguistics, Shori-cuis which sl achieve a sufficient
degree of understanding have to be used in the analysis
process (o locate the key concepts and evenss. Thus. there
is a critical distinction to be made between the Text
Processing, approach taken by DOCKET, and the more
detailed analysis technigues seen in most Natural
Language Processing! Undersianding (NL1) systems.

To achieve the desired short-cuts, a system using a
combination of some of the ideas of sublanguage analysis
and fext skimming was used. A set of hearistics, based on
indicator phrases and textual format allows the key features
of a text to be located by pattern matching and only a very
restricted syniactic analysis. These heuristics included the
following items;

+ the location and marking of headings and subheadings,
which ofien introduce new concepts and events

+ the examination of text rendered in particular
typographical styles such as boldface, italics and special
fonts, since these are often used 1o highlight impoitam
items

"+ the location and marking of lists of items: these may

occur in several forms and can provide information
aboul both ihe sinictdre and {he meaning of concepts;
they can be casily idemified from format clues and ofien
have a preceding explanatory sentence

« the identification of concept definitions, which are oflen
- ingroduced by indicator phrases such as: this <concept>
is defined as... or @ primary objective is...

= the identification of events, which are ofien introduced
by indicator words such as if and when

« more detailed examination of sentences mentioning an
already identified key concept since such sentences are
often used 1o introduce o new key concepl.

Due 1o the complex, time-consuming nature of the process
of extracting information from iextual sources, as well as
the unrestricted noture of its inputs, the text analysis
element of DOCKET is less able to contribute a
comprehensive model of a sofiware system than source
code analysis or dynamic source analysis. The analysis
approach taken is. essentially, to locaie and mark
sigaificant concepts and events in the text and 1o provide a
lisi of these to the other DOCKET processing streams in
support of their activities.

System Modelling Noations

Af the heart of the DOCKET architecture lies a modelling
formalism copable of representing any system description,
from itz implemeniation view through o a high level
organisation view. Analysis of existing work revealed that
four levels are idemiifisble [Black et al, 1987; van
Griethuysen, 1982 Glle e1 al, 1988] as follows.

The world level represenis a real world view of an
information system identifving the long-term objectives of
an organisation. This level also containg a description of
the functional areas of the organisation and maps these 1o
its structure and human resources. Exlernal entities which
influence the organisation are included. capturing their
effect on the organisation’s activities.

The concepiual level represenis an implementation-
independent abstract view of an information system. [t
containg concepis capable of represeniing the three
different information sysiem perspectives of activity, data
modelling and behavioural modelling,

The design {evel rtepresents a pure functiongl
decomposition of the target, computer-based information
systern, including user interface aspects.

The implementation level represenis a physical view of the
implemented software system. It is included in the global
system model in order to allow DOCKET users to reason
about the physical system components and the relationship
of these components fo the higher levels of representation.

Existing information systemn modelling schema were
analysed and a set of common concepts were identified

-~ covering the four levels: This work formed the bagis of the

development of a global system model which would form

= the-core of the DOCKET-repostiony mechanigms s s

4. The DOCKET Architecture
Architecture Overview

Figure 1 shows a conceptual and linear view of the
DOCKET system architecture. it is a conceptual view as it
1s essentially a static view, highlighting the main
architectural components, rather than how the components
are ysed, This latter. dynamic view, is explained in the
foliowing section on the DOCKET Method, The main
aspects of the architecture are as follows.

Importation Phase

In the importaion phasc, raw knowledge about the system
from criginal knowledge sources (termed external sources
in DOCKET) will be processed into internal, machine-
readable forms using input tools. In the case of source
code, this is through a set of source code analysers. In the
DOCKET project, analysers for COBOL and C are
supported and converts code to a language-independent
representation scheme called CSL

For documents, industry-standard scanning and text
conversion 1ols are used, followed by a purpose-built tool
to convert text to the standard markup language, SGML.
The markup tool 18 written in C and mns in a PC
environment and provides the facility of manipulating all
document-based input using a standard represeniption
language.

Finally, expert input is made through & set of tools
supporting graphical hierarchy and network models. These
models include: goal and organisation hierarchies, activity/
task hierarchies. dialogue graphs and conceptual graphs
(Sowa, 1984).

The modei editors are implemented on a Sun/4 workstation
using a mixture of C and Prolog, with Motif handling
interface issues. C was selected to implement the main
model editor operations, which outputs Prolog predicates
represeniing edited models. Additional Prolog staiements
are then used to antomatically verify the models, with C
handling any error reporting.

Extraction and Abstraction Phase
In extraction and abstraction phase, analysis tools use the

internal forms as ieput in order to produce, through
abstraction, a structured form of the essential knowledge

143

from each source; the analyser tools may consult already
existing structused forms in this phase. The ferm structured
form was employed to distinguish between how a
knowledge source represents something and what it is
actually representing, ie. a distinction is made between
Sform and content.

For source code, the structured form is an enhanced form
of the CSIlanguage; which contain higherlevels concepts
beyond the immediate source representation, For

=-docoments:the-enhanced-form-is-an- SGML-representation -

in which section. headings and key concepts have been
marked using the analvsis heuristics described earlier. And
for human exper{ representations, the structured form
consisis of all input models converied to a set of standard
concepiual graphs.

Integration Phase

In the integration phase, a consolidation and resolution ool
will integraie concepts from the different structured forms
to populate a global system model and will resolve conflicts
in the knowledge supplied from the different siructured
forms. This latter process is not fully automaied:
intervention is possible by a DOCKET analyst via the
POCKET medel administration tool.

At the heart of the architectore is the global systerm model
which incorporates and link concepts relevant 1o the sysiem
at different levels of absiraction- from an organisational
view of the system, down to an implementation view, This
is described in more detzil in the next section. A browser
allows the DOCKET user o access the knowledge in the
global system model and o navigate through it by means of
a hypentexi-like facility.

Other Processes

In addition, as concepts relevant (o the domain and o the
sysiem being analysed are acquired, they will be stored in
concept thesaurus which can be accessed by any of the
tools. The thesaurus provides a rapid access directory of
all concepts known o the sysicm and provides facilities for
synonvm and homonym specification, central definfiion
handling and link management between associated
concepts.

The Global System Model

The Global System Model is key (o the integration aspects
of the DOCKET architecture, The model can be regarded
as a multi-tiered, meta-model capable of representing
aspects of an information system in an original notation-
independent fashion. Furthermore, the global sysiem
model can maintain links between different abstract levels
of description of a system, so. that an explicit link can be
made between a data file, the conceptual level entity that
the file implements and an external instilution. l.inks can
also be made to the knowledge source origing of an element
of the global system model, thereby providing traceability
1o the knowledge source, Figure 2 provides an ER model
summary of the model’s concepis and relationships.

} - - uogesd g i UoHDrOSgE DOBITNTS

: BT ENEES) .«

e 35¥

%
]
bl
v o
M el v g
¥ Ry Ean
W
b
E:
g
9
'
TAGON E
nasis i SN0 fpoar i SIVEOd
™vEOTD E i WO pr TYNHLINT
Nw 5 o b
00 BOURRF RIS [| F U]
o] wuu_._uu: X 9
v put Joyiroddal ¢ taam) g woy Dogrouonn e
100t apEmn e .“.
e 001 Forsrcud 8 v moj) onoop rrranceneas

Ry P
aEpo|mouny AemanzAcking —— —

AdN

1ot
mda

£xamos
G
JETT. £11

SWHOA
TYNYILYT

Figure 1: The DOCKET Conceptual Architecture

144

The global system model is implemented in the DOCKET for the partal classification of concepts. The concept

architecture using SML (Systern Modelling Language), abstraction hierarchy contains afl the global system model
based upon the Conceptual Modelling Language produced concepts as leaf nodes on the tree. The concepts are then
by the Esprit DAIDA project. It is an object-centred abstracted to higher level. more general concepts. This
language which supports the organisation of knowledge additional siructuring therefore allows DOCKET analysis
into general classes (concepts) and particular instances of tools to stari 1o insert concepis into the global system
classes (objects). Like similar languages, it supports the model, even when a fuil classification of a concept i3 not
- notions of classification: specialisation and aggregation. - possible. This is-particularly. the. case with text analysis
tools, which, without full semantic analysis, cannot easily
~In-addition-to-the -main-global-system -meta-model.-a..-...classify.a.term such.as.book without.reference. to. other . .
concept abstraction hierarchy was also produced to allow knowledge sources (is it a process or object?),
PP ;
= ORGANISATI&"}N;"“ s ;
revpsdin 8 Rt n::u,wn a AW
S e il mmem] AGENT | .. .
SEROATTTL coaL Pt ACTIVIY = ' —0._
1 1 I icidal
H ipimmsstad b e i EXTERNAL B
§ ; ol | swisini] INSTITUTION
¥4 smemlbenoomdd b - o0 _dezrameszon
GURCE ’ “
RES § | T
T3 EXTERNAL
i mremeding EVENT -
E T e _— ind
Mxcerde procedes £ — !
o] ACTION LTEE T T T e b
o - T e ke iy
% I R WEaEL] STATE |
i i o
by 0N 3 T
e £ o E\‘ETJFNAL R | [:“ |
FROCESS - . FEH
TR I
. % 1 x 7
TR : |
i’] " ,E 7 ‘%.
DATA 3 4 i
STRUCTURE | . L e J4osf
3 T £ ATTRIBUTE Jermnr SRl
b [karm ™
’ gt ! o SSRGS ENTITY ﬁ
||t i o (2T o
RELATIONSHIP — '1 gt 3 |l
X ket g
E g
g]
AL 1}
FIl H = m o s ' E‘P‘“
e e FUNCTION @ 0BIECT —
USER M_p—a,u_:!(-f i iy T i
wanuders el | u&ﬁ“ . T P
l i
DIALGGUE i
U 4 T
FUNCTION
TERFACE
DIALOGUE BT
FUNCTION
i
. !
el
MODULE e L DATA 1
ol e er

Figure 2: The Globat System Model

145

Versioning

Given that the global system model is intended to support
the understanding of an evolving system. upon which
maintenance and enhancements are conducted, it is
importani that the model supports versions and variants of
the application sysiem under study.

There are esseatially four choices available to support
versioning. The first case concerns the application of

reverse engineering where the current information systenm

15 analysed and the design recaptured. From here either the
design is kept and used to restose design documenis as a
baseline for forther maintenance, or the sysiem is re-
implemented from ihe resulting Global System Model. In
either case the Global System Motel is only created once,
has a point where work 08 it siops, the model is treated as
if complete {and immediately ont of date) and is thrown
away afier use.

The next case is the one found in most contemporary
programming environments, where only the currently
saved version of 2 system is worked on. This does not
mean that backups are not kept. They are kept but thay are
not reasoned about. This prevents historical reasoning such
as: why is this sub-system included, what depended on it in
the past? Does the system that depended on it still exist?
in addition, there is ofien the case where a maintainer has
the current System, the target system, and the target system
implementation which is halfway between. In this case
historical information is essential,

The third case relates o when many discreie snapshots of
the Global Sysiem Model are taken. Afier the latest
version is established, all new changes o the Global
System Model are collected but not included until the next
version is established. This batch method means that the
(Global System Model will be out of date and lose
information concerning time-ordering of changes between
selecied check polnts. In addition, for any object in the
Global System Mode! that changes more than once
between checkpoints. information will be lost,

The final case is the never delete option, where the objects
in the model are never deleted, only updated. The
inadequacy of the above approaches and the clear
advaniage of the last case: the continuous model of the
Global System Model, are decisive in its selection as the
best option, 'Whilst being the most iechnically difficult, it
maps best 1o the maintainers’ needs for the reasons above
and hence is the version model selecied in the DOCKET
project.

5. The DOCKET Method

In addition 1o the basic toolset, the DOCKET project has
also developed a method of use of the toolset. This method
can be regarded as a more general technique of managing
an organisation’s sofiware assets, although clearly this is
assisted by the toolset. The method consists of six phases,
from initial planning through to the exploitation of the
DOCKET global system model,

144

The overall objective of the domain definition phase is to
identify the domain for which DOCKET will be used and
the applications contained therein, DOCKET is intended to
sapport only a single domain, although it can support many
applications within that domain. Therefore, in this initial
phase. strategic decisions must be made to determine what
should be supporied. The tasks within this phase aim 1o
identify possible domains and applications and, through a
procedure of analysing the critical relationships between
domain and application, select a target domain and

“ipplication pooll Factors th be 'considered include domain ™

and application complexity, application siability/ rate of
change and personnel turnover,

Enventory Phase

The overall objective of the inventory phase is 1o identify
the main knowledge sources within the sziecied domain
and application set and produce a detiled inventory of
such sources. As a precurssor 10 populating the DOCKET
knowledge bases, the DOCKET Analyst needs w idenufy
all the available knowledge sources and their
intprdependencies, so that a proper knowledge elicitation
plan can be constructed. This will subseguently improve
the knowledge capture processes, ensuring maximum
integration in the global system model and minimum,
unnecessary redundont knowiedge capture (although some
duplication will be desirable),

Initial Population Phase

The overndl objective of the initial population phase is 1o
prime the various DOCKET repositories, prior to use in
iask-oriented activities. The initial population of the
reposiiories will be based upon the knowledge acquisition
plan defined in the previcus phase, 1{ is in this phase that
the majority of the DOCKET tools will be used, including
the initial knowiedge source caplure ools. As part of this
process, a systematic approach to ensuring the consistancy
of the varipus DOCKET models must be emploved,

Two types of consistency checks are applied to the global
sysiem model. The first which may arise is one where an
entity or relationship is missing from the global svsiem
model. For example, every goal must have a reiationship
with at least one activity, i.e. a goal must be achieved
through some activity. This type of constraint is imposed
by the relationship cardinality constraints shown for each
relationship type in the global sysiem model
documeniation. Violation of these consiraints indicates
that something is missing from the global system model
and can be used to formulate questions {0 dynamic sources
of the form, “what activities contribute to achieving the
goal ..",

The second type of check concerns the explicit meta-rules
applicd to the global sysiem model’s underlying
description, such as:

If a goal belongs 1o an erganisation_unit then no
subgoals of that goal may belong 1o a parent of that
organisation_unit.

Clearly, it is in this checking procedure where the
DOCKET toclset can save the most time and ensure
consistency and model quality.

Task-Oriented Phase

Within the (ask-oriented phase of DOCKET, emphasis
changes from the general acquisition of knowledge about

- the application and its -domain, {0 7 more task-oriented

approach. This change is reflected in the manner by

= knowledge-is-acquired -and-who-drives-that-acquisition:...

process. The main tasks are as follows.

Ideniify Knowledge Reguirements, The completion of 2
maitenance task will depend on the utilisation of
information pertinent to that task. The first step i3
therefore to recognise the knowledge requirements of
the task in hand, and to identify the repositorics in the
DOCKET system where the relevant information may
be located. The type of maintenance or system-
understanding activity will larpely defermine the natare
and type of knowledge required.

Locare Knowledge, A successful retrieval request on the
relevant repositories will produce the information
required for the current maimtenance task. If this is
achizved, then the DOCKET user may proceed to
perform the task in hand,

Acquire Additional Knowledge. If the required information
is currently not available from the DOCKET
repositories, this siep is intended to acquire the missing
kniowledge, This will involve the use of the DOCKET
toolset in any of the input, analysis or consolidation
steps, The precise activities will be based upon the task
in hand and the cuorrent state of the DOCKET
repositories,

Perform Task, Depending on the nature of the maintenance
task being performed, the knowledge contained in the
DOCKET system may be enhanced by actual execution.
Examples include the establishment of new links in the
repesitories or the insertion of new information inio zn
experience base.

Consolidation Phase

Al any stage in the use of the DOCKET system, the
knowledge content of the repositories may be checked for
consistency and completeness. This process is independent
of any maintenance tasks and is intended to (a) produce &
coherent Global System Model of the current target sysiem,
where this has not yet been achieved in the task-oriented
phase and (b) identify those areas which require further
knowledge elicitation. This step is to be performed either as
a clarification procedure during the use of DOCKET within
a given domain, or as a prerequisite for the exportation of
the repositories (o a new domain.

Reuse/ Export Phase

The contents of the DOCKET repositories may be reused
within a new domain, as part of the initial population phase

147

for that domain, or exported for use by other software tools
(e.g. a CASE development tool). In either situation, it is
assumed that the information to be reused is in 2 consistent
state, produced by the consolidation phase,

6. Exploiting the Global System Model for
Program Comprehension-in-the-Large

- The-exploitation -of -the Global-System -Model can be

considered at two levels. Firstly, there is a requirement on

«the DOCKET system.to.allow. the retrieval .of information. ...

from the various knowledge repositories in such a way as
to provide the investigator with necessary and sufficient
information to satisfy the initial query. The second level is
based upon the assamption that the access paths and
information content associated with such retrieval
operations may themselves be used in derving useful,
reusabie information concemning the understanding of a
system. The landmarks encountered in the search for
information concemning a query may thus provide reference
points for subsequent searches. In this way, an experience
hase of exploitation knowledge can be developad as a
useful side effect of the exploitation process iself.

The DOCKET Browser provides {acilities for navigating
either between the varions knowledge forms or within a
particular knowledge repository, using the links which have
been established during the population and task oriented
phases. Iniermediate forms are used to mark derivation
links but are not directly accessible from the Browser. In
this way the user of the tool is protected from unnecessary
details contained in the models and can concentrate on
those aspects of system undersianding directly relevant to
the current task. Entry points to the navigation system are
therefore restricted 1o the external sources, the Global
System Model itself and to the concept thesaurus. In
navigating through the links held within the DOCKET
system, the Browser maintains a list of beacons, marking
the linked concepts. These may be edited by the user and
may be given a special rating of anchor, if they are
considered to be especially impornant. At the end of a
session, the user of the wol may store the entire navigation
history, or an edited version ignoring side tracks and dead
ends. These rouies may then be reused during subsequent
exploitation.

Figure 3 shows a partial navigation route through the
DOCKET repositories shown in the window headed
Beacons. It shows a route from the external texual source,
‘How to be a Warden’ to the Global System Model. Links
within the model have connected the activity ‘room
allocation’, through the action ‘allocate room’ and the
function ‘assign_student_room’, to the module
‘ROOMCOMP'. The marked anchors can be saved to
provide a direct Hnk between the text describing one of the
activities of a Warden, with the specific module from the
source code which implements this function.

A note on the population of the DOCKET repositories must
be made in the context of exploitation. It is recognised that
populating the DOCKET repositories is a non-trivial task.

DOCKET Browser
Sources | GGlobal System Model | Concept Thesaurus
{urreat Heacon Beacons
ACTION Documents
How to be a Warden £71
T ACTIVITY : Inks room aliccation
allocate room
{ mplemented il
i 8l assign_student_
wmpk G by d
" PUNCTION :hinks. . | I
| mplanentsd by
ROOMCUME MODULE : liks
sends
feceives 03 Add Anchar
= o
] ez o
e 0 Change Status
Figure 3: A Browser Session
in particular, there is considerable overhead in acquiring Ackagwledpements

non-source code knowledge., An initial evaluation of
DOCKET has shown however, that there are many benefits
from the acquisition process in its own right. In particular,
the stock-taking of software assels enables organisations to
have a greater awareness of their IS development strategy.
The DOCKET method is therefore carefully constructed to
enagble such benefits to accrue early in the population
DIDCESS,

7. Comnclusions and Future Directions

in much the same way ihat the mainstreamn software
engineering communily recognised the importance of
programming-in-the-large in the 1980s, so too must that
subset inlerested in existing systems and the attendant need
1o understand programs recognise thalt program
comprehension is more effective when conducied in a
wider, knowledge-richer context.

The DOCKET project seeks 1o provide an environment in
which there i a much closer link between operational
program units and a model of the underlying enterprise it
seeks to support. This is achieved through the input of
multiple spurces of knowledge about a system. which are
integrated into a single, coherent model of a systern. The
provision of such a model provides the opportunity to
better understand a program suite and make more informed
software maintenance decisions.

Lnder the Esprit funding programme, the DOCKET project
achieved a number of prototype tools and developed an
overall population process which seeks to assist
organisations in producing an inventory of software assets
and providing the means to exploit them in program
uynderstanding. In a subsequent stage, the project
consortium hope to continue the work to develop an
industrial-level implementation and full, quantified
evaluation,

The authors wish to acknowledge the contributions made to
the DOCKET project by members of the project
consortium; Computer Logic R & D (Greece), CRIAI
(Italy), Software Engineening Service (Germany), SOGEI
(Ttaly), Universidade Portucalense (Portugal), and the
UMIST team members- Rosemary Woolfitt, Andy Hurt,
Bill Black and Angela Balkwill. The work described in the
paper was partially funded by the Euwropean Commission
under the Esprit research and development programme.

References

Black, W.L., Layzell, PJ., Loucopoulos, P. and Suicliffe,
AG. (1987 AMADEUS Proiect: Final Repon, Esprit
project 1229(1252), UMIST, UK.

van Griethuysen, J.J. {ed.) (1982) Concepts and
Terminology for the Conceptual Schema and the
Information Base, ISO/TCI97/5CS.

Layzell, P.J, and Macaunlay, L. (1990) An Investigation
into Software Maintenance- Perception and Practices, in
Conference on Software Mainienance, San Diego,
IEEE, pp. 13G-140.

Olle, T.W., Hagelstein, J., Macdonald, 1.G., Rolland, C..
Sol, H.G.. van Assche, F., Verrijn-Stuart, A.A. (1988)
Information Systems Methodologies: A Framework for
Understanding, Addison-Wesley.

Parikh, G. and Zvegintzov, N. (1983} Tutorial on Software
Maintenance, IEEE Press.

Sowa, J. F. (1984) Conceptual Struciures, Addison-
Wesley.

"The Role of Testing and Dynamic Analysis
in Program Comprehension Supports”

__P. Benedusi ,V.Benvenuto, L. Tomacelli

o ...CRIAIL P.le E. Fermi, 80055 Portici Italy, tel.+39 81 7863174

Abstract
Test cases, and the human activities involved in testing
.and error analysis play a peculiar and considerable role in
the comprehension of a software product and process.
This subject was systematically explored in the contexi

of the Esprit DOCKETY Project (DOcument and Code
Knowledge Elicitation Toolset), designing and
experimenting second-generation Reverse Engineering
processes which combine multiple knowledge sources.
This paper describes the approach, and the architecture
which have been designed for the capitalisation of the
knowledge products of both existing Software Life Cycle
activities and proposed knowledge-elicitation oriented
lesting strategies.

1. Introduction.

The role of testing and dynamic analysis in the elicitation
of knowledge on programs is receiving increasing
attention in the research community, The initiatives
reported in the literature include the reconstruction of
dynamic call graphs [1], the animation of Data Flow
Diagrams reconstructed from code [2], the dynamic
analysis of Entity-Relationship schemnes with real data
i3], the location of functionalities in old code {4], and the
reconstruction of business rules from test cases [5]. In the
Microscope system [6] execution histories and slices
become part of a knowledge base, where they can be
subject o reasoning processes and used 0 answer varions
classes of questions about the monitored program. Ii is
thus important to research general conceptual
frameworks, and supporting architectures for: i) the
definition of the various types of knowledge obtainable
by testing and dynamic analysis, and their integration
with other knowledge sources involved in the
comprehension process; ii) the definition of their specific
contributions to Reverse Engineering processes; i) the
formalisation of tesi repositories combining the benefits

1 The EP.5111 Docket project was partially funded by the
Commission of Buropean Communities; it was carried out by a
Consortiurn comprising UMIST(UK), CRIAI(I), SOGEI
(t),Universidade Portucalense (P, SES (D), Computer Logic R&D
GR).

0-8186-4042-1/93 $03.00 © 1083 IEEE

149

of error detection and knowledge elicitation; iv) the
introduction of systematic knowledge capture sirategies in
existing Software Life Cycles, for the cost-effective reuse
of past comprehension efforts. In this paper we illusirate
some contributions given to the above goals by the
ESPRIT Docket research project, which aimed to support
software comprehension by combining muitiple sources
of knowledge. The results include the method, the design
and partial implementation of a knowledge elicitation and
browsing system. Section 2 overviews the types of
contribution of testing 10 various aspects of the software
comprehension. Section 3 positions testing-based
knowledge elicitation processes in the context of the
Docket architecture; section 4 describes the conceptual
schema proposed for test case repositories onto which the
results of many types of testing and dynamic analysis can
be mapped. The conclusions include brief considerations
on the costs and benefits of the proposed strategy.

2. Test-related knowledge typologies
Traditionally, testing is conceived as the execution of
software for error detection purposes [7]; dynamic
analysis traces the internal sofiware components &t run
time for while-box testing, for debugging or for the
acquisition of knowledge on run-time performances. In
the Docket project we explored the potential of these
activities for software comprehension objectives. The
starting points of this research were four basic
observations:

i) test suites should be available at maintenance time at
least for regression lesting purposes;

ii} maintenance programmers regularly use program
execution as a comprehension support, even when
manuals and Reverse Engineering models are available.
Documents written in natural language contain
fundamental semantic clues, but may be partially out of
date with respect to the current operational software; they
may also contain many ambiguities and imprecisions;

iif) test cases are the passive or active subject of existing
SL.C activities (specification, test case design, debugging
& error analysis, change request formulation, change
analysis, regression testing) producing various kinds of
pecaliar and valuable knowledge;

iv} test cases are important starting points for the capture
and reuse of knowledge acquired empirically and lessons
iearned during the operational life of the SW producL

in the Docket method, test cases and dynamic analysis are
used as indispensable or convenient support for software
comprehension, for one or more of the following reasons:
a- lo allow the acquisition or highlighting of
relationships which are hard or impossible io obtain from
static analysis alone

“b-'16 wliow The direct dcdiiisition of functional knowledge

¢- to aid in mapping fanctions 1o structures or vice versa
d- to focus and narrow the scope of investigations in
system’s structure and related documentation

¢+ 10 validae assumptions, and provide objective support
or disconfirmation to information coming from other
sources {code static analysis and Reverse Engineering,
documenis, experts);

f- to provide a bridge between different sources of
knowiedge about the sofiware produoct

g- 1o provide examples which are particularly effective in
the comprehension and leaming process

h- 1o provide examples which highlight and characteriss
critical aspects of the software system which are the
subjects of misunderstandings and comprehension faults.

The above subjecis have beea examined from iwo
perspectives: the improvement of Reverse Engineering
processes and models, and the reuse of knowledge
produced in the Software Life Cycle,

2.1 Tmprovement of Heverse Engineering
processes.,

Models derived from static analysis of the internal
structure of software components are lmited in the
precision and completeness of structiural knowledge, in
their semantic conient and absiraction level. In this
respect, two basic principles are exploited in Docket:

- {esting may reveal relationships which are visible only
al run time;

- lesting can exercise only {a subset of) the feasible paths
in the controd structure of programs,

This second characteristic of testing can be considered
both in terms of Lmitations and advantages. In positive
sense, lest cases narrow the scope of software analysis in
terms of both semantic-functional focusing and structural
constraining. Software analysis can in fact start from
specific, actual behaviors 1o be explained by focused
investigations in the software structure.

Dynamic analysis gives then a peculiar contribution o
ithe systematic acquisition and refinement of structural
knowledge. Static analysers, such as optimizing
compilers, are often forced to make conservalive
assumptions on the control and datz flow [8]. For

instance, one typical reason is that the internal data flow
of a called subroutine is not kmown, and even
interprocedoral static flow analysis is not applicable since
only the object code is available; another is that the static
analyser cannot know which control paths are actually
feasible at run time [9]. The compleleness and precision
of models formally derived by static analysis is limited
by the presence in code of more problems: table-driven
mechanisms; dynamic calls to subroutines whose name is

“known only at run time (expecially in’ casés when this

name may be defined by an external process); jumps to
label variables; SQL statements built by concatenation of
string variables depending on program input, etc.

By utilising runtime information for specific input
values, for example, R.Gopal [10] defined dynamic slices
containing only those statements that actually affect the
value of a variable at a specified program location, in
contrast 1o static slices which include the components
that may affect it. More in genoral, in Docket we define
the dynamic version of a structural model derived by the
analysis of code, and compare it with the corresponding
static version. With reference to generic dependence
graphs [11], the set Ds of dependencies between sofiware
components represented in a static model may only
partiaily intersect with the set Dr of dependencies
obtained by dynamic analysis. In particular we define:

1} Da = Ds - Dr the difference set containing the
dependencies which appear only in the static model.

Da may contain infeasible dependencies, resulting either
by undesired overesiimation effects (such as the
assumptions that all paths are feasible), or by the
deliberate decision 1o Aighligh potential bindings between
sofiware components, which may become effective at run
time after 3 minimal change in the sofiware [12,13]. Da
may also contain feasible dependencies, which were not
revealed at run time since the lesling was not exhaustive
in respect o then,

2) Db = Dr - Ds i3 the difference set conlaining the
dependencies which appear only in the dynamic version of
the model: Db contains the dependencies which were
revealed only by dynamic analysis.

33 Dc=Dr n Ds isthe intersection set conaining the
dependencies revealed by both static and dynamic
analysis. Even in this case, dynamic analysis may record
additional information, such as the specific values of
information flowing between the user and the software or
between software components. The same set of exercised
struciural components may in fact perform totally
different functions, depending on the value assumed by
some data {i.e, table-driven mechanisms). Also soms
values, expecially those involved in man-machine
interactions, may be particularly meaningful 1o the
human reader when they evoke domain concepts,
expecially when these values appear in user documents

containing descriptions of concepts and events. Dynamic
analysis thus provides an important aid in linking
structural and functional aspects of software.

Mapping function to structure is defined as the process
that staris from a function which is either known or
expected and tries to locate the software components
responsible for it. Test cases provide ebserved behaviors
T bE explained Vin v ienms of “internal “strittures; the

observations may also concern unexpected behawars_

“Wwhich Were neither predicted nor assurned based on other
investigation processes.

Mapping structure to function is defined as the process
that starts from the examination of internal components
and tries to discover their functional rofe and pumose,
This investigation can be done by examining the run-
time direct or indirect influence of a given set of
components on certain oulpuots, or input/foutput
behaviours.

However, the acquisition of functional knowledge is itself
a problem for both the end user and the maintenance
programmer, One aspect of functional comprehension is
to know exactly what a program does in terms of
mapping between phisical inputs and outputs; another is
the comprehension of the meaning and conceptual goals
of this concrete behavior, i.e. its mapping to user domain
concepts. Testing is thus exploited in Docket for the
direct acquisition of cause-effect relationships, by
recarding and formalizing the joint, complexive result of
many software components in combination. Especially
for complex systems, the perception of the whole effect
of their components in a given situation is in fact
computationally hard to obtain by formal reasoning on
system models. As in many problems of physics,
simulation or even direct exercising of the real-world
system may be indispensable to know what happens. In
addition, the comparison of the simulated model's
behavigur with that of the real system is fundamental to
validate, refine and perfect the model.

The goal of testing techniques as boundary value analysis
[7] is redefined here to acquire boundary an constraint
knowledge, i.e to know which are the actual boundaries
of input and output data domains and the user operation
sequences considered valid by the system, and/or o know
the behavior around boundaries. This kind of exercising
often reveals subtle aspects of system structure and
behaviour, and helps in understanding the role and
criticality of some parts of it.

Test cases can directly reproduce examples reported in
user manuals, or be defined to check conceptual
descriptions found in them. In the Docket Method this is
used to establish a network of semantic links between
documents and code [14,15}, This is an example of using
informal knowledge sources to aid the mapping of code to
domain concepts. According to Biggerstaff's DESIRE

151

approach [16], informal sources are indispensable to reach
higher levels of abstraction in design recovery; in the
Desire system and its evolutions, neural networks were
trained with examples combining static structural
patierns, meaningful code identifiers and comments. This
approach is competitive with respect 10 abstractions based
on totally formal derivation techniques [17], or cliche

recognition using ‘oaly formal knowledge [18]. Among
Lhe problems of thxs approach are ihe _presence of

synonims, the ambiguity of natural language semences,
and the possible lack of meaningful comments.
Enhancements and perfections are possible with dynamic
examples providing both "meaningful” and precise
behaviors; this is evident expecially when components of
the man-machine interface are exercised, since its externat
fanguage and behaviors should be meaninfgul in the user
domain, and the teminology very close to that used in
user domain documents,

Examples however are fundamental 1o train humans.
Thus test cases can provide real examples, (o be selected
and recorded for their explanation power, or their
determinant role in validating/rejecting assumptions.

2.2 Test-related knowledge produced in the
Software Life Cyle. :

In addition to knowledge eliciiation oriented testing,
Docket sustains the saving and reuse of the pecuoliar
knowledge produced by many activities of existing
Software Life Cycles related to testing, In alpha testing,
test case design and error analysis force the analysts to
reflect on the software product being released from a
different point of view than that of the developer. The
design of successful test cases or code inspection sessions
involves considerable human ability; deciding what is an
error and what is not refines the comprehension of
functional and non-functional specifications. In the
debugging phase, further test cases can be used to provide
the additional information requested by inductive or
deductive assumption-based processes [7].

Error analysis is a bottom-up process that starts from
observed failures, tries to locate the faulis in the
implementation level of the product, and then possibly
investigates their causes in higher levels of sofiware: the
error might have been originated in the coding phase, or
low-level design, high-level design, and so on. Thisis a
sort of reverse engineering process starting from test
cases. The documents produced by alpha testing thus
vield gpecialist knowledge which is very important to the
comprehension of both the product and production
process. Beta testing and corrective change requests
concern test cases which were not explicitly designed, but
empirically gathered from problems occurred in the user's

operational environment. These cases are important in
that they represent situations, and possibly hidden aspects
of the product, which were not envisaged or explored in
alpha iesting; they may not only reveal ordinary
problems, but also empirically higlight aspects of
software which are the most challenging and difficuli 10
comprehend. The analysis of what and why something
was failed to test or to fix, higlights what is important to
know to maintain the system. The information sources
are in this case: the user problem report; the problem test
dais possibly provided together with that report, if any;
the test cases made by the maintenance analyst o
reproduce the problem and fix if; the pars of system
model and documents wraversed in studying the problem;
the hypoteses made, the diagnoses and motivations of the
solutiocns; the results of regression testing afier the
changes, These sources are first used in Docket io
establish links between the tesi cases and the document
parts involved in problem analysis and {ixing, and then to
create semantic links between these document parts and
the code parts interesied by the test cases [14]. Also
empirical observations made during the operational life of
a product may be naturally expressed in form of test cases
and assertions related to them. Finally, as proposed in
{17,207 test case repositories can play an active role in
the maintenance process: the change requests can be
pariially expressed in terms of new iest cases and
modifications 1o existing ones; these test cases can be
efleciively used in change and impact analysis, in order to
focus and narrow the scope of investigations in both
documents and code. This possibility raised further
justifications and requirements for the design of the test
case repository schema,

3. Testing in the Docket architecture,

Fig.1 shows the placement of testing-based knowledge
acguisition in the general Docket architecture. The basic
classes of knowledge sources used in Docket are dynamic,
informal and formal, Informal knowledge is expressed in
natural language in various kinds of docaments, including
user domain documentation, user manuals, technical
documentation, problem reports and change requesis.

Test cases and their related information may embody
formal, informal or dynamic sources of knowledge. Test
data constituies a formal source in 50 much as it is often
machine-readable and processable. The Docket internal
forms level includes all the already machine-readable
objecis: source code, executable code, and the existing
user test case repository (if there are any) containing test
data. However, test case documentation, such as
checklists and user manuals used as oracles, are regarded
as semi-formal or informal sources of knowledge.
Human experience about the system and its hehaviour is

152

also regarded as a non-formal, ie, dynamic source as is the
result of the problem solving activities involved in the
testing process. The knowledge contained in Internal
Forms is organised and abstracted into a set of Struciured
Forms by analysis tools, which may make use of
knowledge from Structured Forms of other sources, The
integration phase comprises the consiruction of the
Global System Model (GSM) and the resolution of
conflicting information. The GSM formalism [21]is
capable to synietise knowledge expressed at a variety of
leveis of abstraction, from high level statements of
business goals and objectives 1o low level concepts such
as data and procedures wsed to implement the system,
Traceability links interconnect the GSM, the Concept
Thesawnrus, Structured forms, and Internal forms, The
operational software system is the exccuisble product on
which knowedge is 10 be acquired; its exercising produces
test case resulis, Before testing-based knowledge
acquisition activities start, it is important to buoild an
initial bascline model of the sofiware product, by
activating a firs:, system-wide Reverse Engineering
process starting from static analyis of source code. This
creates a reference structural skeleton, onto which to map
the resulis of further investigations involving testing,
dynamic analysis, and more focused reverse enginesring
steps. Individual source units are submitted to static
information extraciion processes, which produce
programming-language independent, low-level structured
forms(IF1} in the Code Structured Form repository [272].
This is a first level abstraction siep, whose goal is to
preserve the original information content while
decoupling all the other Docket processes from the
syntactic details of the sources, The IF! preserve links
aliowing the cross-referencing of its componcnts with the
original source componenis. The source analysis process
tags those paris of IFL outpui form that may be affecied
by incompleteness and/or indetermination due 1o the
{imits of code static analysis [23], such as those indicated
in secton 2. This information can be used to activate
some compensative processes invoking additional
knowledge sources: testing and dynamic analysis, or
documents and human experis. Information abstraction
steps post-process the IF1 representation, and produce
further levels of structured forms (IF2); these represent
the structure of the sofiware product at various levels of
granularity. The RE process includes the identification of
the basic daia and processing components, the
reconstruction of various kinds of relationships between
software components {24, 251, and the production of
System Graphs such as Structure Charts and Hierarchical
Data Flow Diagrams [26, 21). Filtering and enrichment
steps produce views of the Re models which improve
their informaiion discrimination power, and enrich their
information content & semantics with test case-related

w INTERNAL STRUCTURED
EXTERNALFORMS 21 FORMS | st

ncept
Thesanru

Consolidation|
d

Global

Model

Filtering &
Enrichment j

[nforma.}ion

Systent-level
Abstractio

e
Fhesassarsras

Value
o

sertio sef i
. = - I N l_. I Structural
component

Inpu R Output
ISA
DYNAMIC SOURCE Ex
FORMS pecied
— e — e e — Result
| !
I Conclusion ' Y [—— e o m— —
| o
| —“'——‘l TestCase | I Diagnosis l |
[|
! | | |
| Assumption / question | L Ozhchocumcm—I |
' ' Obj be INFDRA’!&%}%A.{S?URCE
ject to Fi
l | covered/checked
FORMAL SOURCE FORMS A ISA
r o = = = T I R
I [Functional component ' L Structarml component I Assetion l
fig.2

153

knowledge. Filiering steps are designed to discriminale
details to be aggregated, encapsulated, hided or
highlighted in the information coming from either static
Reverse Engincering or dynamic analysis. The filtering is
aided by technical-domain knowledge on the
characteristics of the HW/SW platform, Operating
System, DBMS, TP Monitor, System Libraries and
utilities, standard packages used by the application, and
their typical influence on program and sysiem
compasition. This knowledge makes it possible o
classify and discriminaie various kinds of software
companenis at different levels, ranging from entire
modules or data structures 1o sels of individeal elements
ingide them, Experiments of such filizring were conducied
on a COBOL Microfocus application [27], obtaining
consistent simplification of structural models, and
facititating the selection of the relevant information from
the details produced by dynamic analysis. The earichment
of Reverse Engingering Models resolis from the
combination of siatic model bailding resulis with those
of igsiing and dynamic analysis of the software product,
Test cases are used here to confirm or reject relations,
assumed roles and semantics of components existing in
the model derived from static analysis. This model can be
sugmented with new relations and component roles
derived from test cases. Test cases also coniribuie in
providing objective support to the information passed 1o
the GSM building and consolidation process. The
enrichment process is gided by cross-references between
the resulis of dynamic analysis, which are siored in the
st case repository, and the code structured fomas, The
production of new iest cases may be based upon 1) the
information derived from informal and dynamic sources,
and i1y the inlegrative knowledge elicilation needs
cmerging from the siatic analysis. The analysis of
existing 125t cases aims to cxploit and improve the
existing error-detection-oriented iest cases for knowledge
elicitation. Where the information on existing cases is
nol complets, cote exercising is activated o rerun the st
based on the original inpw data; then the resulls arg
analysed in order to reconstruct the relevant information,
if the original input data are missing, a substitute
insiamce has 1o be reconstructed based on the available
{informal or formal} test case description. Both old and
ngw test cases need 1o be classified, selected and gualified
based on their value for knowledge elichiation. This
activity may apply both in the design of new iest cases
and in the attempt to maximise the reuse of existing
ones, if any. In regression testing afler mainlenance
pperations, it is possible to apply a selective revalidation
process: the analysis of changes and existing test cases
defines the test cases which are still valid and relevant for
knowledge elicitation about the sysiem, and those which
need to be re-executed and possibly modified, and

154

identifics any possible need for new test cases, For this
purpose, strategies originally conceived for eror-oriented
retesting {28, 29,30, 31] can be profitably applied.
Code-level testing may be performed in many ways: i)
directly executing the operational code; i) instrumenting
the source code with probes, and then compiling and
execuling it; iii) submitting the sowce code to an
asseriion-based dynamic analyser [3Z].

Code instramentation, compilation and execution can be
performed in Docket by exploiting the same tools and
environment used by the developer or mainiainer in
traditional testing activities. Two types of assertion-
based testing strategies are possible:

I- given a set of assumptions and expectations on a
software componehit, specify them in iorms of assertions
on the inpuis and on the resulis; then validate the
assumptions made by observing which assertions are
verified or violated at run time, and which software parts
are exgrcised correspondingly;

2~ given samples of the actual input-output behavior of &
software component, transform them into sets of
relationships beitween assertions, involving data
transformations and program paths,

The first strategy has been experimented in Docket by
expioiting the PC-TEST ool {32] which exercises the
code using both data provided by the user and statements
writicn i a formal assertion language. For each soltware
module under test, the resulis of this kind of dynomic
analysis include: assertions {either verified or violated at
run time), a log of the data sachanged during the man-
machine interaction, @ trace of the paths maversed
{ezercised branches) and the dynamic usaze of data
structures. The second strategy has been explored by
H.8neced [31 with 2 prototype (ool including, in addition
1o program instrumeniation and test monitoring facilitics,
an assertion generator and @ database audior, and was used
io derive business rules at the transaction level from test
case results. Both the above sirategies stress the role of
test cases in connecting functional and structural aspects
of the sofiware. The assertions can be used as a compact
and expressive means for denoting valid and invalid daias
domaing, they may involve both dafa of the external user
interface and internal variables exchanged between
software modules. However, the tonls mentioned work
with implementation-level assertions, Le. asseriions
directly referring 1o componenis of the implementation,
In a comprehension process, a set of implemeniation-
level assertions may be the corresponding of assumptions
and conclusions referred 1o higher sofiware levels {(fig.3),
or user domain concepts, Higher levels of testing may be
performed using the daia model dypamic analysis ER-
TGOL [21,3]; it makes it possible, for instance, to
exercise the ER schema of a user's application data with
sample fransactions and real data values,

Domain

Concepts

Concepiual Implementaton- Sample

assertions level assertions values
AN RS s

interface _ states

4. A conceptual schema for test case
repositories.

The results of various types of testing and dynamic
analysis strategies can be mapped onto the entity-
relationship conceptual schema of fig.2; it may be used

“for-the products-of ‘both error-orignted and Knowledge ™

elicitation oriented activities. The schema was defined in

winterhalvariablogisai

fig. 3

The schema is represenied in a local knowledge base,
which is capable to represent assertions also on the state
of the database, and 1o support reasoning on the different
transaction behaviors which may depend on different
initial states. The ER schema can be exercised with the
same real-world test data used to test the operational
product; it is thus possible to compare the logical
behaviours of the system and of the schema. This way of
checking assumptions at ER level can be used both to
validaie and perfect a schema derived from Reverse
Engineering, and to improve the human comprehension
of the schema itself. In addition, Docket provides more
general ways for the acquisition and formalisation of
assertions made by dynamic sources. A Transcript
management (ool [21] analyses machine-readable text to
extract concepts relevant to the domain. The text may be
the transcript of an interview with an expert, or it may
consist of notes entered directly 10 & notepad by a
maintenance programmer. The concepis are stored in the
Concept Thesaurus, and the network of semantic links
between them is represented in form of Conceptual
Graphs {33,34). A Dialogue Graph Editor has been
designed o allow the representation of knowledge referred
to the man-machine interface of the product in the form
of dialogue graphs, which are a specialisation of
conceptual graphs. With reference to the schema of fig.1,
it is important to note that multiple knowledge
acquisition lines can be activated togheter. For example,
an expert interview can be organised involving the
observation and commenting of system’s behavior, and/or
the reading and commenting of parts of available
documents; an instrumented version of some modules can
be used in this process, in order to trace the internal
structures traversed during the interaction with the
product. As an alternative, these multiple knowledge
acquisition lines can be activated in different moments
with reference to the same set of test cases: for example,
some test cases may be derived from the transcript of
previous expert's interviews, document reading or code
reading sessions; or the expert may reason off-line on
batch input-output examples.

155

“Docket for the specitication of the test case repository;

this term is used to refer 10 the repository as a whole,
including the test data internal forms and the test case
structured forms. The test cases internal form can be the
existing test repository of the user's production
environment; it can include raw test data files, scripis
used to capture and playback user interactions [37], and
test case descriptions in formatied documents lnked
the test data. The test case structured forms [22] were
defined as extensions and generalisations of the 1251 1sbles
proposed in [29]. The distinction between the internal
forms and structured forms levels entails decisions on the
degree of formalisation of 1est cases. The mass of all raw
data sets(input and output batch files, scripts, transaction
logs, etc.} belongs to the internal forms level; at the
structured forms level it is possible to highlight the
subsets of data and relationships that are essential to
characterise a test case, and the kind of knowledge
obtained from it. For example, the entities INPUT and
OQUTPUT represent program data which assume some
values at run time; at the minimal degree of
formalisation, the relationships between a test case and
its INPUT and OUTPUT are represented only by
references between a test case identifier in a test table and
entire data sets in internal forms. More formalisation
implies that the test case structured form includes
references to a selection of specific program data, and
possibly assertions on them. Whenever relevant, it is
also possible to specify an attribute of INPUT and
OUTPUT entities which distinguishes between variables
containing stimuoli or responses and those playing
respectively the role of initial/final state variables in the
lest case, The other data attributes, which are obtained by
static analysis of the software product, are represented in
the code structured forms. Depending on the ool used,
the resulis of code-level dynamic analysis may include
both the information that certain intermal program
variables have been exercised, and information on the
specific values assumed by them. If considered relevant,
these internal variables can be included in the input and
output sets of test cases, and their initial and final states
represented by specific values or assertions. The schema
of fig.2 highlights the role of a test case in
interconnecting formal, informal and dynamic sources of
knowledge. Most relationships depicted in the diagram

have 1o be intended as optional. This may happen for two
reasons: some information is not avaiiable at
maintenance time and has to be reconstructed (eg. for an
old test case only raw input data might be available, and
not the testing strategy, the test case description, and so
on}; or the type of testing strategy involves only few
types of information (eg. in structural testing the
function to cxercise is not defined). With respect o
dynamic sources, one or more lest cases may be necessary
to answer a specific question or validate a specific
assumption, and similarly one or more of them may be
determinant 1o reach a given conclusion, A (est case may
provide the objective support to the interconnection of an
hypotesis to a conclusion. With respect to informal
spurces, a test case may have an associated diagnosis
report, containing the description of the results of the
related error analysis activity; other documenis may be
the problem report, change request or user manual from
which the test case was derived, and specific test case
design documents. Empirical cbservations on the
operational software syslem may be saved in form of
assumptions and conclusions referred to cause-effect
relationships which were revealed by test cases, where
causes and effects are described in terms of formal source
components. In terms of formal sources, a test case is
characterised by: the set of software objects to be
covered/checked; the set of its inputs; the set of its
expected results; the set of its observed results. The goal
of a black-box test case may be to exercise a component
of a formal functional decomposition tree; the same tesi
might have been run using a dynamic analyser, in order
1o reveal the intemal structural components which are
exercised when a given functional behavior is observed.
Similarly, the goal of a white-box test case can be the
exercising of a certain set of structural componenis, but it
is possible 1o monitor even the commesponding run-lime
behavior. Taking into account the above possibilities,
the sei of ohserved resulis may be decomposed into two
subsets: OBe, including those output variables and
structural componenis which were explicidy mentioned
in the expected resulis; and OB, including any additdonat
results which were in fact monitored, but not mentioned
in the expecied results. The OBe subset is supposed to
be compared with the set of expected results, when this is
not empty. The knowledge obiained from the analysis of
the possible discrepancies may be contained in a
diagnosis report. A structural component can be a source
code component, or a component of a structured form
representing a view of the software product at a certain
level of abstraction. For representations derived by static
code analysis, traceability links in the code struciured
forms allow to map in fact code-level execution traces to
higher representation levels, Thus the test case structured
form can refer 1o source code lines, slices, variable

156

definitions, uses, definition-use pairs in {lowgraphs,
contro} branches, paths or decision-to-decision subpaths,
modules, call sites, components of dependency graphs,
structure charts, data flow diagrams, eic. In general, a
test case can be referred to different formal representations
of a sofiware system at different absiraction levels. Even
the objects to be checked/covered may be af different
absiraction levels; the objects actually exercised may be
cither operational system components, or abstract schema
components if such a schema is made directly exercisable,
as in the case of the ER-TOGL. The possible type of
both input and result depends on the absiraction level of
the objects to exercise. For example, if the object 1o
exercise is a given functionality of a subsoutine, the
input set will consist of its input variables, while the
result set will include the output {(or input-ouiput)
variables, and possibly paths exercised in the subroutine's
internal structure, 1f, instead, the object to exercise is a
transaction on the ER data schema of the system, input
and output will refer to entities and relationships; the
result will include paths exercised on the ER schema. The
attributes of a test case include: test case identifier;
textual description; and a set of classification facets. The
main facets identified are level, origin, strategy, and
Enowledge-classes. The leve! of a test case is the
software abstraction level (o which its results are referred,
while the erigin records the type of activity producing it:
alpha lesting, beta testing, change analysis, regression
esting, empirical observation made during operational
life, knowledpe-clicitation oriented iesting. The strategy
specifies whether, based either on explicit test design
information or on the type of data collected, the testing
process can be considered black-box, white box, grey-
box, or other. Refinemenis of this attribute can specify
particular sirajegies such as boundary value analysis,
debugging by esting [7], all-du-paths coverage [35], and
s0 on. The knowledge-classes attribute is 3 list of
keywords that can be used 1o highlight the main types of
knowledge obtained from the test case, ranging from the
error delection point of view to the various kinds of
comprehension targets indicated in section 2. Soch an
aliribute should be used to provide the main justifications
for recording the test case in the repository, or keeping it
in time. The users of the repository should be allowed to
signal the test cases and the type of knowledge they found
more useful io solve specific problems, thus contributing
1o the perfection of test case classification in time and to
the improvement of the repository value,

5. Conclusions

Testing-based knowledge elicitation was experimented in
the Reverse Engincering of a COBOL administrative
system, consisting of 39000 LOC in more than 100

source modules [27]. People having no previous
knowledge of this system combined the results of some
static and dynamic analysis tools with manual processing
and the reading of user manuvals. Entity Life Historics
and Dialogue Graphs were produced from code and
compared to those provided by human experts; also
~sentences found in-user manuals were checked in terms of
paths on these graphs, and linked to code parts selected

[5] H.Sneed "Reverse Engineering Programs viz Dynamic
Amnalysis" EP.5111 Docket Esprit Project, IP/A4
App.C,CR.O83/REP/A.3/2.0, Dec. 1992, SES, Munich

[6] I.Ambras, V.O'Day “"Microscope: a knowledge-based
programming environment”, IEEE Software, May
1988, p.530

1979 s . N :

[71 G.Myers “The Art of Software Testing” J.Wiley &Sons

- from”those traversed at" run=time in" the™ corresponding

intemal paths. Document fragments containing the
definition of user-domain concepts and events were linked
t0 data struciures and instructions; further test cases were
necessary to discriminate between different possible
assumptions deducted from the manual, and their results
were Tecorded as integrative assertions supporied by
objective behaviors. Testing was perceived as
indispensable, even though the code was well-structured
and contained meaninfgul names. According to the
Docket schema, test case siructured forms can be seen
just as an intermediate stage in the construction of a
Global System Model, or become also a permanent
repository available for direct consultations through the
Docket browser. This second form of exploitation entails
many cosls and benefits, The costs will include the
formalisation of test cases, and the overheads of their
persistent storage and possible update for any change in
the programs. The benefits will include the reuse of
objects which are not only necessary for error-oriented
software revalidation, but also effective as software
comprehension aids. The overheads can be minimised or
justified by appropriate test case selection criteria; for thig
purpose, cost models which were developed for selective
regression testing [36] should be enhanced 1o take into
account the software comprehension point of view.

References.

[1] R.G.Reynolds et al. "Extracting procedural knowledge
from software systems using inductive learning in the
PM system", Proc.of 4th Int.Conf.on Softw.Eng. and
Krnowledge Eng.SEKE92, pp.131-139, IEEE CS Press

[2] G .Canfora, L. Sansone, G. Visaggio "Datz Flow
Diagrams: Reverse Engineering Production and
Animation”, Proc. of CSM92 IEEE Conf. on
SoftMaint., Orlando, FL Nov 9-12, 1992, pp.366-375

[3] P.Benedusi, V.Benvenuto, M.Caporase "Maintenance
and Prototyping at the Entity-Relationship level: a
Knowledge-based support” Proc. of CSM50, San Diege
CA Nov.26-29, 1990 p.161

[4] N.Wilde, I.Gomez, T.Gust, D.Strasburg "Locating User
Functionality in Old Code”, Proc. of CSM92

157

A.Aho, R.Sethi, I.Ullman "Compilers: Principles,
Techniques, and Tools", Addison-Wesley 1986

[8

{ 9] D. Hedley, M.Hermell "The causes and effects of
infeasible paths in computer programs” Proc. of 8th

Int.Conf.on Software Engincering, London, Aug 1985

R.Gopal u'Dynamic Slicing Based on Dependence
Relations” Proc. of CSM91, Sorrento, Italy, Oct.1991

[10]°

J.Ferrante, K.Ottenstein, D.Warren "The program
Dependence Graph and its use in Optimization” , ACM
Trans. on Programing Lang. and Systems, vol.% ne.3,
pp.319-349, Jul.1987

[11]

{12} D.H Hutchens, V.R.Basili "System strocture Analysis:
clustering with data bindings” IEEE Trans.Soft.Engr.,
SE-11(8), Aug.B5

A.Cimitile "Re-Use Re-Engineering: the RE2 project”
Proc. of Workshop on Reverse Engineering, Portici
Italy, Dec.1991

[13]

[14] P.Benedusi, L.Casalini, V.Benvenuto "Additional
Knowledge requirements on Operational Systems”,
EP.5111 Docket, IP/A4 CR.OA4/REP/A 2/2.0,1992
{15] "The Docket Method Manual”, EP.5111 Docket UMIST,
Manchesier UK, Dec.1992

[16] T.IBiggerstaff "Design Recovery for Maintenance and
Reuse", IEEE Computer, July 1985

[17] P.Hausler et al. "Using Function Abstraction to
Understand Program Behavior”, IEEE Software
Jan.1990, p.55

[I18] A. Engberts, W.Kozaczynski, J.Ning "Concept
Recognition-Based Program Transformation” Proc. of
CSMO91, Sorrento Italy, Oct, 1991, p.73

{191 D.J. Newman "A Test Hamess for Mezintaining
Unfamiliar Software”, Proc. of CSME8, Phoenix,
Arizona Oct. 24-27, 1988 pp. 409-416

{20] B. Watchel, Series "Software Analysis Notes", Software
Maintenance News, July 87-Dec B8

[21] "The Docket Architecture Manual”, EP.5111 Docket,
UMIST, Manchester UK, Dee.1992

"The Docket Formal Sources Structured Forms Manual”
EP.5111 Docket,CR.084/MAN/A.3/2.0, Dec. 1992

{221

{23}

{241

127]

“Seurce Code Analysers for Stucnured Forms”, EP.5111
Docket, IP/A4, CR.OB3/REP/A.3/2.0,Dec. 1992

H. M. Sneed, G. Jandrasics "Inverse Transformations
on Software from Code 1o Specification” Proc. of
C3MEB | Phoenix, AZ Uct. 24-27 1988, pp.102-109

H.Sneed, SES, "SOFT-RESPEC Roverse Engineering
Systemn”, Docket Interna] Report, 30 Sept 91, pp.10

P.Benedusi, A.Cimitile, U.De Carlini "Reverse
Engineering Processes, Design Document Production,
and Structure Charts” Journal of Sysiems and Software,
Vol.16 n.d, 1992, pp.225-243

Paolo Benedusi, Yincenzo Benvenuio, L.Tomacelli
"Experimentation in Operational System Knowledge
Acquisition™ EP.5111 Docke:, IP/AS,
CRUOBSREP/A4/2.0, Dec. 1992

[28] HE.N. Leung, L. White "Insights into Regression

{29]

Testing”, Proc. of Conf. on Software Maintenance,
Miami, Florida, Qct. 16-15 1989

P. Benedusi, A. Cimitile, U. De Carlini "Post-
Maintenance Testing based on Path Change Analysis®,
Proc. of CSME8, pp.352.361

158

{30}

31}

[32]

{33}

34

D.Binkley "Using Semantic Differencing 1o Reduce the
Cost of Regression Testing” Proc. of CSMS2 pp.41-50

R.Gupta, M.J.Harrold, M.L.Soffa "An Approach to
Regression Testing using Slicing” Proc. of CSM92 ,
pp.2599-308

PC-TEST Static and Dynamic Analyser User Manus),
ver.3.10 1989 4D SOFT Bt. Budapest

J. F. Sowa "Concepmal Swuctares: Informaiion
Processing in Mind and Machine” Addisen-Wesley
1984

R.E.M.Champion "The Development of a Unifiad
System Model from Muliiple Knowledge Sources”
Proc. of Workshop on Reverse Enginering, Portici
Ttaly, Dec.1951

[351 5. Rapps, E.J. Weyuker "Selecting Sofiware Test Data

Using Data Flow Information”, IEEE Trans. on Sofd
Eng. Vol. 11 n° 4, April 1985

[36] HK.N. Leung, L. White "A Cost Model 1o Compare

{37}

Regression Test Strategies”, Proc. of CSM%1, pp.201

A.Serra, M Vercelli "A Remote Terminal Fmalator for
Software Quality Conwel”, Proe. of AQUIS'S1 Conf.
Pisa, haly, Apr. 22.24, 1951

Chair: Malcom Munro

Understanding Concurrent Programs
using
Program Transformations

E. J. Younger

Centre for Software Maintenance Lid

Unit 1P, Mountjoy Research Centre

Durham, DH1 3SW

Abstract

feverse engineering of concurrent real-fime Pro-
grams with timing constrainis is a particularly chal
lenging research area, because the functional behaviour
of a program, and the non-functional timing require-
ments, ore implicil and can be very difficult 1o dis-
cover, In this paper we present a significant advance in
this area, whick is achicved by modelling real-time con-
current progrems in the wide spectrum language WSL.
We show how a sequential program wilh inferrupls con
be modelled in WSL, and the method is then ertended
to model more general concurrent programs. We show
fiow a program modelled in this way may subsequenily
be “inverse engineered” by the use of formal program
transformations, io discover o specificaiion for lhe
program. (We use the term “inverse engineering” lo
mean “reverse engineering achicved by formal program
fransformalions™).

1 Introduction

This paper describes extensions to the inverse en-
gineering technigues developed at the University of
Durham, to enable these to be applied to programs
with interrupts and concurrency. An example of the
use of the methods to derive a specification for a simple
concurrent system is given.

The paper is organised as follows. In sections 2
and 3 we give a brief introduction to the WSL language
and transformation theory. Then in Section 4 we show
how to model a real-time interrupi-driven program in
the WSL language. In Section 5 we show how the
principles may be extended to model more general
concurrent programs. Finally, we use this information
to derive a specification of the example program in
Section 8.

0-8188-4042-1/93 $03.00 © 1993 IEEE

160

M. P. Ward

Computer Science Department
Seience Labs, South Rd
Durham DHA 3LE

2 The Language WSL

In this section we give a briel introduction to
the language WSL [2,9,12] the “Wide Spectrum Lan-
guage”, used in Ward’s program transformation work,
which includes low-jevel programming constructs and
high-level abstract specifications within a single lan-
guage. For brevity we will only define the language
construcis used in this paper.

A program iransfermation is an operation which
modifies a program into a different form which has
the same external behaviour (it is equivalent under
a precisely defined denotational semantics). Since
both programs and specifications are pari of the same
language, transformations can be used to damonstrate
that & given program Is a correct implementation of
a given specification. In [10,13,14] program trans-
formations are used to derive a variety of efficient
algorithms {rom abstract specifications. In [13,16]
program transformations are used in reverse eagin-
eering and program comprehension tasks, including
the derivation of concise specifications from program
souree code.

2.1 Bequences

Sequences are denoted by angled brackeis: s
{a1,a2,...,a,) is a sequence, the ith element a; i
denoted slij, s[i..j] is the subsequence {s[i],s[i
10, ...,s[5]), where s[i.. 1 = {) (the empty sequence]
i > j. The length of sequence s is denoted
£s), so s[f(s)] is the last element of 5. Ve use
s[i..] as an abbreviation for s[i..4(s)]. reverse{s)
{@ns@no1,. .., 82,01}, head(s) is the sarne as s[1] and
tail{s) is [2..].

The concatenation of sequences s, and s4 is denoted
sy A so= (1[0 s €(s)], 50000, L solf{(s23]).

. {does not terminate)..

2.2 Specification Statement

The statement {zy,...,z,) = {(2},...,2}).Q as
signs new values zf, ..., 2}, to the variables zy,..., 1,
such that the formula Q is true. If there are ne
values which satisly 3 then the statement aborts
Tor example, the assignment
{z) = {2").(z = 2.2’} halves x if it is even and aborts

the sequence brackets may be omitted, for example:
z == o' e = 2.2). The assignment 2 = 2'.(z' = 1)
where ' does not occur in 1 is abbreviated to ¢ = f.

2.5 Unbounded Loops

Statemenis of the form do 8 od, where § is a
statement, are “infinite” or “unbounded” loops which
can only be terminated by the execution of 2 statement
of the form exit(n) (where n is an integer, not a
variable or expression} which causes the program to
exit the n enclosing loops. To simplify the language
we disallow exits which leave a block or a loop other
than an unbounded loop. This type of structure is
deseribed in [6,8].

3 Program Refinement
and Transformation

The WSL language includes both specification
constructs, such as the general assignment, and pro-
gramming construcés. One aim of our program
transformation work is to develop programs by refining
a specification, expressed in first order logic and set
theory, into an efficient algorithm. This is similar to
the “refinement calculus” approach of Morgan et al
[4,7]; however, our wide spectrum language has been
extended to include general action systems and loops
with multiple exits. These extensions are essential for
our second, and equally important aim, which is to use
program transformations for reverse engineering from
programs to specifications.

Refinement is defined in terms of the denotational
semantics of the language: the semantics of a program
S is a function which maps from an initial state to a
final set of states. The set of final states represents all
the possible output states of the program for the given
input state, Using a set of states enables us to model
nondeterministic programs and partially defined (or
incomplete) specifications. For programs %, and 83
we say S) is refined by 8; (or 8o is a refinement of
S1), and write 8§; < 83, if S5 is more defined and more
deterministic than 5;. If 8; < 8; and 8, < §; then
we say Sy is equivalent to S5 and write §; = S5, Equi-
valence is thus defined in terms of the external “black

o risodd IR the dequience contalns Snévariable-then o

161

box” behaviour of the program. A transformation is
an operation which maps any program satisfying the
applicability conditions of the transformalion to an
equivalent program. See [9] and [12] for a descrip-
tion of the semantics of WSL and the methods used

for proving the correciness of refinements and trans-
formations. .
_the opposite of refinement:
“abstract® “program-is- ‘the- nﬂnatermmatmg PTOETATT w0

‘We use the term.abstraction. to.denote.
for example the

abort, since any program is a refinement of abort.

A transformation is an operation which maps any
program satisfying the applicability conditions of the
transformation to an equivalent program. See [§]
and [12] for a description of the semantics of WSL
and the methods used for proving the correciness of
refinements and transformations.

4 Modelling Interrupt-Driven
Programs in WSL

WSL has no notations for parallel execution or
interrupts. We chose not to add such notations to the
language, since this would complicate the semantics
enormously and render virtually all our transform-
ations invalid. Consider, for example, the simple
transiormation:

z=ljifr=ltheny=0f = zm 1yl
which is trivial to prove correct in WSL. However, this
transformation is not universally valid if interrupts or
parallel execution are possible, since an interrupting
program could change the value of x between the
assignment and the test. Instead, ouf approach is to
model the interrupts in WSL by inserting a procedure
call at all the points where the program could be
interrupted. This procedure tests if an interrupt did
actually occur, and if so it executes the interrupt
routine, otherwise it does nothing. Although this
increases the program size somewhat, thie resulting
program is written in pure WSL and all our trans-
formations can be appheci to it.

One of our aims in transforming the resultlng W5L
program is to move the interrupt calis through the
body of the program, and collect them together and
merge them as far as possible. The body of the
main program would then be essentially sequences of
statements from the original program, separated by
the processing of any interrupts which occurred during
their execution.

In order to model time within WSL we add a
variable time to the program which is incremented
appropriately whenever an operation is carried out

“mest ..

which takes some time. We can then reason about
the response times of the program by observing the
initial and final values of this variable. We can also
model the times when interrupts occur by providing
an input sequence consisting of pairs of values {t,c)
where ¢ the time at which the interrupt occurs and ¢
is the character. Naturally we should insist that the
sequence of ¢ values be monotonically increasing. Such
a sequence can model input from an external device,
a concurrent process, or even a hardware register. We
make this explicit in our model of the program: the
array {or equivalently, sequence) input consists of pairs
of times and characters to represent the inputs, and
is sorted by times. The interrupt rouline tests the
time variable against the time value associated with
the first element of the input sequence to see if that
interrupt is now “due”. If so, then it removes a pair
from the head of Lhe sequence and processes the result,
The program is modelled as follows:

34 ~s By
Sa; interrupt(time); time = time + 1;
ete L., Sa;
interrupt{time); time 1= time+ 1:
(5 N

if we assume a discrete model of tinie, i.e. that the
vaiua of time is an integer, and we assume that time is
ine emﬂnted by one between each potential interrupt,
then the test for validily of a call to ihe interrupt
eutmf: is simply:
interrupi{timeg) ~~ If (timeg = input[1][1])
then process.interrupt A

where process_interrupt corresponds io the original
interrupt service routine. Note that input{1] is the
first element of the input sequence: this elemeant is a
pair of values {a time and a character), so input[1][1]
s the first element of the pair, Le. the time of the first
interrupt.

However, a better model, which does not require
a discrete model of time, and which allows different
“atornic” (i.e. non-interruptable) operations to take
different amounts of time, is the following:

interrupt{timeg) ~ while (timeg 2 input[1][1]) do
process_interrupt od

This revised model of the interrupt routine allows
more than one interrupt to occur between atomic op-
erations, and has the advantage that a call to interrupt
can be merged with a second call which immediately

162

follows it:

interrupt(i,}; interrupt{ls) =~ interrupt{t;)

provided #2 2 {y. This follows from the transforma-

tion:

while By do S od; = while Bs do 8 od
while By do § od

provided By = B, This transformation is proved in
91 I 1z 2) then we have (4 2 input[1][1]) = (t, =
input{1]1]), and we can merge the two while loops
and hence the two procedures,

Thus, once we have moved a set of interrupt pro-
cedure calls to the same place, we can merge them into

one statement equivalent to “process all ouistanding

interrupts™, which is much closer to a specification
level statement than is a serics of calls to the same
procedure,

Note that the addition of interrupt calls is defining
the “interruptable points” in the program, or equi-
valently, the “atomic operations”. The increments to
time define the processing time for each atomic opera-
tion. For real programming languages, e.g. Coral, the
atomic operations may well be machine code instruc-
tions, rather than bigh-level language statements, and
it is af the machine code level that the model neads to
be constructed, for it to accurately reflect the real BYo-
gram. This will inevilably lead to a large and complex
WSL program; however automatic restructuring and
sipliflying transformations can eliminate much of the
complexity before the mainiainer even has to look at
the program.

5 Concurrency

Interrupts may be regarded as s special iype of
concurrent processing on a single processor. When
an interrupt occurs, the “main” program is suspended
and the interrupt routine is executed in its entirety,
possible changing the state of the main program in the
process. Bxecution of the main program then resumes.
It is the fact that the interrupt routine is executed in
its entirity that makes inlerrupts » special case from
the point of view of modelling in WSL; we are able
to insert a copy of the intercupt rouiine wherever an
interrupt occurs, and hence the effect of the juterrupt
is deterministic.

The analogy with a single-processor muliitasking
system is obvious: here the running program executes
until it is suspended by the operating system. Other
tasks are then (partially) execuied, and may change
the state of the original program; eventually execution

of this program is resumed. From the perspective of
the original task, this looks like a call to a proced-
ure which executes sequences of instructions from the
operating system and the other tasks in the system,
and subsequently returns. The analogy also applies
to more general forms of concurrency, including fully-

- parallel multiprocessor systems:zInprinciple, the stafe: o

of any program or tesk in such a system may be

by other concurrently executing tasks. Again this
could be modelled by procedure calls between each
pair of atomic operations, which perform the appro-
priate processing and change the state accordingly.

5.1 Rely and Guaraniee conditions

Hely and guarantee conditions were introduced to
augment the pre- and postconditions of VDM when
developing paraliel systems {5]. They provide a means
to specify the interaction between a program and its
execution environment {conecurrent tasks). A guaran-
tee condition is a condition on the state shared by
the program and its environment, which the program
will at all times preserve. Similarly, a rely condition
is a condition on the state of the program which any
interference from the environment will preserve, As
an example, consider the abstraction:

> zw=o{d 2z 1)
=0

o
ifezltheny:=048

In pure WSL this is trivially ceorrect, but if we al-
lowed interference from the environment to change the
value of 2 between the assignment and the iest, the
transformation is not necessarily valid. However, if we
have a rely condition which specifies z 2z then this
transformation will be valid. {Here z and z represent
respectively the initial and final values of z)

In the following section we use rely and guarantee
conditions to model the sffects of concurrency in pure
WSL. Again this means that our program transform-
ations are applicable since the resulting program is
purely sequential.

5.2 Modelling Concurrency in WSL

Consider a sequential program T which can be
represented by a flow chart. Any program can be
restructured into this form. For example:

T e e

163

P1
P3 @ P6
P4 PT

I I

P3

where each of the Pn represents an atomic instruc-
tion or an atomic test. Suppose we model Pn by
Pn: next = n-+1; time = time+1; , with the obvious
extension for branch instructions. Now suppose T is
a task in a concurrent system. Consider first a system
with only two tasks, Ty and Ts. We rewrite Ty as s
procedure as follows;

prog Ta(steps) =
while {steps > 0) do
sleps = steps — 1;
if next = 1 —+ Pl; next:=2
O next == 2 — if P2
then next = 3
else next =0

O next = (~+ skip § od;

This procedure executes a sequence of steps instruc-

tions from T, beginning from the last instruction

executed in the last invocation of the procedure. If

steps==0 then the procedure call returns immediately.
If we then model T by

Ty -+ steps .= steps’.(steps’ € %,
T (steps):
St time = time+ 1;
steps == steps’ .(steps’ & MY);
T} (steps);
S52; time 1= time + 1,

then we have modelled the semantics of the original
system. By interposing calls to T4 between the atomic
instructions of T we have modelled the execution of
T, and its interference with T5.

This is a complete model of the system, even
though it has the same surface structure as Ty, It
is non-deterministic due to the presence of the non-
deterministic assignment statements in T;, which
cause values to be assigned to the variable steps. This

reflects the fact that we cannot know a priori how
many instructions from T will be executed between
Prand Pn+1in Ty. In order to proceed, we want to
replace:

steps 1= steps’ (steps’ & N%); Th(steps);

with an abstraction, which specifies T, for any value
of steps and any initial value of next. This will be
the strongest condition preserved by the execution of
any sequence of insirnctions from Ts, and corresponds
te a guarantee condition for Ty, This specification is
recoverable from Ta in isolation,

We can repeat this process, interchanging the roles
of T: and Ty, We then will have two models, one
based on Ty with interference from Ty inserted, the
other based on T» with interference from T;. However
these are guaranteed to be equivalent, since they both
capture the logic of the eniire sysiem.

Now suppose we have more than two tasks T ...
T, Let To ... T, be rewritten as procedures as
above. Then we can write

Ty ~ steps 1= steps’ (steps’ € N");
V{steps);
51; time = time + {;
steps 1= steps’ (steps’ € DTy
V{stepsy;

ns) =

k=1 to steps step 1 do
i true — TH{1)

O true — TH(1}

0 true — T.{1) fi od end

and each T} is derived from the corresponding T; as
before,

Procedure V' causes steps instructions o be ex-
ecuted; these are chosen non-deterministically from
the remaining tasks T, ..., T, by the if statement,
which calls one of the corresponding procedures with
parameter one, resulting in the execution of one in-
struction from the task.

The above is a complete specification for the sys-
termn when taken together with the definitions of the
procedures T;o. However it is also non-deterministic
due to the assignment statements; as before we need
to replace the assignments and procedure calls by
abstractions.

Consider the procedure V. Here the loop body
itnplements a non-deterministic choice from the set of

154

procedures T}, where j == 2...n. One of the pro-
cedures is selected non-deterministically, and a single
instruction from the corresponding task is executed.
A total of steps atomic instructions from the set of
tasks is execated; individual instructions or sequences
of instructions may be executed from any of the tasks.

We can abstract T;(1) to a non-deterministic choice
over all sequences of instructions in T; — in so doing
we abstract away the fact that the instructions are
executed in a specific order. This is equivalent to
removing the guards from the if statement in the pro-
cedures T;-, which we can always do as an abstraciion
step. We can therefore write

T = [P

where P; are the instructicns in the task T;, and
[l; indicates a non-deterministic choice. This is the
strongest specification which is an abstraction of every
instruction in T;. In fact this specification may be
very large for a task which is even moderately complex,
making it difficult to use in practice. To reason about
its effect on Ty however we are only concerned with the
elements of the specification which affect the state of
Ty; we may therefore if necessary abstract away other
details of the T;’s and so simplify the specifications of
the T;SK

Having found a specification for each of the Tj;? we
can use these to find the specification for the loop body
of the procedure ¥. This is a non-deterministic choiee
from the sel of T5(1)’s, whose specifications are given
above. The procedure V executes the loop body steps
{imes, where the value of steps is not determinable,
representing as it does the number of instructions
executed between iwo sequential instructions i T,
The strongest specification for V which we can find is
therefore the strongest abstraction which holds for any
value of steps, i.¢. any number of concatenations of the
loop body. This will in general be an abstraction of
the specification for the loop body,

To summarise, we have the following absirac.
tion/refinement relations:

T 2 mpj;
La [T = [P = s
i»1 i»1 4
5p > Sy

where L is the body of the loop, §; is a specification
for the loop body, and Sv is a specification for the pro-
cedure V. The crucial factor in this method is that this
specification is derived by analysis of the individual

“dition for Ty

tasks in isolation, without the need to take account
of the interaction between them. It can therefore be
found using methods developed f{or purely sequential
systems.

Sv therefore specifies the effects of the remaining
tasks on the state of T;. It is in effect a rely con-

which includes the effects of the other tasks upon it.
Since we may have abstracted away those parts of the
specification which do not affect the state of Ty, in
order to simplify the specifications of the T;(1)’s, we
no longer have a complete specification for the entire
system. Repeating this exercise for the remaining
tasks allows us to recover a set of specifications 8;
for the tasks, each of which include the effects of the
other tasks upon their state.

The specification S for the complete system must
incorporate all the properties of the set of §;’s. This is
expressed in WSL by the join operation. The join of
a set of specifications is the most abstract specification
which refines each member of the set. Thus the spe-
cification $ is more refined than the specifications S;,
unless the specifications 8; are equivalent; this arises
since, in combining the specifications for the tasks, we
are restoring information originally abstracted away in
the derivation of the individual S;’s: S; will include
information abstracted away in the derivation of S
(for any ¢ and k).

T, T2 Absiraction
@ @
Inverse Inverse
Engineering Engineering
5
Join Join \ /
S, Sy

Although S will be more refined than the set of S;s,
it may still be too abstract to be useful if too much
abstraction is performed in deriving the S;’s. This will
be a problem particularly if the objective is to valid-
ate a system against an existing specification, or to
re-implement an existing system. If too much inform-
ation is lost in deriving the S;’s then the specification
S may be more abstract than the specification against

"By~ subséztutzng tlis specification Tor
_______the calls to procedure V in our model of Ty, we can
"Inverse engineer T, to ‘Tecover its specification, Si, '

165

which we wish to validate, or more abstract than the
actual system requirements specification.

5.3 Summary of method =

In order to model a concurrent system in WSL we
proceed as follows:

For each task, we derive .a specification for the
conditions on its state which are guaranteed to be
preserved by the other tasks in the system. To achieve
this, we consider each of the remaining tasks in isol
ation, and derive for each of these a specification of
the conditions on the state of the first task which
are guaranteed to be preserved by the execution of
any instruction from the second task. The resulting
specifications, derived from all the remaining tasks,
are then combined by a non-deterministic choice to
give us a specification of the conditions on the state
of the first task, guaranteed to be preserved by the
execution of any instruction from any other task in
the system. The full specification for the effect of
the remaining tasks on the first is then given by any
numnber of concatenations of this specification.

We substitute this specification between each
atomic operation in the task: this gives us an abstrac-
tion of the task itself including the effect of interference
from the rest of the system. We may then inverse
engineer this model of the task using transformations,
to find a specification for the task incorporating the
effects of interference from the other tasks.

We can repeat this process for each of the tasks in
the system. Having derived a specification for each of
them, we can derive the specification for the complete
system by combining the individual specifications us-
ing the WSL join operation.

6 Example of method

In this section we give an example of the use of
the method to inverse engineer a simple concurrent
system. This consists of only two tasks sharing a single
processor under the control of a scheduler, though we
ignore the details of the scheduler. One task receives
characters from an input stream, and writes these into
a buffer; the second process takes characters from this

buffer and writes them to the standard cutput.

T, = do if empty(input) then exit(1) fi;

while (time < input[1}[1]} do
suspendl od;

buf = buf # {input{1]{2]};

input = tall{input) od

= do if empty{inpui) A empty{buf)

then exit(1) fi;

while (empty{buf)} do
suspend? od;

std_out = std.out -+ {buf{1]};

buf == taillbuf} od

The inpui consists of a sequence of pairs: a character
and its arrival time. If there is no character waiting to
be read, i.e. the arrival time of the next characier in
the input has not vet been reached, Ty suspends itself
by means of the system call suspendl, which results
in To being reactivated. Similarly, if the buller is
eruply, To suspends itsell by Lthe system eall suspend?,
If there is no more input to be received, then Ty
terminates; similarly if there iz no further inpud and
no characters left in the buffer T» terminates.

Execation of the two tasks alternates on & {imeslice
basis: ai regular intervals, the executing task is halted
and the sscond task is restaried. We can model this
using a procedurz: we define

proe timeslice]
if {time — last 2 74}

then fast == time; suspend! fi.

where P, is the timeslice period, and an equivalent
procedure iimeslice? for Tp. This procedure tests
the iime since the last context switch, and if it is
greater than or equal to the timeslice perind suspends
the active task and reactivales the halted one via the
system call suspendl. To incorporate the effect of
interference from the other task we insert this proced-
ure call between each statement in the task, together
with an assigimment which increments time. {For the
purposss of this example we treat each WSL statement
as an atomic instruction). The result, following the
necessary restructuring of the while loops to accom-

166

modate these additions, is

Ty = do if empty(input) then exit(1) #;

do if (time 2 input[1][1])

then timeslicel; time = {ime + 1;
exit(1)
else timeslicel; {ime = fime -+ 1 §;
suspendl od;

buf = buf + {nput{l]i2]};

timeslicel; time 1= time + 1;

input = taillinput);

timeslicel; {ime = 1ime + 1 od

s

2 52 do if empiy{input) A empty(bul})
then exii(1) f;
do if ~empty(buf)
then timeslice2; fime =
exit(1)
elge timeslice2; {ime =
suspend? od;
std.out = sid.out + {buf{i}};
timesliced; time = time -+ 1;
Buf = tail{buf);
timesliceZ; time = time -+ 1 od

time 4 1

time + 1 §i;

in order to proceed, we now nesd definitions for the
procedures suspendl and suspend?. These specify the
effect of executing the other fask for one timeslice
period, and must refine the conditions which are pre-
served by execuilon of any sequsnce of stalements
from the tasks, t.2. any number of whele or partial ex-
ecubions of the respective loop bodies. We can recover
these condilions, and define abstractions of suspend?
and suspend? which preserve the conditions bul are
otherwise unrestricied. We denote these by G and
(G2 respectively. We then know that GI < suspend]
and G2 < suspendZ.

During its timeshce, a task executes without in-
terference from the other task. We therefore recover
G and G2 rom Ty and To. As these are small in
this example, we can do this by inspection. Consider
first Ty, We are interested only in how it affecis the
variables in Ty in {act the only variables which are
changed by Ts are std.out and buf, {and also time,
though this is not shown in the definition of Ty given
above). std_oui is not accessed or updated in Ty, s0
we can disregard 1t Since at least one statement in Ty
will be executed, time will be incremented, Also, we
can see that zerc or more characters will be removed
from the head of buf, up to a maximum of f{input),
i1 which case the buffer is emptied and Ty is then

_also write

suspended. Using these facts we can write:

G1 == (time, buf) := (time', buf’).
(time' > time
A 35,0 € < {(buf). buf” = buf{j .])
Clearly, GI; GI =~ GI. As G1 < suspend] we can

I
> if {time ~ last 2 P;)
then last 1= time; G!1 fi

> {time, buf) := {time’, buf’).
(time > time

A 35,0 € § < £(bul). buf = buf[j.)

> Gl

laving found G1, we are able to inverse engineer T'y:
T, >
do if empty(input) then exit(1) fi;
do if (time > input{1]{1])
then G1; time ;= time + i,
exit(1)
else (G1; time ;= time + 1 fi;
G1 od;
buf := buf 4 {input[1][2]);
G1; time = time + 1;
input = tail(input);
G1; time 1= time + 1 od;

Replacing G1 by its definition, transforming the loop
to a while and simplifying gives:

while —empty(input) do
{time, buf) ;= (time', buf’},
(time' > input{i]ii]
A 37,0 £ j < £(buf).
buf’ = buf{j .]+ input[1][2]};
input = tail(input) od;
This loop can be replaced by a single assignment:
T >
{time, buf) := (time', buf’).
(t:me > input[f(input}][1]
A 31,0 < J < E(buf) + £(input).
buf’ = (buf 4 w % input)[j..]);
input = (}
= 5
Here s * input is the sequence of “second elements”
from the sequence of pairs input. S is a specification
for Ty with the interference from T included. All the
input characters are read and so the input is emptied:

the time at which the task terminates is some time
after the last character is received; on termination, the
buffer consists of the initial contents of the buffer with
all the input characters appended to the end, and an
unspecified number of characters (less than or equal to
the number of characters in the buffer) removed from

_the head. This quantity.cannot.be determined. solely

_from Ty as it depends on the number.of iterations of. ..
Ty which-are executed-before T'y-terminates; and this

is unknown to Ty

We now inverse engineer Ty by the same method
to find a specification 8,. Inspection of T; provides
us with a suitable abstraction. Define:

G2 = {buf, time) = {buf’, tim¢'}.
(time’ > time
A 33,0 £ j < L(input).
buf' = buf 4+ ¥°1_, input[ij[2]}

We have: G2; G2 =~ G2 and timeslice? > G2.
This is an abstraction of suspend2. Substituting
this in T», we can inverse engineer to find:

T >
(std_out, buf , time) 1=
(time' > time
A std.out’ 4 buf’ 4+ wq % input’
= std_out 4+ buf + 7o % Input
A buf' = {) A input’ = {})

{std_out’, buf’, time').

(std_out, buf, time} := (std.out’, buf’, time').
(std_out’ 1= std.out ++ buf 4 75 % input
A time' > time)
~z Sg

The specification for the complete system is then
given by:
S =_. join 8 U8, nioj

For two specifications, the join operation reduces to
and-ing the conditions in the specification statements.
Therefore: :

Sa
{std_out, buf, time} = {std_out’, buf’, time'}.
(time' > input{f(input)][1]
A std_out’ = std_out 4 huf 4+ ma + input
A buf’ = () A input’ = {})

This specification tells us that, for any initial values
of buf, input and std_out, the system terminates in a
state in which buf and input are empty, and std_out
consists of its initial value with the initial contents
of buf and the sequence of characters from inpuf
appended, in the order in which they occurred in the
input. Additionally, the time at which the system

terminabes is greater than the time of arrival of the
lasi character. In this example, the specification Sy
iz almost a complete specification for the system, re-
flecting the fact that very little high level information
was abstracted away in deriving a specification for the
interference of T with the state of D,

7 Conclusions

This study shows that by using an appropriate
models we can represent interrupt-driven and con-
current programs within the (purely sequential) WSL
language. With such models, the inverse engines:-
ing techniques of [12,15] can be applied to extract
the specification of the original program. Program
transformations are sufficiently powerful to cope with
these, often complex, models. Although a fairly large
number of transformations are required to deal wiih
these models, results from case studies indicate that
these are used in a systernatic way: this suggests that
much of the work can be automated by a tool such as
the Maintainer’s Assistant [2,17] and this is currently
being investigated under a SMART II (Small Firms
derit Award for Research and Technology) project
at the Centre for Software Maistenance Lid., and as
part of a three-year 5ERC project at the University of
Burham.

Acknowledgements

The research described in this paper has been
funded partly by a Department of Trade and In-
dustry SMART award to the (eatre for Soltware
Maintenance Ltd.) and partly by SERC {The Science
and Engineering Research Council) project “A Proof
Theory for Program Refinement and Equivalence: Ex-
tensions”,

References

[1] R. J. R. Back, Correctress Preserving Program Refine
ments, Mathematical Centre Tracis #1231, bMathemat-
isch Centrum, 1950,

168

[2} T. Bull, “An Introduction to the WSL Program Trans-
{former,” Conference on Software Maintenance 25th—
28th November 1950, San Diego (Nov., 1950).

E. W. Dijkstra, A Discipline of Programming, Pren-
tice-Hall, Englewood Cliffs, NI, 1476,

C. A. R. Hoare, 1. }. Hayes, H. I lifeng, C. C. Moz~
gan, A. W. Roscoe, I, W. Sanders, 1. 1. Sorensen, 1.
M. Spivey & B. A. Sulrin, “Laws of Programming,”
Comm. ACM 30 (Aug., 1987), 672-636,

<. B. Jones, “Specification and design of {parallel)
systems,” in FProc. IFIP 1983, R, E. A. Mason, ed.,
North Holland, 1983, 321-332.

8. B Knuth, “Structured Programming itk the
GOTO Statement,” Comput, Surveys 6 (1974}, 281~
301,

C. Morgan, Programming froem Specifications, Pren-
tice-Hall, Englewood Clifls, NJ, 1990,

D, Taylor, “An Allernative to Current Looping Syn-
tax,” SIGPLAN Notices 19 (Dec., 1984), 48-51,

M. Ward, “Proving Program Refinements and Trans.
formations,” Oxford University, DPhil Thesis, 1084,

M. Ward, “Derivation of a Sortlng Algorithm,”
Durham University, Techsnical Report, 1990.

M. Ward, “Foundations for a Practical Theory of Fro-
gram Refinement and Translormation,” foriheoming,
19593,

M, Ward, “Bpecifications and FPrograms in a Wide
Spectrum Language,” Submitied to 1 Assoc, Tomput,
Mach,, Apr., 1891,

M, Ward, A Hecursion Hemoval Theorem,” BOS He-
finement Workshop, 8th-11th Japuary, Jan., 1992,

M. Ward, “Derivation of Data [ntensive Algontl:
Formal Transformation,” Submitied to IEEE Tr
Saftware Eng., May, 1892,

3. Ward, *Abstracting a Specification from O
appear in Journal of Soltware Malntenance: Res
and Praciice, Sept., 1882

M. Ward & K. H. Bennett, *A Practical Program
Transformation System For Beverse Engioeering,”
Working Conference on Reverse Engineering, May 21~
23, 1933, Baltimore MA {May, 1993).

M. Ward, F. W, Calliss & M. Munre, “The Main-
tainer’s Assistant,” Conference on Software Mainten-

ance 16th-19th October 1989, Miami Florida{Oct.,,
1989),

Charon: a Tool for Code Redocumentation and Re-Engineering

_ Oreste Signore - Mario Loffredo

CCNUCE S Institute o CNR -via S Maria, 36 56126 Pisa™

Phone: +39 (50) 593201 - FAX: +39 (50) 904052 E.mail: oreste@vm.cnuce.cnr.it

Abstract

The maintenance of applications constitutes the mosi
refevant issue of the overall life cycle activilies. CASE
tools claim to be effective in producing efficient and error
free software, but usually the maintainer doesn't wani to
produce new system applications, but just to modify the
existing ones. Re-engineering appears to be a suitable way
of getting the advanstages of the automated CASE tools,
without facing the costs involved in a complete
redevelopment of the existing systems, whose
specifications are sometimes obsolete and no more
corresponding o the actual version of the sofiware.

In this paper we presenf* a totally automatic approach
towards the reconstruction of the software documentation
and possible code re-engineering. We move from the
source code by using a static code analyser and capture
information pertinent to higher level design phases that
are subsequently imported into the ADW CASE tool.

Keywords:
Software reverse engineering - Maintenance - Software
documentation - CASE Tools

1. Introduction

It is well known that the most relevant part, up to 95%
according to some estimates ([1]}, of the EDP
departments’ activities is dedicated to the maintenance of
applications. In particular, we have to outline that in the
latest years the maintenance is enhancing in order to delete
erTors, meet new requirements, improve both design and
performance, interface new programs, modify data
structures and formats, test new hardware and software
techniques. However, it must be noted that maintenance
interventions may alter the features of the original
software applications, and may therefore substantially
contribute to their degrade. In fact, alterations to the data
structures, the documentation out of date, the turn over of
the personnel in charge of the project (and it is well

This work has been

artially suEportcd by Progetto Finalizzato
Sistemi Informatici ¢

‘alcolo Parallelo of C.N.R

0-8186-4042-1/83 $03.00 © 1893 [EEE

169

known that in many cases only the people involved are
aware of the real features of the application), make the
application system itself less reliable and maintainable,
error prone, difficult and expensive to be modified.
Application sysiems presenting poor or even not existing
documentation cause further problems during the
maintenance work because the user has to rebuild the
knowledge before making any change. In addition, old
{echnology or poor quality code based systems show other
problems (low performance, limited integration with other
sysiems, difficulty to test) which decrease the
productivity,

This situation faces the development of new
application systems and the adoption of the modern CASE
tools, which are claimed to be the most effective way of
developing new applications, at lower costs and at a
higher quality level ([2], [3], [4], [5]). As a consequence,
there is a tendency towards the implementation of tools
that can help in understanding, improving and managing
existing systems, even if implemented in non CASE
environments, in order to recover existing soflware
portfolio and manage it by using CASE technigues.

In this paper we present an automatic approach towards
the reconstruction of the software documentation and the
re-engineering of code; we collect data from the source
code which are, subsequently, manipulated and imporied in
a CASE tool, thus rebuilding information pertinent to
higher level design phases and giving the possibility of
implementing a new engineering phase.

2. The re-engineering

Up to the end of the last decade, users who intended to
enhance the features or the performances of their software,
had only two alternatives: leave all the software
unchanged, or face the costs of a complete re-development.
A new alternative, which is presently object of a relevant
research effort, is available since the beginning of this
decade: the re-engineering ([6), [7)). The re-engineering
gives the poss:buhty of updating the technology the
application system is based upon, without incurring
relevant management costs.

More precisely, the software re-engineering consists in
the analysis of an existing software, for the sake of giving
a more readable structure to it or, perhaps, (o represent itg

structure in an alternative form, thus allowing a new,
different implementation. This process is normally
accomplished in two successive steps: first of all, we
analyse the system, capturing information about its
components, afterwards, we operate a restructuring, thas
getting a more standardised form. In some cases, it could

happen that the user inignds (o operale a transformation of

the existing application, either because a different

Cscope, for the UNIX environment, is an interactive
iool that makes possible to absirzact information from a
program by cross-referencing various source code entities,

TIBER (Technigues and Instruments to Build
Encyclopaedias of Redevelopment engineering) is a set of
methods, techniques, instruments and know-how through

- which existing COBOL applications are re-doctiiicnted,

* language or @ different dald management $ystem are t6be

used, or because an interface towards a different tool must
be implemented. In these cases, we can clearly identify
two different phases, as depicted in fig, 1. In the first
phase we operate a reverse engineering (RE) where we
abstract the characteristics of the product that we have 1o
re-configure. Subsequently, we operaic a forward
engineering (FE) process, which is in charge of
implementing the new product.

& comzanigve oot

ja % 1m pticn

FHEICALLY/ B,
fer | . Arghzed — Pt stured Hawr
proguet preden prgudt FRdEt
AMALYRE RETRUCTLREMG

Fig. 1 - The re-engineering process

The teverse engineering phase is the focus of the re-
engineering process. Starting from any life cycle level and
with the automatic tools’ support, such process does not
aim at modifying system objects, but only at improving
comprehension by generating and synthesising
independent implementation abstractions.

3. Related work

Recently, the software engineering market has been
enriched by the appearance of many reverse engineering
and re-engineering tools. These tools allow 1o solve
partially the problem of recovering the design of existing
systems by capturing information that is explicitly
represented in the source code.

Bachman/Data Analyst is part of the Bachman Product
Set, an integrated collection of CASE tools for
mainiaining and developing IBM mainframe applications.
This tool permits to reconstruct the E-R model by
examining COBOL, IMS, PL/1 data structures and by
exlracting, via Bachman/DBA, information from DB2 or
SQL/DS catalog. Thus we can modify the old application
at a high level (analysis) and, then, gencrate a new
application by executing a forward engineering step. In
other words, Bachman Product Set enables the maintainer
to make an almost completely automatic re-engineering
cycle even if it is limited 1o the system data architecture.

170

reorganised and restructured inside the ADW repository

named “Encyclopdedia”. ADW is 4 CASE “tool

implemented by KnowledgeWare (USA) for the O8/72
environment, selected by IBM as one of the International
Alliance producis for the AD/Cycle piatfonn,

TIBER analyses COBOL source code, JCL., TP maps
{CICS or IMS/DC) and DDL and produces a system
documentation composed by relational metamodel, record
layouts, structure charts, action diagrams and video maps.
Therefore, such tool can be considered more a3 4 re-
systemisation tool rather than a re-engineering one
because the number and the gquality of the output
documents are sirictly related to the programming
language of the spurce code analysed,

Furthermore, we want 1o outline @ re-engineering case
study towards the IEW (Information Engineering
Workbench) CASE iool, that is the M3-DOS version of
ADW. This experience consists in an environment that
supports the re-engineering of Pascal programs at the
design level starting from the information abstracted by
the static analyser ATOOL and a subsequent import into
IEW via 2 tool named AIEWTOOL (13D,

4. Charon: the architecture

Charon is a tool implementing a re-engineering cycle
that has a C program, where EXEC SQL statements are
embedded, as source and has a different version of the same
program, writien in COBOL/CICS/DB2Z environment, as
target (fig. 23, The ool {akes its name from the con of
Erebus who in Greek myih ferries the souls of the dead
over the Styx.

The main task fulfilled by Charon, and this is another
reason for its name, is 0 act as a bridge between a reverse
engineering tool and a forward engineering one, collecting
information from different sources. The aim of the whole
task is to comprehend the behaviour of the programs and
their relationships with other components of the
application system, Last, but not least, Charon can
capture information periaining to higher level of
abstraction, namely the design and analysis phases. This
can be of considerable help in the subsequent phases of
maintenance and/or forward engineering,

The reverse engineering step is performed by the static
C code analyser C-TOOL, the forward engineering one is
executed by the ADW COBOL code automatic generator;
we are commitied to convert the firsi tool cutput info the
second one proper objects.

C-TOOL evaluates some structural and dimensional
melrics and produces the nesting tree and control graph of

e

the program. In addition, the embedded SQL statements
are exiracted. At the same time, all information about
relgtions accessed by the SQL statements are exported
from the catalog and stored in some supporling tables
{(IBM Query Manager). :

The contents of files and tables are processed, and

collected and stored in an appropriate format, compatible

information is also inserted in the SQL supporting tables,
making possible the implementation of the presented
approach in other development environments (S1P,
Bachman).

After the creation of an emply encyclopacdia related o
the project and the subsequent import phase of the Charon
output, the user finds the extracted information represented
by most of the diagrams of the Analysis and Design
workstation.

C-TooL ADVY
CUTRIT NRIT

-

/50 COBOL/TAZ
CCOE COnE
Fig.2 - The re~engineering cycie

implemenied by Charon

At the present stage, Charon takes inlo account only
the data that are stored as relational tables and the local
variables that refer to them, while the traditional program
data structures are not processed. In fact, as far as the data
architecture is concerned, the user can access Relational
DB Design, Data Structures, Data Types, QL Statements
of the design level, and Entity-Relationship Diagram,
Entity Attributes Description of the analysis level.

Concerning the processes’ architecture, two diagrams of
the design level are available: Structure Chart and Action
Diagram. They describe respectively the program
decomposition in a modules’ hierarchy and the logic of a
module. Therefore the user can modify, add or delete data,
so starting a complete redevelopment of the project, with
an obvious improvement of the overall software quality.

The local data structures appear in the Action Diagram,
so that the user can have a coherent and complete
documentation of the original program. In the Action
Diagram construction phase, some instructions of the C
programming language are translated into the COBOL
equivalent ones. Typical examples are the “switch”, the

“information relevant for the design and analysis phases are-- - -

~aithethe-import/export--format-of-the-ADW.=Such-

171

“break” and the “continue”, that are translated into
“multiway IF” and appropriate “exit” commands.

Starting from the information extracted and imported in
the ADW/DWS module, Charon also proceed to
reconstruct the database concepiuat model that belongs fo
the upper level (AWS).

- Charon differs from the similar experiences described in
the previous paragraph under several aspects. In fact, it

differs.from. TIBER..and. Cscope. because they.are

essentially re-documentation tools, On the other hand, as
Charon takes into account both the data and processes’
aspects, it differs from Bachman/DA, that is concerned
only with the data re-engineering, and from AIEWTOOL,
that concentrates on the reconstruction of the processes’
archilectore.

In the subsequent paragraphs we will briefly describe
the main features of C-TOOL and of ADW, The reader
interested to deeper technical details about ADW, can find
in Appendix 1 a list of the diagrams provided by the tool
and a more detailed description of their functionality.

5. Reverse engineering through C-TOOL

C-TOOL involves two procedures, subsequently
executed, which can analyse a symiactically corrected C
prografii: . i '

+ ANADIM, which records on the SQL_STAT file all
the EXEC SQL commands being in the source C code
and their positions;

« ANASTRU, which produces the program Call Graph,
the Nesting Tree and the Control Flow Graph.

The first graph represents the program decomposition

into modules (procedures and functions) also including

the main program, An edge exists between two nodes

N, and N, if N, calis N, in the program. g

The Nesting Tree describes the program as a tree in

which terminal nodes correspond to the simple

instructions {assignment, read, write, call, return) and
the intermediate nodes correspond to the control
structures: sequence, altemative, repetition, An edge

exists between two nodes N, and N, if N, includes N,

ins the program.

The last representation diagram shows the control flow

between all the program components. The nodes are of

the same type of the Nesting Tree ones. An edge exists
between two nodes N, and N, if N, can follow N, ina
program execution.

These diagrams are presented in a table form in the

following files; OUT2, GRAPH and NESTING.

6. The ADW I-CASE workbench

ADW, as most of the CASE tool supporting systems
development, is based on the software life cycle Waterfall
Model concepts and methodologies. It is modular and
includes four workstations, i.e. Planning, Analysis,

Design, Construction, which reflect the upper four levels
of that model. The user can manage the information,
stored in a repository, the "Encyclopaedia”, by using some
structured analysis and design techniques as SADT, DFD,
Modular Decomposition, PDL, etc., In addition, other

important characteristics of "'the "ADW information

engincering CASE tool consist in the possibility of

" keeping contintously ‘and ‘automatically the consistency

even between a large number of diagrams and of easily
navigating through such diagrams,

We'll import in the ADW/Encyclopaedia the
information included in a set of ASCII files that can be
divided into three groups: “ EXP" files, ".ENC” files and
“MASC” files.

6.1 - “EXP” files

They contain records representing all the program
information entities as objects (OLEXP), associations
between objects (ALLEXP) and properties of objects and
associations (PLEXP for the short properties and TLEXP
for the long textual properties).

In the following, the ADW internal representation of a
relationship between two classes is depicted.

is taught b
class > ! gt by —i E teacher
teach
Gblects
10000000003,10007 "teacher "
15000000004, 10007 " class “

Associations
20000000022,20044 10000000004, 10000000003

Short properiles
20000000022, 30034 00000, s 1sught by
20000000022 30037 00000, 12ach
20000000072,30035,00000,71
200000004622, 30036,00000,"1
20000000072,30035,00000,"M
20600000022,30038,00000," 1

£ F F L OB %

Long textual properties
10000000004,30076,00001,"A_group_of_stmudents_which_study "
10000000004,30076,00002, "the_same_arguments

The records of the OLEXP file have three ficlds: the
first one is for a token (fustance token) which uniquely
identifies an object in the project encyclopaedia, the
second one is for the type of the object {Type code) and
the third one is for the name {Instance name) given to the
obiject by the user.

The records of the ALEXP file have four fields: the
first one is for the instance token of the association, the
second one i3 for the type code, the third one is for the
instance token of the source object of the association and
the Tast one is for the instance token of the target object.

172

The properties” files include records with the same
structure, but the last field in TLEXP file is longer than
the related one in the PLEXP.

The first field of the records is for the instance token of
the object or the association which the property is related
to, the second one is for the type code of the property, the
third one is for the row number of the textual properties

“(Repetition rnumber) and the last one is for the value of

the property (Property valug).
6.2 - “ENC” files

They include the description of the program modules
Action Diagrams. In the following, the ADW internal
representation for an Action Diagram is showed:

FADTEXTSA00ENGLISH

T CO00CCO'SECTION PI-READ-CUSTOMER - WE READ THE CUSTOMER RECDORD
COOGILOUSING EITHER THE CUSTOMER-NO Of THE CUSTOMER-NAME

5 0000000 CNAME-CUSTOMER-NQ NOT <0

CO0O000SND CNAME-CLSTOMER-NO NOT - SPALES

DOUCOCCAMOVE CHNAMEGUSTOMERNO TO OPGOLCUSTOMERND

0000004 Custornar Zai000ADRSEING KEY OPGOT USKG CUSTOMER-MO

0DDDOONElse

OBGCOCOMOVE CNAME- CUSTOMER-MNAME TO OPGOI-CUSTOMER-NAME

COOOGOACuslomerGo000IDAY:FIND KEY OPGO1 USING CUSTOMER NAME

OOUOO00ENDIF

000000CH OPGO1-STATUS - SPACES

OGO0ODOMOVE CORRAESPONDING OPGO1 T CHNAME

X2 COUOOUOEXIT

£ D000000Eise
CODOOCOMOVE 'CUSTOMER NOT FOUND' TO CNAME-ERROA-MESSAGE

X2 0000000EHIT

E DODCOOGENDIF

G DOonooo

Mo QW

Each row in a “.ENC” {ile contains a record having
nine fields;
« the first one identifies the type of diagram simple
instruction or conirol structure,
= the suhsequent seven fields concern the diagram layout;
« the last ficld is for the description of the particular
action execuled.

6.3 - “MASC” files

These files are used when transferring information from
the workbench constraction level to the extern, but in our
application they hold the masks of the tables SQL DML
commands.

These templates are called by the modules through an
option named “Using call” and include two groups of
records:

» the first group takes into accouni the genersl
information of the accessed table;

= the second one specifies the SQL command.
In the following, the mask of a SELECT command is

presented:

wa

Y

&7, 0PGO1CUSTOMER

<tabla creators
a3, MLOPGO1AT0000CCUSTOMER
A2 30 PGS1B1000000PS DB CUSTOMER
83, MLOPGO1C100050DB200TSTOPCUSTSP
83, MLOPGO1P100000TV

<tablg craallon dale>

28, MLOPGO1 R100005E 0000000

&1 MLOPGO1R100006BO000000INTCO
50,MLOPGO1R100007 0000000
61,MLOPGO1R100008 0000000

28 MLOPGO1R10GCORE OD00000

56 MLOPGD1RIGOGTD 0000000FACM

57 MLOFPGO1R100011B0000C00WHERE
&8 MLOPGOiA100012 06000000
28,MLOPGO1RA100013E 0CO00A0

31, MLOPG01R10001 4E DD0DO0TEND-EXEC

OPGOY-CUSTOMEA_NO
OPGM-CUSTOMER_NAME
OPGH-STREET_ADDRESS

OPCUST_TABLE
CUSTOMER_NO -
OPGNICUSTOMER_NO

6.4 - The import process

The Charon output information must be transferred in
the ADW environment according to three ways of
importing (Fig. 3).

— -.(Tearssor , -_.é\DW E"'P\Vi

Put in the subdir, r
muisted 10 the snc.

Fig. 3- The data flow of the ADW empty

encyclopaedia populating.

The “.EXP" files are imported by running the
Encyclopaedia Data Transfer option of the File menu of
the Encyclopaedia Services task in any workstation.

The “.ENC” files must be copied in the ADW
subdirectory associated (o the empty encyclopaedia.

The “MASC” files are transferred by starting the
Transfer option of the File menu of the Code Generator
1ask in the Construction workstation (CWS).

7. - Charon: the conversion tool

87 MLOPGOIR100000CUSTOMER-ND . .. 'SELECT
31 MLOPGO1A100001 80000001 EXEC SOL o
54 M_OPGO1R10000280000000SELECT CUSTOMER_NO
{53 OPGO18100009 0000000 CUSTOMER NAME
54 MLOPGO1R166064 0000000 T “STREET_ADORESS = e

The conversion from the source program into the ADW

ool eeeins ini several steps; as may be seen from Fig: 4.

173

PC MF
S cm ot L arab | {MEsSTING u
STAT
N
Catsog
- / data
C-TOOL
B
M
1b
2 4b
E¥]
1s
o e e
? g %3]
Atrbotes B Spe
Structuwe Torv
5L . SQL Nasc
LER
3
Fig. 4 - The four steps in Charon

In more detail, the sequence of the actions is the
following:
+ Step !
ia) Create the “.EXP" files’ records to represent the
logical relational model and the data structure of the
relational tables (keys, data types, formats).
1b) Create and open “MASC” files for coding the general
features of the tables (physical name, SQL type,

space name).
o Step 2

Reconstruct the Structure Chart.
= Step 3

Generate the E-R model by observing the contents of
the “.EXP" files and QM tables.

« Step 4

4a) Represent the modules procedural logic, including the
accesses to the database and the calls to other
modules.

4b) Transform the EXEC SQL statements into masks (o
be inseried into “MASC” files. The statements that
are not supported by ADW are inserted as comments.

Conclusions and future developments

In many cases, software guality improvement may
require a redevelopment of the application system. When a
software development methodology and CASE tools have
been adopted as an enterprise standard, recovering the
existing software, and documenting it according to these

- standards may congtitute a consisient improvement. It is
obvious that understanding the semantics of the original

- programs is"a key point. As a matter of fact, the re-

engineering and the adoption of CASE tools, especially in
large scale projects, may produce relevant advaniages,
namely consistency, easy maintenance and clean
documentation {{9]). The consistency with the enierprise
standards may in fact assure the complete integration of
the various subsystems, and reduce the maintenance effort.
In fact, the maintenance personnel will no more be forced
to operale maintenance interventions on the source code,
with the consequence of being tied to a particular set of
programs whose code they are aware of, but can operaie on
higher level specifications, leavin g to the CASE tool the
burden of the generation of the code. Needless 1o say, this
style of work assures that the documentation will be kept
up to date.

In this paper, Charon, a tool for the re-documentation
and re-engineering of code, has been discussed. It converts
the information extracted from a C program by the siatic
code analyser C-TOOL in ASCH records and inserts them
in three different typed seis of files.

The files are subsequently imported in the ADW CASE
tool environment in order to populate a repository related
to the project, thus the user can find the extracted
information represented by most of the diagrams of the
Analysis and Design level, that is;

» for the representation of general information:

. Chjfect List

» Object Details Window
» f{or the modelling of data architecture;

® Database Relational Diagram

. Data Structure Diagram

o Data Type Window

® DEZ General Information Window

» Ensity-Relationship Diggram

. Entity Type Description

» SOL Action Diagram
= for what concemns processes:

» Structure Chart

o Module Action Diagram

A great advantage offered by the auiomatic translation
operated by Charon is that, after the reverse engineering
phase, the user can rely on all of the ADW and supporting
database manager report writers in order (o praduce a
textual documentation. The integration of the analysed
code with the enterprise wide standards can be considered
as a benefit o,

Even more important is the fact that the user can
operate directly on the high level specifications of the

software, getting all the benefits claimed by the CASE
tools. In fact, with the rebuilding of E-R model, we create
a system knowledge at a as high as possible level so that
all the ADW capabilities will be exploited. In this way, if
we wish 1o make some relevant changes to the database
structure, we shall easily act on the E-R schema and, then,
obtain a normalised relational form by running the
Relational Translator task. At that point, according with a

bottom-up approach, the user will be able to generate the
Temaining documentation of the workbench upper levels,

If, on one side, Charon can be considered as a test case
explaining and making real software engineering
capabilities, on the other one, it can be considered as a
reference for those who are going to modify software
application packages, perform environment conversions,
genenate code from prototypes.

Moreover, Charon completes the C-TOOL reverse
results by providing, in some tables, information about
database relations, ficlds, relationships and module calls of
the source cede, and, in ASCH files, the procedural logic
description of each module.

However, it should be stressed that the approach
followed in Charon requires that the user will conform o
some specific design methodology (e.g. the Yourdon
Constantine Structured Analysis).

In addition, some code characteristics can’t be recovered
{SQL dynamic commands, modules formal parameters and
input/output conversations) because their conversion from
a { environment to a COBOL one is very difficult to
make in a completely automatic way.

Perhaps, it would need a human intervention, even if
the manual approach, more flexible and friendly, could be
too much heavy in the re-engineering of high compiexity
systems. This considerations suggest that it would be
worthwhile to consider the possibility of integrating the
positive aspects of the two different approaches. '

In order to improve Charon, thes enhancing the set of
convertible information and the collaboration with the
final user, we have to face the following problems:

» festing the existence of the relationships between
relations when examining the SQL commands:

» crealing another ADW diagram, Screen Layout, and
producing CICS code for the activation of video maps
which correspond (o the /0 commands in the C code:

* enhancing the Structure Chart diagram by considering
the recursivity;

» representing modules formal parameters and convering
their C types in COBOL ones in order (o allow the
gencration of the Data Flow Diagram in the Analysis
fevel {AWS);

» implementing an enriched user interface.

Acknowledgements

C-TOOL is a tool developed by the CRIAI (Consorzio
Campano di Ricerca per 1' Informatica ¢ I' Automazione
Industriale), and has been modified for this work in order

o intercept the SQL statements. We acknowledge our
colleagues from CRIAI for their kind support.

We have also {o thank the anonymous referces, which
helped in proving clarity of the paper.

~References R

wof i} Software--Reengineering ~Symposium;-organised ~by e

SYSTECH Systems Technelogy Institute (Rome, 12-14
February 1950}

[2] Martin 1. Recommended diagramming standards for
analysts and programmers. A basis for auntomation,
Prentice-Hall Inc., Englewood Chiffs (1987)

(3} Martin F.M.: Second-Generarion CASE Tools: A
Challenge 1o Vendors, TEEE Software (March 1988)

{41 Martin I: CASE & [-CASE, Informatica 70 n.167 and
n. 168

{3} Lewis T.G.: CASE: Compuater-Aided Software
Engineering, Informa Tex Press (1989)

i8] Chikofsky E.J., Cross II LH.: Reverse Engineering and
Design Recovery: A Taxonomy, IEEE Software (January
1990)

177 De Carlini U., Cimitile A.: Il reverse engineering nella
analisi, documentazione, manutenzione e validazione del
software, Sistemi Informatici e Calcalo Parallelo:
progette finalizzato CNR: risuliati, stato delle ricerche ¢
prospeltive, Angeli (1991)

{B] Lanubile F., Maresca P., Visapgio G2 An Environment
[for the reengineering of Pascal Programs, Proceedings of
IEEE Conf. on Software Maintenance, Sorrentn, Angust
1991, pp.23-30

[91 Signore Q., Celiano F.: From a "well designed” database
ta ADICycle tocls: a reenginecring experience,
Proceedings of CASE and Applications Development in
Practice, SHARE Europe (SEAS) Spring Meeting 1991,
Lausanne, Switzerland, April 8-12, 1991, pp. -8, ISSN
0255-6464

Appendix 1.

A descripiion of the diagrams the user can manipuiate
after the import process is presented in the following,

The Object List lists all the
encyclopaedia objects that meet some
requirements (name, type, related level in
the Iife cycle model). It combines the
repori and diagram fashions.

The Object Details Window displays
general information about an object
{name, type, creation date, last update
date, definition, comment).

EE___
"
Mn—

178

The Entity-Relationship Diagram is the
well-known Chen diagram including the
entities (fundamental, associative or
attributive) and the relationships between
them,

The Entity Type Description describes

- for-gach-entity-the-attributes,swith-thelp.

types and cardinality constraints, the
relationships the entity is involved inand
the keys.

The Database Relational Diagram models
the database according to the relational
logic model. References between
relations display cardinalities and show
which relations have foreign keys that
refer to the primary keys in other
relations.

The Data Structure Diagram highlights
the properties of # stored data. A data
structure can be composed of any
combination of data elements or data
groups. A data element is an atomic unit
containing no other structure; on the
contrary, data groups can include data
elements and/or other data groups. A data
structure can describe the structure of a
relation, a file record, a segment and
sereen layout variable. In the case we deal
with, data structure describes relations
properties like primary and foreign keys,
SQL data type, mandatory clausse,
indexes, ete.

The Data Type Window defines the
peculiar characteristics of a global or
local data type (SQL data type, COBOL
format, external and internal length,
definition, comment).

The Structure Chars offers a graphic
depiction of the external, modular
structure of a program. It details the
hierarchy and organisation of logic units
(modules), the distribution of
functionality among modules, and the
data communication between them.

The Module Action Diagram details, in a
graphic format, the logic and the
- Structure for a program module, It also
Ec:; establishes the encyclopaedia
relationships between modules and other
- design object types; such as screen

layouts, relations, segments, or other _

The DB2 General Information Windew
| presents the environmental parameters
that are bind to a DR? physical
| representation of a relation such as DB2
database name, DB2 table space, table
-name, DDL subject type (table or view),

175

The SQL Action Diagram enables the
generation of a generic template for a
SQL DML comrmand.
ADW/Construction generates five
different sets of generic DML statements,

“on the basis of the type you select:

CURSOR, DELETE, INSERT,

“SELECT and UPDATE. A sixth choice,

EXPERT, allows 1o write other DML,
sialements,

Deriving Path Expressions Recursively

© *Istituto di Elaborazione della Informazione, CNR, Pisa, Ialy.
8 Dipartimento di Informatica, Universit di Pisa, Italy.

Abstract

Program representation plays en imporiant role
in software éngineering, because it Is used by the tools
supporting software life cycle activities,

To represent a program's control structure, the
dominator tree and the implied tree, derived from the
program’s ddgraph, can be profitably used. In fact, thanks
to their recursive structure, these trees are especiaily
suitable for designing very simple and efficient algorithms
for program path analysis, which is widely used in
measurement and testing activities.

In particular, this paper presents a recursive
algorithm PE for computing path expressions from the
dominator and the implied trees.

The algorithm proposed is of interest to program
comprehension for two reasons: represeniation of
programs by path expressions is widely applied, e.g., to
testing, data flow analysis and development of complexity
metrics. More in general, an algorithm as PE, which
computes path expressions from flowgraphs, can be used
to solve many kinds of path problems.

1. Introduction

The language of regular expressions provides a
formal seiting in which the structural properties of
programs can be represented. More precisely, the path
expression subset is used; this is obtained by restricting
the regular expressions to that set of strings which
denotes paths in the program flowgraph.

In gencral, path expressions can be used for
program documentation, measurement and testing {¢.g.
(51, [7D. In particular, path expressions can play an
important role in program comprehension as: i) they
supply a unified and efficient approach to the solution of
path problems [8], [9]); ii) they provide a language-
independent model for the representation of program code
and low-level design and iii) they can be easily processed
by automated tools.

Traditionally path expressions are derived using
node elimination techniques[S5}{9]. In this paper, we
propose a new approach, based on the dominance and
implication relationships between the arcs of a ddgraph
{decision-to-decision flowgraph) G=(V,E), with a unique

0-8186-4042-1/93 $03.00 © 1993 IEEE

77

entry node eg and a unigue exit node ef. Dominance has
been known for a long time in graph theory {6], but so far
has not been fully exploited in program comprehension.
In fact, dominance and its symmetric relationship,
implication, form two trees of the arcs in a ddgraph G,
DT(G) and IT(G) respectively, on which very simple,
recursive procedures can be designed.

In the paper, an algorithm, called PE, is described
that visits in preorder DT(G) and recursively derives the
simple form of the path expression which represents all
possible entry-exit paths in G. The fact that PE uscs only
the dominator tree and the implied rec of a ddgraph 1o
construct the path expression demonstrates that these two
are fully sufficient to represent a program’s structure,

The paper is organised as follows: Section 2
provides the background necessary for the understanding of
the algorithm; Section 3 describes the algorithm giving
several examples; some concluding remarks are made in
the {inal Section.

2. Basic concepts
2.1 Graph terminology

Flowgraphs {4] are the most widely used model
{0 represent program structure. A {lowgraph is a directed
grapk (ordigraph) G=(V E), where V is a set of nodes or
vertices and E is a set of directed edges or arcs, A direcied
edge e=(T{e),H{e))e V is an ordered pair of adjacent nodes,
calied Tail and Head of e. We say that ¢ leaves T(e) and
enters H(e). If H(e)=T(e"), then e and ¢ are called adjacent
arcs. For a node ne V, indegree(n) is the number of arcs
entering it and outdegree(n) is the number of arcs leaving
it

A program's control flow may be mapped onic a
flowgraph model in different ways. Henceforth, we shall
use the ddgraph model [1], which is particularly suitable
for the purposes of program path analysis [3). Ddgraph’s
arcs are associated to program’s blocks (thus ddgraphs
revert the more typical usage in flowgraphs of associating
blocks 1o nodes), where a program block, or branch, is a
maximal sequence of program statemenis such that
control flow can be transferred only to the first statement

ety -] Elﬁ

Flgure 1: a ddgraph Gy

of the block and, once this first statement is executed, all
the staternents in the block are executed sequentially.
Ddgraph’s nodes either correspond to program's
predicates, where a branching in the program’s control
flow oceurs, or represent the joining of separate control
flow streams. Formally, we give the [lollowing
definition,

Definition 1: ddgraph

A ddgraph is a digraph G=(V.E) with wwo distinguished
arcs e(y and e {which are the unique entry are and exit arc,
respectively), such that any other arc in G is reached by
ey and reaches ef, and such that for cach node ne V,
a#1{e0), n#H{ep), (indegree(n) + outdegree(n)) > 2 (while
indegree(T{eg)}=0 and ocuidegree(T(eg))i=1,
indegree(H{eg))=1 and cutdegree(H (g1 =0,

Figure 1 and figure 2 above show two simple ddgraphs
G1 and G2, G has distinguished arcs ep and ¢16 and G7
has distinguished arcs) and 19

Obvigusly, for a stricily sequential program (Le.
a program only consisting of “sequence” control
structures), the ddgraph G=(V £} will consist of just one
arg, ie. E={eg=ex] and V={H{ep), T(ep]. This is called
ihe trivial ddgraph,

A path p of length g in a ddgraph G is a sequence
prnjo,eil,nji,..,njq_j,e;q,njq, where T(eik):”f{k-fj and
H(efk)z”fic’ k=1.....9. We will also write pmfj1,...,€fq.
An entry-exit path p= eg, ..., e} is a path swarting from
the entry edge and finishing with the exit edge. A path p
is simple if all its nodes are distinct. A path
pﬂﬂfe’eii’"fvl""nfq-]"efq’”{"g’ isa cyf:le if njq:njo. A
simple cycle is a cycle in which all the intornal nodes are

178

Flgu 2:addgraph &G

distinct. An acyclic ddgraph is a ddgraph that has no
cycles.

A {rooted) tree T=(V E) is a digraph, in which
one distinguished node, called the root, is the Head of no
arcs; every node except the root is the Head of exacily one
arc and there exists a (unigue) path from the root 1o each
node. If there is an arc e=(npng) in T, n; is said the parent
of nj and nj is said a child of nj. Trec nodes of zero
ouldegree are sald leaves.

2.2 Dominance and imnlication

An important concept in the graph literature is
ithe dominance relation, which imposes 2 partial ordering
on the nodes of a flowgraph. Since in ddgraphs program
branches are associated 1o arcs, we here are inierested in
applying the dominance relationship to the arcs instead of
o the nodes. Therefore, we give a definition of
dominance between arcs in a ddgraph,

Definition 2: Dominance

Let G=(V.E) be a ddgraph with distinguished arcs eg and
ek An aic g dominates an arc ej if every path p from the
Eniry arc e(} 1o £; COMAINS €}

Several algorithms have appeared in the literature to find
the dominators in a digraph [6]. These can be adapted very
easily to find dominators in a ddgraph,

By applying the dominance relationship between
all the arcs of a ddgraph G, we can obiain a tree, called
Dominator Tree (BT((G)). The nodes in DT represent the
ddgraph arcs and the root corresponds 1o the entry arc eg.
For each pair {¢;, ¢;) of adjacent nodes in DT,

ej=Parent{ej) is the immediate dominator of ej. The
immediate dominator ¢; of an arc ¢; is & dominator of ej
with the property that any other dominator of ¢ also
dominates e; . Notice that each arc (different of eg) has
exactly one immediate dominator. In figure 3, DT(Gy) is
shown.

€10

Figure 3: the dominator free DT(G1}

Following, we introduce the "symmetric” relation of
implication between arcs in a ddgraph.

Definition 3: Implication

Let G=(V.E) be a ddgraph with distinguished arcs £(and
eg. An arc ej implies an arc e; if every path P {from ¢; Lo
the exit arc e contains e;.

The implied arcs in a ddgraph G with distinguished arcs e
and e} can be found as the dominators of the ddgraph G
having distinguished arcs e'g and e, in which every arc ¢’
is obtained by reverting a corresponding arc in G (Le.
H{e="T(e) and T(e"=H{e)}, e’p corresponds to the reverse
arc of e and e’ comesponds to the reverse arc of ().

By applying the implication reladonship beiween
the arcs of a ddgraph, we can obtain a iree rooted at gf ,
called Implied Tree (IT(G)). For cach pair (¢, ej} of
adjacent nodes in IT(G), ¢;=Pareni(e}) is immediately
implied by ej. An arc ¢j is immediately implied by an arc
ej if ¢j is implied by e; and any other arc which is impiicd
by ¢; isalso implied by e;. Notice that each are {different
of e} is immediately implied by exactly one arc. In
figure 4, IT(G1) is shown,

2.3 Structured ddgraphs

Structured programs are often defined informally
in terms of GOTO-less programs. Recently, a wide,
rigorous theory has been introduced (11}, in which
different classes of structuredness are defined. Particularly,
the class of S1-structured flowgraphs corresponds to the
programs normally referred as structured in the literature,
namely those only based on the control structures

178

sequence, if-then-else, while-do and repeat-until. In this
subsection we present a constructive definition of §1-

structured ddgraphs, or, briefly, S1-ddgraphs, based on this
theory.

Figure 4: the impiied tree iT(G1)

A strictly sequential program is represenied by
the trivial ddgraph; then the trivial ddgraph is a basic 51~
ddgraph. Similarly, the other basic S1-ddgraphs can be
immediately identified as those in figure 5 below.

The class of S1-structured ddgraphs is the class of
those ddgraphs that can be constructed, starting from the
basic Sj-ddgraphs, by the repeated application of a
composition operation, as formally stated by the iwo
following definitions.

Definition 4: Composition of ddgraphs

Let G=(V.E) be a ddgraph with distinguished arcs e and
e, G={V"E" be a ddgraph with distinguished arcs eq” and
ei’. Let e be an arc in E. The ddgraph G(G'ine) 18
defined as the ddgraph G'=(V",E") with distinguished arcs
e(y" and eg”, which is obtained substituting the arc e in &
by the graph G'. G” is called the composition of G with
Gline.

Let us observe that, by construction, G” is a ddgraph.

Definition 8: Sj-ddgraph

The class of §7-ddgraphs is the smallest class of ddgraphs
that satisfies the following conditions:

i) every basic ddgraph in figure 5 is a S1-ddgraph;

ii) if G and G’ are Sy-ddgraphs, and ¢ isin G, then G(G’
in ¢} isa §1-ddgraph.

Let us note that the ddgraph Gy in fig. 1 is Sy-structured,
while the ddgraph G2 in fig. 2 is not.

Tt can be casily verified that, for a S1-ddgraph G,
every node in DT(G) or in IT(G) can have at most three
children (see also figure 6). This property will be
exploited later in the PE algorithm (Section 3).

triviad
ddgraph

f-then-else
ddgraph

: e,
¥
repeat-until while-do
ddgraph ddgraph

Figure 5! the basic S4-ddgraphs

2.4 Path expressions

in this subsection path expressions are
introduced. Path expressions fully represent the structure
of & program by means of strings of labels and operators
from the set [+, +, *1, as flowgraphs do graphically by
nodes and arcs,

Let L be a finite alphabet disjoint from {A, @);
we introduce first the set of regular expressions over L by
the following recursive definition;

i) the empty stsing A and the emply set @ are (atomic)
regular expressions;

i) for any symbol x & L, x is an (atomic) regular
expression;

i) if 1 and R are regular expressions, then the
concatenation (R1-K2), the union (R1+R7) and the
reflexive, transitive closure (K1)* are (compound)
regular expressions,

Let G=(V E) be a ddgraph with distinguished arcs eq and

ek. The set of path expressions over E is a subset of the

regular expressions over E, obtained by restricting the

fatter 1o those strings which denote seis of paths in G.

To assign a meaning 10 path expressions, we
introduce!) the notion of the type of a path expression P,
Fis said of type (n1,n2), with n1,n2e V, if P denotes 3
set of paths in & from ny to n2, and only such paths.
Then, in the context of path expressions, we can interprel
the above recursive definition as follows:

1} A denotes an empty path in G; @ denotes an emply sel
of paths in G; for any edge eckE, P=¢ is of iype
{T{e},H(e)), and P denotes the path formed by the only
arc e,

ity if P1 is a path expression of type (n1.n32) and P is a
path expression of type (n2,13), then P=(P1-P2}is of
type (n1,n3) and P denotes the set of paths obtained by

(1) For brevity, we have omitted the intermediate
definition of an interpretation function s{R) of a regular
expression R. A more complete definition can be found in

91

180

concatenation of the set of paths denoted by Py with
the set of paths denoted by P;

iliy if P1 and P2 are both path expressions of the same
type {n1.n2), then P={P+P») is also of type {n1.n72)
and P denotes the union of the sct of paths denoted by
£1 with the set of paths denoted by Py,

iv} if Py is a path expression of type (n, n), then P=(F{)*
is of type (n, n} and P denotes all paths in & obuined
by repeating any number of times (possibly none at
all} the paths denoted by P,

For example, the path expression P representing all

possible entry-exit paths in G1i, ie. of type {T{eq).

Hieig)), is:

P=eqr({e1-ey (e3e0) ¢4} + (e5 (egre7reg (e9)*e10))

€11 {e12- {e13+e14)e155 €15

3. The PE alporithm

In this Section, we describe, in Pascal-like form,
our recursive algorithm PE which compuies path
expressions. PE works on Sy-struciured ddgraphs.
Actually, the algorithm described forward in figure 7 only
works assuming thai the composition operation between
ddgraphs is not performed on the arc corresponding to the
back arc of a repeat-until siructyre. The subset of §1-
ddgraphs obiained applying this restriction is said §7-
proper and is defined below. Aciually, a version of the
algorithm working for the whole class of Si-structured
ddgraphs could also be easily derived. Yet, for simplicity,
in this paper we preferred 1o give this version, since, in
fact, for ddgraphs representing programs only constructed
by mecans of the control structures sequence, if-then-else,
while-do and repeat-until the composition which is
forbidden can never occur,

Definition 6: back arc

Let G=(V.Eybe a S1-ddgraph, and letec Ebe anarc in G.
If there exists a simple path p in G from e to g, which
has the following form:

p=eQp0.He)21,T(e).p2.ek
where p1 is a not empty path from Hie) 1o T{e), then e is
called a back arc.

Definition 7: S7-proper ddgraph

The class of §;-proper ddgraphs is the subset of SI-
-ddgraphs that satisfies the following conditions: -

i) every basic S1-ddgraph is also a S1-proper ddgraph;

~ii) if-@G-and G"are §1-proper-ddgraphs; and e is-not-a‘back

arc in G, then G(G"in ¢) is a §1-proper ddgraph.

The PE algorithm performs a visit of the DT and uses
also the IT in case a cycle is encountered. We suppose
that the DT is constructed in such a way that the child of
an arc ¢ “nearest” 1o the exit arc is always the rightmost
amonyg its children; for example, the DTs corresponding
to the not trivial 51-basic ddgraphs (figure 5) are shown
in {igure 6 below. No order is required for the IT.

€0 A
€1
m el ,
€1 & L &)
= €y whiledo

“if-then-else
repeat-until

e Flgure 6:the DTs for the basic S{+-ddgraphs™

Given a Sjp-proper ddgraph G={(V,E), with
distinguished arcs e() and e, the PE algorithm computes a
regular expression P of wype (T(eq), H(ep)), which
represents the set of all entry-exit paths in G.

We shall use the following operations:

* ch-I(e), ch-2(€), ch-3(e), which retum, respectively,
counting from lelt to right, the first, the second and the
third child of the arc ¢ in the DT,

» {-imp(e), which returns the arc immediately implying e.

elsif (number of children of e3=2) then

if {i-imp{ch-1{ez)) dominates ch-1({ea))

Function PE(L .
begin

If (number of children of e3=0) or (ea = ep) then return (ez) {1}
elsif (number of children of ea=1) then return (ea*PE{ch-1(ea), eb)) 2}

then return { eg- (ch-1(ea) -PE(-imp(ch-1{ea)). ea)) - PE(ch-2(ea), €n)) {3

glse return (ea (PE(ch-1(ea), ep))« » PE(ch-2(ez). ep)) {4}
glse {i.e. number of children of e3=3}

teturn (ea+ (PE(ch-1(ea).ep) + PE(ch-2(ea).ep}) » PE(ch-3(ea).ep) } {5}
end function:

Figure 7: the PE algorithm

Let us illustrate by some examples how the PE algorithm
works:

&

b
Figure 8: example 1.

©)

Let us apply PE 1o the simple ddgraph in fig, 82 above

between the arcs eg and es. Since ep in DT (fig. 8bY has 3

children, which are from left to right e, 7 and ¢5, we

have:

PE(e). e5) = ep (PE(e1, 5) + PE(e2, €5)) - PE(e5, £5)
{1

Solving the recursive calls 1o PE, ¢1 and e5 have no

children, therefore:

PE(e1,e5)=¢1 (2)

PE(es, e5) = e5 &)

Insiead, e7 has the 2 children 3 and e4; we must find in

IT (fig. 8c) which is if the arc immediately implying

ey=ch-1{e2), it is e4, and then we must check i 24

dominates ¢3. Since the answer is no, (according to
statemnent {4) of the algorithm) we have:

PE(e7,e5) = e2- (PE(e3,e5))* - PE(e4,e5) =

=¢e2 (e3)* ¢4 &
Finally, substituting (2}, (3) and (4} in (1) we obtain:

PE{eq, es) =eq (g1 + €2 (e3)* -e4) - £5

“which is, already in iis simple form, the path cxpression

___r_!_:pajeseming all entry-exit paths in the ddgraph of fig. 8a.

"1t should be clear now that the 1T s gsed justto

discriminate if an arc having two children in the DT
precedes a while-do cycle (as the arc e in the basic while-
do ddgraph) or is within a repeat-uniil cycle (as the arc ¢
in the basic repeat-until ddgraph). The following example
should help to further clarify this concept. The two
ddgraphs in fig. 9a and 9b have the same DT, which is
shown in fig. 9c, and they can only be distingunished by
the PE algorithm looking at their ITs, respectively in
fig. 9d and 9e. For cxample, the arc €1 in DT has two
children, the first of which from left 1o right is 7; in the
ddgraph of fig. 9a, ¢2 returns back 1o a repeat-until cycle,
and in fact the immediate implier of e7, i.e., in fig. 5d,
e1, dominates the same ¢7; instead, in the ddgraph of {ig.
9b, e7 enters a while-do cycle, and in fact its immediate
implier, Le., in fig. 9¢, £3, does not dominates it

e}

Figure 9: example 2.

182

Finally, the following example (fig. 10) illustrates the
functioning of the algorithm in the case of two nested
repeat-until cycles:

Proaf

Termination:
PE called an e() and ¢ performs a traversal of DT(G). At
each node ey visited, two kinds of recursive call o PE
may be made (see fig. 11); either i) PE is called to visit a

Figure 10: example 3.

PE(eg.e6)=e(r PE(e1,e6) =
=e() el PE(e2,e6) =
= e(ye]-e2-(e3 ‘PE(e2, e)))*-PE(e4, e5) =
=e(re]-e2(e3e)* e4-(e5PE(e1,e4))* PE(eg.e6)=
=e(ye)-ex(e3en)*-eq-(e5e] PE(e2.4))* -e6=
=e(rel-ep(e3-e2)*-e4-(e5e1-€2(e3 PE(e2, e))* -
PE(ed, e4) y* -eg=
=e(rel-ed(eder) eq-(e5e1-er(e3e)*-e4)* g

In summary, PE performs a preorder traversal of
DT(G) visiting each node once; besides, in case a repeat-
until structure is encountered, PE must also iterate the
visit 1o a subtree of DT representing the body of the
repeat-until cycle (recursive call to PEG-imp(ch-1(ey)), e5)
in statement {3} of the algorithm). Therefore, it is
understood that the performance of the algorithm varies
widely with the structure of the program under
examination, and particularly in relation with the presence
of complex ddgraphs composed with a repear-until ddgraph
in the arc e (fig. 5). Roughly, if R is the depth of
composition between repeat-until ddgraphs, i.e. the
number of nested repeat-until cycles, PE would perform in
O(L'EPR) time. However, with no repeat-until cycle, PE
would work in O(EY) time.

Let us observe that the PE algorithm derives the
path expression already in its simple form, without no A
and {3 labels and without redundant parentheses,

Theorem 1: Termination and Correctness of
the PE Algorithm
Let DT{G) and IT(G) be the dominator tree and the
implied tree, respectively, of a S1-proper ddgraph G=(V,
E) with distinguished arcs eq and ef. Then the PE
algorithm called with parameters e(and e}, terminates and
returns a path expression which denotes all entry-exit
paths in G.

183

e, € subtree of DT(G) rooted at a child of e, or ii) PE is called
— é'l - "*] T tovisila sublree of DT(G) tooted al (i-imp(ch-1(es)))
which is an ancestor of e, or is e, itself. In the first case,
N -3 the Stibiree is smaller than (because contained within) the
e e subtree rooted at eg currently being visited by PE. In the
€4 ' ? second case, the subtres is limited in the lower part by the
arc ey, at which the traversal will be stopped.
¢ x5 . e6 € ' es

i-imp(ch-1 /

Figure 11: the subtrees visited by PE
Correciness:

The proof is inductive on the construction of the S3-

proper ddgraph .
If the DT has just one node eq, there exists &

unique entry-exit path, which is p=eg, and the algorithm
returns this same arc (statement {1) of the algorithm), If
the arc eq is not a leaf in DT, then let us consider
separately the cases of eq having one, two or three
children,

i} eg has one child e):

€ €
e
€

Flgure 12: the situation of eg having one child

the situation is depicted in figure 12 above, i.e., by
construction, e] enters the body of a repeat-until cycle. In
this case, every path from e to e} is denoted by the path
expression obtained concatenating e to the path
expression which denotes every path from e to e, which
justifies statement {2} of the algorithm;

ii) e has two children €] and e7:

b)
Flgure 13: the situation of gg having two children

a

the situation is depicied in figure 13 above, i.e. two cases
are possible.]

-~ Case a) e} enters & while cycle and e7 is the arc
just after the exit of the cycle. In this case, every path
from eg to e} is denoted by the path expression obiained
concaienating e) to an arbitary number (possibly none at
all} of repetitions of the path expression which denotes
ihe paths within the while cycle, concatenated to the path
expression which denotes every path from ¢32 to e, which
justifies statement {4} of the algorithm;

Case b) let us observe that this situation can
occur only after at least a recursive call 1o PE (see where
eqy is in fig. 13 b). In this case, €] returns back within a
repear-until cycle and e7 is the are inst afier the exit of the
cycle, In this case, every path from e(to e is denoied by
the paih expression obtained concaienating eg o an
arbitrary number {possibly none at all} of repetitions of
the path expression formed by £1 concatenated 1o the path
capression which denotey the paths within the repeat-until
cycle, concatenated to the path expression which denotes
gvery path from e¢7 to €. In tumn, the path expression
which denoizs every path within the repeat-uniif cycle is
the path expression derived by the PE algorithm between
the immediate-implier of e, say ¢;, and ¢q, which
justifies statement {3} of the algorithm;

111} eq has three children ey.e2 and e3:

Figure 14: the situation of gg having three
children

184

the situation is depicted in figure 14 above, ie., by
construction, e and ¢ enter the ther and the else part of
an if-then-else statement. In this case the path cxpression
which denotes every path from e to ef is given by the
path expression obtained by concatenating eq to the union
of the path expressions denoting respectively the then and
the else part of the if-then-else statement, concatenated 1o
the path expression which denotes every path from e3 to
ef, which justifies statement {5} of the algorithm, ¢

4. Concluding remarks

Program representation plays an important role
in software engineering, becauss it is used by the wols
supporting software life cycle aciivities,

Flowgraphs are widely used (o represent program
structure, A program’s control {low may be mapped onto
a flowgraph model in different ways. In this paper,
ddgraphs have been defined, in which program’s blocks are
associated 1o arcs. Then, the symmetric relationships of
dominance and implication between ddgraph’s arcs have
been used to derive the two trees DT and IT, respectively,
Dominance has been known for a long time in graph
theory {6], but, so far, it has not been fully exploited in
program comprehension. In fact, we argue that the DT and
IT couple can be profitably used to represents the struciure
of a program, since, thanks to their inherently recursive
structure, they permit very simple and efficient algorithms
10 be derived for solving many kinds of path problems,

In particular, we have described a recursive
algorithm, PE, which can be employed 1o derive, in a
very simpie fashion, the path expression denoting all the
entry-exit paths of a ddgraph G. The PE algorithm derives
the path expression in its simple form, without any A and
% labels and without redundant parentheses. More
importantly, it works almost linearly for real-world
orograms, if we could assume that real-world programs
contain a limited number of nested repeas-uniil cycles.
Actually, a number of authors have found that simple
programming siructures are much more used than
complex anes (see, for example, Sect. IV in [10]).

To derive path expressions, node elimination
technigues have been traditionally used; an efficient and
general-porpose algorithm has already been derived
elsewhere |91, In decribing here the PE algorithm, our aim
is not 10 proposc a more efficacious solution; on the
contrary, our method is less general than that described in
[91.

Instead, our aim was 10 show how DT and IT can
be used by tools performing mainienance, reverse
engineering and structural testing, in the design of simple
and recursive algorithms for solving path analysis
problems. In fact, the method underlying the algorithm
can be exploited to solve many other path problems (as
for example in [3]). Indeed, it has been previously shown
[9] that the construction of path expressions from

flowgraphs is in some sense the most general path
problem.

Our approach has been already experimented by
the implementation of some algorithms within a tool
proiotype, called BAT, which performs the static analysis
of C programs,

~ Acknowledgements

[5]

[6]

I, Laski, Path Expressions in Data Flow Program
Testing, Proc. COMPSAC, pp. 570-576, Chicago,
Oct. 29-Nov. 2, 1990

T. Lengauer, and R. E. Tarjan, “A Fast Algorithm for
Finding Dominators in & Flowgraph”, ACM Trans.

_.on Programming Languages and Systems, vol. 1,

e LIS OTK u.rag_,guppgmd.;.i.n.,pmh.b_ya_{}]g,prgjeg;

“Progetio Finalizzato Sistemi Informatici e Calcolo
Parallelo” of the Italian National Research Council
{CNR).

References

A. Bertoling, “Unconstrained Edges and their
Application to Branch Analysis and Testing of
Programs"”, to appear on The Journal of Systems and
Software, 1993,

[t

A. Berwlino, M. Giromini, “Easy Branch Testing”,
Proc. of the Int. Conf. on Achieving Quality in
Software (AQulS '91), pp. 251-238, Pisa, Ttaly,
April 22.24,1991,

A. Bertolino, and M. Marré, “Automatic Generation
of Path Covers”, IEI-CNR Internal Report B4.59,
November 1992,

[3]

[4] M. 8. Hecht, Flow Analysis of Computer Programs,

North Holland, 1977.

[y

185

[10]

(1]

“KCMigel Reglit Expressions n s Program

Complexity Metric, ACM SIGPLAN Notices, vol.
17, No. 7, pp.61-63, 1981,

R. E. Tarjan, "A Unified Approach to Paths
Problems", ACM Journal, vol. 28, No. 3, pp.577-
583, 1981

R. E. Tarjan, “Fast Algorithms for Solving Paths
Problems”, ACM Journal, vel. 28, No. 3, pp.594-
614, 1981,

L. 1. White, and E. I. Cohen, *A Domain Strategy
for Compuier program Testing”, IEEE Tr. on
Software Engineering, vol. 5E-6, No. 3, pp.247-
257, May 1980,

R.W. Whiny, N.E. Fenton and A.A. Kaposi, “A
riporous approach to structural analysis and
melrication of software”, Software and
Microsystems, vol. 4, No. 1, pp.2-16, Februsry
1983.

Extracting Application Domain Functions from Old Code: a Real Experience

F.Cutillo(*), F.Lanubile (§), and G.Visaggio (§)

(§) Dipartimento di Informatica
University of Bari

email: gluvis@vm.csata.it

(*} StarService s.p.a., Bari, Italy

fax: +39-80-243195

Abstract!

This work deals with the probiem of locating domain
dependent funcrions into old application systems and
drawing our them for reengineering and reuse, Our
approach iy based on o pardcelar form of program
sliving whichh makes @t possible 1o recover user
fungionalities although they are spread over the code.
Supported by a commercial jool, the approach has been
experimented with a banking wpplicvation system, whose
praintenance problems were increasingly sericus. Lessous
fearned suggest that a successful application of program
slicing needs the correar idenification of dara used as
operands and results of the domaln function, Moreover
some preliminary form of code sepmeninticn may be
reguired to enable program slicing
axpected functionalities.

o focus en the

i: Introduciion

Many reverse enginesring tools which have been
proposed in the past are source code analyzers which
make redocumentation [8], i.e. they produce 2
representation at the same abstraction level but focused
on particular views of the program such as control flow
[3], data fliow [51, program structure [16], and data
siructure {207,

Although these tools improve the understanding
degree of a maintenance programmer, they don't reach an
abstraction level such that meaningful concepts can be
recognized. In fact, due 10 poor structuring of the
programs, application domain conecepts ke business
functions or entity types are scattered over the code [17]
and consequently the recoversd design ardifacts have a

MThis work has been pantiaily supported by the Finalized Project on
"Information Systems and Parallel Compinmion™ of liallan Matioaal
Reszarch Council {CNR) under grant no 91 ,00930PF65.

0-8186-4042-1/93 $03.00 © 1993 IEEE

i86

iow cohesion. Locating and extracting high cobesion
components from old code is a complex task because it
requires a radical restructuring of the program structare.

We distinguish bstween two classes of components
which can be located in 2 program: the former concerns
the applicstion domain while the latter depends on the
technological environment which holds & system.
Application domain components are made up of functions
and data which typically characterize a cluss of problems.
Envirgnment-dependent componenis come from design
decisions which specialize a solution with respect to a
specific organization and the existing hardware/software
platform. The sbility of correctly discerning these two
clusses of components is advantageous for dealing with
adaptive maintenance or platform migration which
regards only thoss parts of o program which are affected
by the technology progress. On the other hand, the
fiexibility of o system is increased if those components
which are influenced by the domain charscteristics can be
easily isolated.

While [10] addres
environmeat-dependent

the problem of extracting
components from large
programs, in this paper we face the problem of the
identification of domain-dependent components.

The extraction of high level components from source
code, both domain and eavironment dependent, has been
attempled with knowledge-based tools. Knowledge-based
tools hold programming concepis at a higher level of
abstraction and recognize these concepis into a foreign
source code by means of psttern maiching techniques
1111, {131 119), 1221 A common assumption is that
programs are composed of stereotypical computational
patterns, called plans [21L A plan is an abstract
represeniation of s computation which ignores the
syntactic details which depend from the programming
language. So, software comprehension is successful if
progrum plans are recognized into the source code.
However, our experience with large and old programs
Lrings us to believe that plans are difficult fo find

because each time a programmer is assigned a
development task, he starts from scratch and implements
the required functions in & new form. So, years of
maintenance and enhancement by different programmers
with different skills and programming techniques cause

programs to become overl} large and complex and

original plans to get-lost.. e

In [14], the recovery of functlon ":batmctmn was
wbased-son = aw-stroctured ~approachyealled
abstraction, which iteratively rewrites source code into a
program design language, starting from prime programs
(single-entry, single-exit pieces of programs). The
analysis is completed when a full specification,
explaining the program behavior, has been obtained.
However, this technique has some drawback due to the
lack of automatic support for driving the abstraction and
the complexity when dealing with loops.

Program reading by stepwise abstraction is coherent
with the bottom-up theory of program understanding {81,
where programmers build chunks of information which
expand the limited capacity of the short-term memory.
On the other hand the top-down theory {4} says that
program understanding is expectation-driven, i.e. it is
based on the expectation of domain concepts in the
program which can be confirmed, refined or rejected.
Top-down approach is mostly applied by expert
programmers when they learn an unknown program,
because their experience suggests a number of hypotheses
to verify. On the contrary, novice programmers tend (o
concentrate first on details because their expectations are
too many few [2].

In the case of function abstraction, expectations can
derive from the application domain knowledge,
especially that derived from the conceptual data model
{1]. In fact, the attributes of the entity typas suguest the
presence of functionalities which create, check and
update them. For example, if the “internal check code”
attribute is stored in the database then the function which
compute them could be hidden inside the program, orif a
file records the amount of banking transactions then
reverse engineers may look for the function which
computes the account balance,

In [9], program slicing has been proposed as a
segmentation technique to be used in a top-down way.
The goal is to extract appl%cnt%on dormain functions from
an unknown program, by using a partial knowledge of
the application derived from both the maintainer
expertise and the reverse engineering of data.

In this paper an exploratory experimentation is
described. In order to verify soon the approach, a
commercial tool which supports the large-scale
application of program slicing is wsed, The extraction
procedures have been adapted to the slicing tool. The

stepwise:

187

“and potitrcut-thesfaturework:

cbject of study has been an old Cobol program of a
banking application system.

The following section briefly defines the context
where function recovery is executed, the third section
summarizes the program slicing and the fourth section
out’[inas the extraction criteria. The fifth section describes
~experimentation - environment--and--the

Fors)

2: The context

Figure 1 shows a model of the reverse engineering
process {7] which we use to recover data-oriented
application, i.e. application systems where most of the
tasks involve manipulating and retreving data from a
database. Function recovery is based on the following
assumptions.

® There is & working program which is part of the
application portfolio of a given organization.

@ There is & knowledge about problem and application
domain which makes it possible to mzke hypotheses
on the existence of functions inside the program,

® The data analysis phase has produced a data model
which describes the entity types, the relationships
among them, and the entity attributes. There is also a
traceability matrix between data model and source
code,

The extraction criteria which we propose aim to
intercept the conceptual functions, hidden inside the
source code. Information which results from the data
analysis phase may allow a novice programmer to acquire
enough knowledge to become expert for that application
because the recoversd dalts model contain all the
information for describing the input and output of the
business functions. In this way program slicing is used
after an hypothesis about the existence of a function has
been made on the basis of clues which are provided both
by the maintainer expertise and by the presence of
derived data into the recovered data model.

3: Program slicing

Program slicing is a decomposition method
introduced by Weiser in [23]. Initially proposed for
program debugging [24] and parallel processing [25],
later on program slicing has been applied to other
activities such as module integration [15], cohesion
evaluation [18], testing [12] and modification [12].

tesults -
dchn,ved Finally, conclusions present the !essans leamed

Program slicing is based on the observation that we
are often interested only to a portion of the program
behavior, as in the debugging and medification tasks. So,
program slicing isolates that portion, by analyzing the
data flow and the control flow of the program. In order
to make sutomatic this capacity of projection, the
behavior of interest is formally specified.

The specification, called slicing criterion, takes the
form <{, V>, where i is a statement and V is a subset of
the program variables.

& slice S of a program P, defined on a slicing
eriterion C=<j,¥>, is an executable subset of F
containing all the statements which contribute to the
values of V just before statement [is execuied.

In [24] an experiment was conducted whose results
confirm the hypothesis that programmers implicitly use
slices when debugging unknown progrms. Program
understanding 18 difficult becuuse shoes are often

scattered through the entire program, making difficult
locating bugs into programs.

The concept of program slicing has been extended in
[12] to capture all the computation which is relevant for a
given variable. While a program slice depends on a
variable and @ statement number, 15 extension, the
decomposition slice, depends only on a variable.

A decomposition slice, S(v), is defined as the union of
all the program slices on the varizble v starting from the
cutput statements and the last program instruction. For
each decomposition slice there is a complement collecting
all the program instructions which are not affected by
maodifications in the related slice. Decomposition slices
form 2 lattice based on the definition of the binary
relation strong dependence. Tmpact analysis can be done
by exploiting the algebraic properties of the lattice of
dacomposition slices.

Data

Working Program _,,E

/Function

\ Recovery | data model

Ndata mode!

expected
ata

"\ Recovery |

domain

xpected]
functions

functions

>

Domain Knowledgeh

Figure 1. The reverse engineering process

4: Extraction criteria

By using different information sources, a reference

data model may be associated to an application system

[} The reference data model provides a set of expected
functions, F={fifh. .t}

For each expected function fi

1} Give it 2 meaningful name.

2) Define the input data INg = (idyy, idp, ..., idin)
which the function needs, and the ouput data oUT;
= {odj1, odp, ..., ody) which it yields. It is
reasonable to expect that the data would be in the data
model obtained from the data analysis phase. In the
opposite case, you must locate the data as internal
variables of the program or complete the data model
with the missing data.

Extract from the source code the decomposition slice
S(OUT). It contains all the program statements which
influence, both directly and indirectly, the output
production.

Extract from the source code the decomposition slice
S(INy). It contains all the program statements which
influence, both directly and indirectly, the input
production.

Prune all the statemenis from S(OUT;) which
contribute only indirectly to yield the output of the
function, because they are dedicated only to obtain
the necessary input. A first hypothesis for cutting
away the unnecessary statements assumes that the
function may be obtained by deleting from the output
slice all the statements which also belong to the mput
slice: f; = S(OUT) — S(IN).

Package the slice as a separate module,

Derive the complement of the extracted slice and
package it as a main module which calls the module
corresponding to the extracted slice. The interface
between the caller and the called modules is made up
of the slice input data IN; and output data OUT;, as
shown in figure 2.

3)

4)

5)

6)

The extracted slice could be too much complex for a
single module. Module cohesion should be measured
[18], to evaluate if the extracted slice can be refined. For
example, if cohesion is sequential {26], the function will
contain other subfunctions bound by a composition
relation: fi=fi; fiz ... fin

The extraction technique for subfunctions is
analogous to that defined above. The subfunction is
looked for into the main function which will become its
complement.

189

.Complement

ouUTi

i
extracted slice

Figure 2. Structure chart after the extraction steps

5: Experimentation

The experimentation was performed on a banking
information system. The information system, more than
I3 years old, is made up of Cobol programs which run
on a Siemens mainframe with BS2000 operating systern.
The information system has evolved in the years both as
functionalities provided and subject areas covered. The
numerous maintenance interventions and the frequent
turnover of programmers have produced a critical
degradation of the initial architecture and a disalignment
of the existing documentation. Consequently the change
requests are expensive and sometime cannot he satisfied,
the backlog increases and the training of new
programmers cannot be planned in advance.

The nature of the experimentation was only
exploratory in the intentions. The goal was to analyze the
application of program slicing to the extraction of
domain components for the purpose of characterization
with respect to feasibility from the point of view of the
TeVErSE engineer.,

5.1: The sample program
A program was chosen which manages all the

information regarding the relationships with the bank's
customers. The program is data-strong, transaction-

oriented and poorly modularized. Table 1 summarizes

some measurable characteristic.

program AADDDD 22034 LOC
Data Division 16834 L.OC
Procedure Division 3200 LOC
Dread data 657 L.OC
Dead code 221 1.00
Transactions i9
Files 10
Table i. Program Measures

5.2: The reverse engineer

A junior programmer was selected to conduct the
experimentation. He knew the program slicing technique
but he had never seen the information system neither he
had @ previous knowledge of banking problems. His
training consisted oft
20 days to read 1 Cobel manual
i day to read a user manual
2 half days of interviews with the EDP manager and
the maintenance progranuney.

1]

4

i

.3: The slicing tool

A commercial ool was chosen, VIA/Renaissance
from Viasoft, which i part of o fumily of mumtenance
tools called Bxisting Soflware Workbench (HSW),
ruaning on 2 MVS-TSO/ISPEF platform. For this reason
the program was moved from its production environment
15 an 1BM mainframe and some modifications were made
to enable a suceessful recompilation. The tool is made up
of three main functional components:
1. Program analysis; you can see the hierarchical
relationships inside the program, er navigate along
the control dnd dua flow, or follow the execution
paths,
Code extraction; you can isolate portions of code
acearding fo five different criteria, including program
slicing.
3. Module generation; you can create modules from the
exiracted components which can be edited, savad,
invoked Cobol subprograms independent
programs, Complements are avtomatically treated.

I

EL Gr

5.4: Results

12 domain functions were successtully located:

150

- 9 domain functions were expected because the data
were attributes of the conceptual data model. Data
were cheked before to be stored, or physically
transformed and next recorded into the database
{derived attributes).

-3 domain functions were suggested by the mainienance
[rOgrammer.

For exaumple the "Generate CIN" (Internal Code)
function was suggested by the data itemn NCIN which
was present into one of the record layouts. The "Search
Customer's Links® function was more difficult to isolate
because input and output data were not clearly defined
and the resulting slice covered & large piece of code. The
“Generats C1C" (Internal Check Code) function was
refined by applying the slicing criterion on each of its
three inputs corresponding to different legal forms. The
"Check Date’ function was found three times durning
different refinements. Two occurences were the sams,
while the third was a different algorithm which existed in

the sume program. The programmer who had written the

function did not reuse the old one but neither replaced it
with a unigue copy.

In general, the results improved when i/o data were
defined with accuracy {it was not so easy because many
variables had not meaningful names) and the source code
was restricted, The extracted modules are composed of
line numbers which are not always contignous and the
resulting structure provides & more meaningful view of
the program structure thun usual call gruphs can offer.
Traceahility with the old code is nol lost because the
extracted components keep track of the source code file
and lne numbers.

6: Conclusions and future activities

Because the experiment was only explomtory and

then it was not stricily controlled and neither conducted
on multiple projects, we cannot provide defimitive
conclusions. However some wuseful lessons have been
teurned which can guide future investigation.
Li. Domuin-dependent functions explain a small part of
the behavior of a data-oriented application. The
smali number of retrieved tunctions is partly due w0
the characteristics of the application system whose
greatest effort is devoted to retrieve and store data
into the database (MOVE statements were the 41%
of the total stalements while arithmetic instructions
were 2%). So, eavironment-dependent compaonents
must be recovered too for understanding a foreign
program.

L2. Programs with a complex control flow due to flags
which guide the selection of operations must be
previously segmented with some ofher criterion.
When applying program slicing to Cobol sections
with logical cohesion, for example, data items
which were contemporarily present in the

“alternative branches cansed the resulting slice to
cover more than one transaction. It could be usefu]

[2] B.Adelson, "Problem solving and the development of
abstract categories in programming languages”, Memory
& Cognition, vol.9, 1981, pp.422-433,

{3] P.Antonini, P.Benedusi, G.Cantone, and A.Cimitile,
“Mainterance and reverse engineering: low level design
documents production and improvement”, Proceedings of

< AEEE - Conference= on=Software ~Maintenance - Austin,
Texas, IEEE Computer Society Press, 1987.

s dpe-ReBrookyy#Towards atheory: o the “eamnprehension e

to identify those flags which drive the control flow
and slice the code after having isolated the
transactions.

L3. Sometime it is better to apply program slicing in &
bottom-up way. Because our approach is top-down,
modules at the bottom with # fan-in greater than one
are replicated in each extracted slice which depends
from their execution. To prevent code duplication,
program shicing could first be applied to bettom-
level modules with u high fan-in.

L4. When the program is poorly modularized the effect
of program slicing is to increase the number of
modules by decomposition. However, resulting
modules have high internal cohesion and fow
coupling with other modules.

Future experimentation is necessary to confirm the
application of program slicing to function recovery.

- Expeniments will be designed using different subjects
on different programs, but always using data-oriented
applications.

- The extraction criteria will be more automated by
customizing the commergial _too! or building a
specialized prototype.

- Refinements criteria, based on complexity metrics,
will be provided to reverse engineers for stopping the
slice decomposition.

Acknowledgements

We would like to thank Basica s.p.a. for having
provided the tool and the experimentation sample. We
are also grateful to Dr. Gregorio Fatone of StarService
s.p.a. for the precious collsboration in the experiment.

References

{1] F.Abbattista, F.Lanubile, and G Visagzio, "Recovering
conceptual data models is human-intensive”, Proceedings
of the Fifilh lInternational Conference on Sofrware
Engineering and Knowledge Engineering, San Francisco,
California, 1993,

compuler programs" Imernational Jowrnal = of
ManMachine Studies, val.18, 1983,

i3] G.Cenfora, A.Cimitile, and U.De Carlini, "A logic based
approach to reverse engiieering tools production”,
Proceedings of IEEE Conference on Software
Maintenance, Sorrento, laly, IEEE Computer Society
Press, 1991,

[6] E.J.Chikofsky, znd §,H.Cross I, "Reverse engineering
and design recovery: a xonomy”, JEEE Software,
January 1990,

[7] G.Como, F.Lanubile, and G.Visaggio, "Design recovery
of a date-strong application”, Proceedings of the Third
International Conference on Software Engineering and
Knowledge Engineering, Skokie, Hiinois, 1991, pp.205-
212.

(8] B.Curtls, "Cognilive issues in reusing software artifacts”,
in Software Reusabiliy, vol.Ii: Applications and
Experience, T.J.Biggerstaff, and A.J.Perlis {Eds),
Addisen-Wesley, Reading, MA, 1989.

{?} F.Cullo, F.Lanubile, and G.Visaggio, "Using program
slicing for software comprehension”, JEEE Workshop
Netes on Program Comprehension, Oflaﬁdo, Florida,
19972,

{10] F.Cutille, P.Fiore, and G.Visagsio, “Identification and
extraction of domuin independent components in large
programs®, Proceedings of the Working Conference on
Reverse Engineering, 1EEE Computer Society Press,
Baltimora, 1993.

{11} A Engberts, W.Kozaczynski, and J.Ning, “Concept
recognition-based program transformation”, Proceedings
of IEEE Conference on Software Maintenance, Sorrento,
ltaly, [EEE Computer Seciety Press, 1991,

[12] K.B.Gallagher and J.R.Lyle, "Using program slicing in
seftware maintenance”, JEEE Transactions on Software
Engineering, vol.17, no.B, August 1991.

{13] M.T.Harundi, and J.Q.Ning, "Knowledge based program
analysis”, IEEE Software, January 1990,

[14} P.A Hausler, M.G.Pleszkoch, R.C.Linger, and
A.R.Hevper, "Using function sbstraction to understand
program behavior", JEEE Software, January 1990, pp.55-
63.

[15] S.Horwitz, T.Reps, and D.Binkley, “Interprocedural
slicing using dependence graphs®, in Proceedings of the
SIGPLAN'ES Conference on Programming Language
Design and Impleineniation, 1988, pp.35-46,

[16] F Lanubile, P.Maresca, and G.Visaggio, "An
envirenment for the reengineering of Pascal programs”,
Proceedings of IEEE Conference on Software

Muaintenance, Sorrento, llaly, IEEE Computer Sociely
Pregs, 1991

[17] 8.Letevski, and E Soloway, “"Delocalized pluns
program comprehension”, {EEE Software, May 1986,

[18] L.Ou, and J.Thuss, "The relationship between slices and
module cohesion”, in Proceedings of the 11k
International Conference on Software Engineering, 1989,
pp. 198-204,

{19] C.Rich, and L.M.Wills, “Recognizing a program's
desien: a graph parsing approach”, [EEE Software,
Jonuary 1990

1208] H.M.Sneed, and G Jandrasie, "Inverse transformation of
software from code to specification”, Proceedings of IEEE
Conference on Spftware Mulmtenunce, Phoenix, Arizong,
IEEE Computer Sociely Press, 1988,

[21] R.C. Waters, "The Programmer's Apprentice: & session
with KBEsmaes", [EEE Transactions Software
Engineering, Movember 1985,

and

oh

192

[22] R.C.Walers, "Program iranslation via abstraction and
reimplementation”, [EEE Transactions on Sofiware
Engineering, August 1988,

23] M. Weiser, "Program slicing”, in Proceedings of the Fifth
Tternational Conference on Software Engineering, 1981,
pp.439-449.

{24] M. Weiser, "Programmers uses slices when debugging”,
Communications of ACM, vol25, no.27, July 1982,
pp.446-452,

1251 M. Weiser, "Program slicing”, JEEE Transactions on
Software Engineering, vol.SE-10, no.4, July 1984,
pp.352-357.

126] E.Yourdon, snd L.L.Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design, NY: Yourdon Press, 1978,

Author Index

Alden, SD. oo 110
Aubet, Pooieeeee e, 55
Ballantyne, M.ccococoovveeemnis 71
Benedusi, P..c.ooooecovveneeoeesoo 149
Bennett: KH AR e
Benvenuto, V.

Bertoline, AT

Blazy, S. oo 46
Canfora, G...c.ooeeeeeevee e 36
Champion, R. .oooveeeievceeeeoe 140
Cimitile, A, ..o 36
Cochinal, S, oo 108
Cutilo, Fuoeieeeee 187
De Carlind, U, oo 128
DeLueia, A oo 128
DeMori, Rouveeeicieeceeeeeeeeeee 17
Di Lucea, GLA oo 128
Dumas, Lo 55
Facon, P 48
Foster, d. .ovveoeieioeeeeceeeee 107
Freeman, MuJ..oovoooieeooeeeei 140
Garigliano, R...o.oovvveeviveeoeeeeino 26
Hazan, J.E....c...cooommmamieoo 26
Helleboid, Y. 55
Jarvis, S.A e 26
Kinloeh, Do 119
Kontogiannis, K.ooovoeven 17

133

Lanubile, Foo.ooooieieeeeee 187
Layzell, Pad. oo 140
Lejeune, Poooiceeeeeeeeeeeeeoeee 55
Lnos, P.ovnrrrrssin e, 55 .
S, Y reenn .'..'.”.;'."."1"1'
Livadas, PE.....ooovcconssienearines, i
LOfredo, M. ..o 169
Maneini, Lo 106
Marré, Moo, 177
Merlo, E. oo, 17
Morgan, R.G. ccooovvreevcniees e 26
Munro, Moo 36, 119
Padula, A oo 66
Quilich, Ac oo 96
Signore, O. oo 169
Tomacelll, L. oo 149
Tortora, G. ..ooooovveeer s 128
Tortorella, Mo .o 36
Tulula, Pooeecce oo 55
Van Sickle, Lo 71
Vans, AM. oo, 78
Visageio, G oo, 187
von Mayrhauser, A......ooovveevveeviseenn 78
Ward, MPoooioeeeeeeeeo 160
Younger, E.d. oo 87, 160
Zuse, Hoooiooieeeceeeoeeeeeeeeeea 8

A0

[OPTIC FLOW COMPUTATION:

A Unlfied Perspective

X265 AND RELATED PROTOCOLS

by Uyless Black

by Ajit-Singh

This monograph provides & new estimation-thesretic frame-
work for optic flow computation and unifies and integrates the
existing approaches for this framework. It examines a new
framework that views the problem of recovering optic flow
from time-varying imagery as a parameter-estimation prob-
lem and applies statistical estimation theory technigues to
optic flow computatior. I also discusses its application for
recursive estimation of 3D scene geometiry from optic flow
using Kalman-filtering-based techniques,

The book addresses five major issues: unification: conservation
and neighborhood information, integration of the three ap-
proaches, clarification of the distinction between image flow
and optic flow, past research on optic low computation from a
new perspective, and incremental estimation of optic flow in
real-time applications.

256 poges. Jonuary 1992, 15BN 0-8166-2602-X.
Catalog #2602 $60.00 / $40.00 Member

This monograph presents a tutorial view of X.26, discusses
other protocols with which it operates, and provides a conve-
nient reference guide to its protocols. The text containg all
original material, including six appendices, over 100 illustra-
tions, and more than 50 tables.

X 25 and Related Protocols explains X.25 operations, the
advantages and disadvantages of its use, the concepts and
terms of packet networks, and the role other standards play in
the operation of X.25. It presents a considerable amount of
detailed information about X.25 and itsrole in various systems
such as LANg, PBXs, and ISDNs. The book covers a wide
variety of subjects such as switching and routing in networks,
the OS5I model, physical-layer protocols and interfaces, high-
level data-link control (HDLC), X.25 packet structures and
types, and internetworking with SNA, DECnet, X.75, LANsg,
and ISDN

304 pages. 1991, Hardbound. ISBN 0-8186-8976-5.
Catalog # 1976 $70.00 / 545,00 Mamber

DIGITAL IMAGE WARPING
by George Wolbarg

Digital image warping is a growing branch of the image
proceseing field dealing primarily with geometric
transformationtechniques. Traditionally used for geometric
correction in remote sensing and medical imaging, warping
hes recently enjoyed a new surge of interest stemming from
computer graphics usein imagesynthesis and special effects.

This book, containing all original material, clarifies the
various terminologies, motivations, and contributions of the
many disciplines involved in this technology. The material
is balanced between theory (proofs and formulas derived to
motivate algorithms and to establish a standard of
comparison) and practice (algerithms that can be
implemented). If includes 38 color photographs and conteins
informative sections on image reconstruction, real-time
texture mapping, separable algorithms, 2-pass transforms,
mesh warping, and special effects.

30 pages. 1990, Hardbound. ISBN 0-5186-8944-7,
Catalog # 1944 $50.00 / $45.00 Member

BRANCH STRATEGY TAXONOMY
AND PERFORMANCE MODELS
by Harvey G. Cragon

This book provides a taxonomy that classifies and describes
strategies in a consistent fashion, presents analytic models
that permit the evaluation of each strategy under varyving
work load and pipeline parameters, and deseribes a modeling
methodology that facilitates the evaluation of new branching
strategies. It interprets analytic models that give a designer
the capability of evaluating branching strategies while consid-
ering the implementation of parameters such as pipeline
length and the location of the branch-effective address ALU.,

The monograph investigates these six branching strategies
along with their subordinate strategies and performance
models: baseline strategy, pipeline freeze strategies, branch
prediction strategies, fetch multiple paths strategies, instrue-
tion sequence alteration strategies, and composite strategies

120 pages. February 1992. Harabound. 158N 0-81856-9111-5.
Catglog #2111 $45.00/ $30.00 Member

from IEEE COMPUTER SOCIETY PRESS

To order any of these titles or for information on other books,
call 1-800-CS-BOOKS or order by FAX at (714) 821-4641

(in California cail 714-821-8380)

IEEE Computer Sociely Press Titles

MONOGRAPHS

Analyzing Compuler Architecturss
Written by Jerome €. Huck and Micheel J. Flynn
{ISBN 0-8186-8857-2); 206 pages

Autonomous Mobile Robota:

Control, Planning, and Architecture — Volume 2
Edited by 5. 8. Iyengar and A. Elfes

(ISBN 0-8186-9116-8); 425 pages

Broadhand Switching:

Branch Strategy Taxonomy and Performanee Models Architectures, Protocols, Design, and Analysis

Written by Harvey G. Cragon
(ISBN 0-8186-8111-5}; 156 pages

Digital Image Warping
Written by George Wolberg
{ISBN 0-8186-5944.7); 340 pages

Implementing Configuration Management:
Hardware, Sofiware, and Filrmwars
Written by Fletcher 4. Buckley

{138N 0-7803-0435-T}; 256 prges

Information Systems and Decislon Processes
Writtan by Edward A, Stohrand Benn R. Konsynshi
{ISBN 0-8186-2802-2); 368 pages

Integrating Deslgn and Test -
CAE Tools for ATE Programming
Written by Kenneth P. Parker
{IRBN 0-8186-B788-8); 180 pages

Ogptie Flow Computation:

A Unified Porspeciive
Written by Ajit Singh

{ISBN 0-8186-2602-X); 256 pages

Phyeleal Level Interfaces and Protocsls
Written by Uyless Black
(15BN 0-8186-80824-2); 240 pages

Heal-Time Systems Deeign and Analysis
Writterrby Phillip A. Laplante
{ISBN 0.7803-0:162-0); 360 pages

Solfiwars Metries:

A Practitionar's Guide to

lmproved Product Devalopment

Written by Daniel J, Paulish and Karl-Heinrich Motler
(15BN 0-7803-0444-5); 272 puges

X.28 and Ralated Protocols
Wreitten by Uyless Black
(ISBN 0-8186-8578-5%; 304 pages

TUTORIALS
Advances in ISDN and Broadband IBDN

Edited by William Stattings
(ISBN 0-8186.-2757-2); 272 pages

Edited by C. Dhas, V. K. Konangi, and M. Sreetharan
{ISEN 0-8186-8926-9); 528 pages

Readingsin
Compuier-Generated Music
Edited by Denis Baggi

(ISBN 0-B186-2747.6% 232 pages

Compuier ArithmeticT
Edited by Earl B. Swartzlander, Jr.
(ISBN 6-8185-8031-5} 398 pages

Computer Arithmatie II
Edited by Earl £, Swartzlander, Jro.
(18BN 0-8186-8945-5); 412 pages

Computer Communications:
Architectures, Protocols, and Standards
{Third Edition)

Edited by Willlam Staliings

(15BN 6-8186-2712-3); 360 pages

Computer Graphics Hardwara:
Image Generation and Display

Edited by H. K. Reghbati and A. Y. C, Les
{ISBN 0-8185-0753-X); 384 pages

Computer Graphics: Image Synthesis

Edited by Kenneth Joy, Nelson Max, Charlea Grant,
and Lansing Hatfisld

{ISBN 0-8185.8854-8); J80 pages

Computer Vision: Principles
Edited by Rangachar Kasturl and Ramesh Jain
(ISEN 0-8186-8102-85 700 pages

Computer Vision: Advances and Applications
Edited by Bangachar Kasturi and Ramesh Jain
(15BN 6-8186-3103-4); 720 pages

{Curvent Hesearch in Declsion Support Technolagy
Edited by Rebert W, Blanning and David R King
(ISEN9-8188-2807-3) 258 pages

{Hgital Image Processing (Second Editlon}
Edited by Rama Chellapps
(ISBN 4-B188-2382-47 815 pagaes

Digital Private Branch Exchanges (PHXs)
Edited by Edwin Coover

Architecturs} Allsrnatives for Exploiting Parallelism {ISBN 0-B185-0828-3); 334 pusges

Edited by DavidJ. Lilja
{1SEN 0.8185-2642-9); 464 pages

Ariificinl Neural Networks —
Concepis and Contrsl Applications
Edited by V. Rao Vesnunl

{I3BN §-8186-5060-0); 520 pages

ArtHicinl Neural Networks —

Concepis and Theory

Edited by Pankaj Mehra and Banjamin Wah
(ISBN 0-81B6-8597.8); 680 pages

Autonomous Mobile Robots:

Percoption, Mapping snd Navigation — Velume 1
Edited by 8 8. Iyengar and A. Elfes

{ISBN 0-8185-9018-8); 425 pages

Domain Analysls and Software Sysiems Modeling
Edited by Ruben-Priete Diaz and Guillerme Arango
(ISBN §-8185-8096.X); 312 pages

Formal Verifieation of Hardware Design
Edited by Michael Yoeli
{ISBN 0-8186-9017-8); 340 pnges

Groupware: Software for Computer-Supportad
Cooperative Work

Editad by David Marca and Geoffrey Bock

(1SRN 0-8186-2637-2); 600 pages

Hard Real Time Systems
Edited by John A. Stankovie and Krithi Remamritham
{ISEN 0-81B5-0819-6); 624 pages

For further Information caill toli-free 1-800-CS-BOOKS or wrile:

IEVE Computer Socioty Press, 1066% Los Vaqueros Circle, PO Box 3014,

Los Alamites, California 80720-1254, USA

IEEE Computer Ssciety, 13, avenua de I'Aguilen,

B-1206 Brussels, BELGIUM

IEEE Computer Soclety, Coshima Building, 2-19-1 Minami-Aoyama,

Minato-ku, Tokyo 107, JAPAN

Knowledge-Based Systems:
Fundamentals and Tools

Edited by Oscar N. Garcia and Yi-Truu Chien
{ISEN 0-8186-1924-4); 512 pages

Local Network Technology (Third Edition)
Edited by William Stailings
(ISBN 0-B186-0825-0), 512 pages

Nearest Neighbar Pattern Classification Techniques
Edited by Belur V, Dasarathy

(13BN 0-8186-8630-7); 464 pages

.Object-Oriented Computing,
o Yolumel:iConeepts .
Edited by Gerald E. Petersen
{ISBN 0-8188-0821-8); 214 pages

Object-Oriented Computing,
Volume 2: Implementations
Edited by Gerald E. Petersen
(ESBN ¢-B186-G822-6); 324 pages

Rezl-Time Systems

Abstractions, Languages, and Design Methodologies
Edited by Krishna M. Kavi

(ISBN 0-81B6-3152-X}; 550 pages

Redueed Instruction Set Computers (RISC)
{(Becond Edition)

Edited by William Stallings

(ISBN 0-8186-8943-9); 448 pages

Software Nesign Technigues (Fourth Edition)
Edited by Peter Freeman end Anthony 1. Wasserman
(138N 0-8186-0514-8); 730 pages

Software Engineering Projoct Management
Edited by Richard H. Thayer
(15BN 0-6186-0751-3); 512 pages

Software Maintenance and Computers
Edited by David H. Longstrest
(ISBN 0-8186-8898-X); 304 pages

Software Management
{Fourth Edition)

Edited by Donald J. Reifer
(15BN 0-8188-3342-5); 656 pages

Software Reengineering
Fditad by Robert S, Arnold
{ISBN 0-B1B6-3272-0); 688 pages

Software Rouse «— Fmerging Technology
Edited by Will Tracz
(15BN 0-8186-0846-3); 400 pages

Sofiware Risk Management
Edited by Barry W. Boehm
(ISBN 0-8186-8308-4); 508 pages

Standards, Guidelines and Examples on System
and Software Requirements Engineering
£dited by Merlin Dorfman and Richard H. Thayer
{ISBN 0-B1B8-8922-6); 626 pages

System and Software Requirements Engineering
Edited by Richard H. Thayer and Merlin Dorfman
(13BN 0-8186-8321-8); 740 pages

Systems Network Architecture
Edited by Edwin R. Coover
(ISHN 0-8186-9181-X); 464 pages

Test Access Port and Boundary-Scan Architecture
Edited by Colin M. Maunder and Rodham E. Tulloss
(15BN 0-8186-8070-4); 400 pages

Visual Programming Environments: Paradipms and Systems
Edited by Ephraim Glinert
{ISBN 0-8186-8973-0); 880 pages

Vienal Programming Environments: Applications and Issues
Edited by Ephraim Glinert
(ISBN 0-B186-8874-9); 704 pages

(SBNO-

e et By stemai

Visualization in Seientiffc Computing
Edited by G. M. Nielson, B, Shriver, and L. Rosenblum
(138N 0-8186-8379-X); 304 pages

Volume Visualization
Edited by Arie Kaufman
(ISBN 0-8186-3020-8), 494 peges

REPRINT COLLECTIONS
Distributed Computing Syuems

Conceptasand Structures
Edited by AL Ananda and B, Srinivasan--

A Software Methodology fur ModemApphcatwns
Edited by Peter G, Reath
{ISBN C-8186-8904-8); 476 pages

Milesiones in Software Evolutien
Edited by Paul W. Oman end Ted G. Lewis
(ISBN 0-8186-8033-X}; 332 pages

Object-Oriented Databanes
Edited by Ez Nehoureii and Fred Petry
(13BN 0-8186-8529-3); 256 pages

VYalidating and Verifying Knowledge-Based Syatems
EBdited by Uma G. Gupta
(ISBN 0-8186-8395-1); 400 pages

ARTIFICIAL NEURAL NETWORKS TECHNOLOGY SERIES

Artificial Neural Networks —
Concept Loarning

Editad by Jeschim Diederich
(ISBN 0-8186-2015-33; 160 pages

Artificial Neural Networks
Electronie Implementation
Edited by Nelson Morgan

(ISBN 0-B1B6-2026-3); 144 pages

Artifieial Neural Networks —
Theoretical Concepts

Edited by V. Rac Vemuri

(ISBN 0-8186-0855-2); 160 pages

SOFTWARE TECHNOLOGY SERIES

Bridging Faults and INDQ Testing
Edited by Yashwant K. Melaiya and Rochit Rajsuman
(ISBN 0-B186-3215-13; 128 peges

Computar-Aided Software Engineering (CASE)
(2nd Edition)

Edited by Elliot Chike{sky

{ISBN 6.B186-3500-8); 184 pages

Fault-Tolerant Software Systems:
Technigues and Applications
Edited by Hoang Pham

{ISBN 0-8186-3210-0); 128 pages

Software Reliability Models:

Theoretical Development, Evaluation, and Applications
Edited by Yashwant K. Malaiya and Pradip K Srimani
(ISEN 0-8186-2110-B); 136 pages

MATHEMATICS TECHNOLOGY SERIES

ComputerAlgorithms
Edited by Jun-ichi Aoce
(ISBN 0-B186-2123-0); 154 pages

Distributed Mutual Exclusion Algorithms
Edited by Pradip K. Srimani and Bunil R. Das
{ISBN 0-8185-3380-8); 168 pages

Genetic Algorithms
Edited by Bill P. Bucklee and Frederick E, Potry
(ISBN 0-81867935-6); 120 pages

Multiple-Valued Logic in VLSI Design
Edited by Jon T. Butler
(ISBN 0-8186-2127-3}; 128 pages

IEEE Computer Society Press

Press Activitias Board

Vice Prasident: Ronald G. Hoelzeman, University of Pittsburgh
James H. Avlor, University of Virginia
Mario R, Barbace, Carnegie Mellon Univergily
Bill D. Carroll, University of Toxas

James Farrell 11T, VL3I Technology Inc,
Barry W. Johnson, University of Virginia
Buncan H. Lawrie, University of Dlinois

Murali Varanasi, University of South Flerida

Ben Wah, University of Tlinois
Marshall Yovite, Indiana University — Purdue University
Staflf Representative: True Seshorn, Publisher

Editorial Board

Editor-in-Chief: Jon T, Butler, US Naval Postgradusie Schosl
Assoc, Editor-in-Chief: Pradip K. Srimani, Colorade State University
Oscar N. Gareia, The George Washingion University
Joydeep Ghosh, University of Texas, Austin
Uma G, Gupta, University of Central Florida
AR Hurson, Pennsylvania State University
Ez Nahouraii, IBM
Fraderick E. Petry, Tulane University
Dniraj K. Pradhan, University of Massaschussetis
Charles Richter, MOC
David Rine, George Mason University
ARK Sastry, Rockwell Intarnations! Science Center
Ajit Singh, Sismens Corporate Research
Muarall B. Varanasi, University of South Floridn
Btafl Representative: Henry Avling, Editorial Director

Press Siaff

T. Michaal Elliott, Executive Diroclar
True Seaborn, Publisher

Henry Avling, Editerial Direclor
Mary E. Kovanaugh, Production Editer
Lisa O'Conner, Production BEditor
Hegina Spancer Bipnle, Production Bditor
Penny Siorms, Production Editer
Edna Biraub, Preduciion Editor
Robert Wernzr, Production Editor
Perdl Cling, Elsctronic Publishing Manager
Frieda Koester, Marketing/Sales Manager
Thomas Fink, Advertising/Promations Manager

Offices of the IEEE Computer Society
Headguarters Offive
1734 Massachusetis Avenue, NW.
Washington, DO 20036-1903

Phone: (2023 371-0101 — Fax: {(202) 728-9514

FPublications Office

P.O. Box 3014
10662 Los Vagqueros Circle
Los Alamitos, CA 90720-1264
Membership and General Information: (714} 821-8380
Publication Orders: (800) 272-8857 — Fax- {7 14y 8214010
Europsan Office
13, avenue de PAgquilen
B-1200 Brusaels, BELGIUM
Phone: 32.2.778-21-98 — Fax: 32.3-770-85-05
Asian Offfce
Ooshima Building
%18-1 Minami-Aoyama, Minats-ku

Tokyo 107, JAPAN

Phone: 81-3-408-3118 ~ Fax: B81.5-408-3553

IEEE Computer Society

IEEE Computer Society Press Publications

Meonsgraphs: A monograph is an authored book consisting of 100-
percent original material,

Tutorials: A tutorial is a eollection of original materials prepared
by the editors, and reprints of the best articles published in a subject
area. Tutarials must contain at least five percent oforiginalmaterinl
(although we recommend 15 0 20 pereent of original material).
Reprint collectlons: Areprintoollectioncontaing reprints {divided
inic sections) with a preface, table of contents, and section introduc-
tions discussing the reprints and why they were selacted. Collections
contain less than five percent of original material.

Technology series: Each technology series is a brief reprint
collection — approximately 126-136 pages and containing 12 to 13
papers, each paper focusing on a subset of a specific disciplineg, such
as networks, architecture, software, or robotics.

Submission of propesals: For guidelines on preparing S Press
books, write the Editorial Direcior, IEEE Computer Society Press,
PO Box 3014, 10662 Los Vanueros Circle, Los Alamitcs, CA
907201264, or telephone {714} £21-8380,

Furpose

The TEEE Computer Society advances the theory and practice of
computer seisnce and enginsering, promotes the exchange of tech-
niral information among 100,000 members worldwide, snd provides
& wide range of services to members and nonmembers,

Hembership -

All membars receive the soolaimed monthly magazine Computer,
dizeounts, and opporiunitisaio servefall activities are led byvolunieer
mumbers). Membershipisopentoall IEEE members, afMiliante society
membars, and sthers serisusly interested in the computer field,

Publications and Aclivities

Computer magazine: Ap authoritative, sasy-to-rend magazine
containing tutorials and in-depth articles on topics neross the com-
puter field, plus news, conference reparts, book reviews, calendars,
calls for papers, interviews, and new products.

Periodieals: The socisty publishes six magazines and fve re-
search transactions. For more details, refer to cur mambership
application or request information as noted above.

Canference procesdings, tulorial texts, and standards docu-
ments: The IEEE Computer Socisly Press publishes more than 100
titles every yenr.

Btandards working groups: Over 100 of these groups produce
IEEE standards used throughout the industrial world,

Technical committees: Over 30 TCs publish newslstters, pro-
vide interaction with peers in specialty aress, and directly influence
standards, conferences, and education.

Conferences/Education: The society holds about 100 confer-
ences ¢ach year and sponsers many educational activities, including
computing seience accredilation.

Chaplers: Regular sndstudent chapters worldwide provide the
opportunity to interact with colleagues, hear technical sxperts, and
serve the local prafessional community,

