Proceedings

Proceedings

TEEE Third Workshop on

November 14 - 15, 1994
Washington, D.C.

Sponsored by
IEEE Computer Society
Technical Council on Software Engineering

o |[EEE. Computer Society Press
Los Alamitos, California |

Washington . Brussels « Tokyo

IEEE Computer Sociely Press
16662 Los Vaqueros Circle
.0. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitied with eredit to the source. Librarics may
photocopy bevond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry o code at the boltom of the first poage, provided that the per-copy fee indicated in the code is paid

through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA (1923,

Other copying, reprint, or republication requests should be addressed to; TEEE Copyrighis Manager, [EEE

Service Center, 445 Hoes Lane, PO, Box 1331, Piscataway, NJ GBE55-1331,

The papers in this book comprise the procecdings of the meeting mentioned on the cover and itle poge. They
reflect the authors” opiniens and, in the sierests of timely dissemination, are published as presented ond
withowt change. Thelr inclusion in this peblication docs not necessarily constitute endorsement by the
edijors, the IEEE Computer Sociery Press, or the Institute of Elecvical and Elecironics Engineers, Inc,

IEEE Compuier Society Press Order Number 5647-02
Library of Congress Number 93-81245
EEE Catalog Number Y4THOGT67
ISBN O-R1B6-5645-X {paper}
ISBN (0-8186-53646-8 (microfiche)
ISBN 0-8186-5647-6 (case)

Additional copies muary be ordered from:

EEE Computer Senicly Pross TEEL Bervice Center IEEE Computer Sogiely
Cusiomer Service Center 445 Hoes Lane {3, Avenue de PAquilon
662 Los Vaguerns Circle P2 Box 133 B-1200 Brusscls

P Box 3014 Piscataway, NFIE33-1331 BELGIUM

Los Adomsitos, TA B072(- 1264 Teir +1-O08-981-1393 Tob +32-2.9740.2108
Tetr + 17148218380 Fax: +1-808-981-9667 Fax: +32.2-T70-8505

Fax: +1-714-82 14641
Fmntl enbooks@eompuler.crg

Editorial production by Regina Spencer Sipple
Cover design by Joseph Daigle, Schenk/Daigle Studios

HEEE Computor Sociery
Ooshima Building
I-i9- Mhinami-Aovama
Minpto-ku, Tokyo 107
Jaban

Tel +81-3-3408-3
Fax: +81-3-3408-3

118
353

Printed in the United States of America by Broun-Brumfield, Inc,

The institute of Electrical and Electronios Enginesrs, Inc.

Table of Contents

Message from the General Chail........ccooviiiicciecci ettt eee et sreas vii

Message from the Program Co-Chairs ..ot reen viii
. ‘VPC ’94 Commlttees“'.’.?."f‘.‘."‘.‘.'.‘.".“."."’.‘..‘..‘.'.'.f‘.‘.".".“f“'.’.'.'.'.'.'."."..'.'.'.'.'..'".‘f.'.'.'.'.1'..".“.".'.":'.'.'.."'.'..‘.'.".'.'.‘.‘.“.".“.-r.fr.-.-‘-.-.-‘s--..ix. . P,
|Keynote Address. . .~ L

Maintenance En\nronments 'I‘ooIs for Peeple or
People for Tools?

A, von Mayrhauser

Session A: Objects g B e o S S .
A Greedy Approach to Object Identlﬁcatwn in Imperatwe Code.ii i 4
B.L. Achee and D.L. Carver

Program Comprehension Through the Identification
Of ABSEract Data TyPes. ..ottt s bt et ae e 12

A. Cimitile, M. Tortorella, and M. Munro

A Tool for Understanding Object-Oriented Program
DIEPENABIICIEE L11tirver s cir s e rts ettt e e tb e ntone e s et et etsare e et s et e e et enereaneassansrranreaenrees 20

P.K. Linos and V. Courtois

I Session B: Architecture

Recovering the Architectural Dea;gn for Software
Comprehension ... S RO U OSSN UUUUIO T UOUUI VST 30
. Canfora, A. De Lucia,
G.A. Di Lucea, end A.R. Fasolino
A Documentation-Related Approach to
Object-Oriented Program Understanding et e eeeeeerieeeteerirareEratesraarereiananeatrrerenentasnn 39
L.H. Etzkorn and C.G. Davis
Layered Explanations of Software: A Methodology
for Program Comprehension. ...t ores s rraeaversesens s e e earessesns 46
V. Rajlich, J. Doran, and R.T.S. Gudla

[S-eSsian' C: Experience Reports.

Experiences Using Reverse Engineering Technigques
t0 Analyze Documentalion .ttt a et e st e ettt aesenas 54
G. Ewart and M, Tomic
Analyzing the Application of a Reverse Englneermg
~Process to-a Real SItuation o i L s i s PRI - - S
F. Abbattista, G.M.G. Fatone,
" F. Lonubile, and G. Visaggio

Session D: Non-Traditional Analysis Technigues -

Dynamic Code Cognition Behaviors for Large Scale Code
A, von Mayrhauser and A.M. Vans

Abstraction Mechanisms for Pictorial Slicing
. Jackson and E.J. Rollins

Understanding Code Containing Preprocessor Constructs
PE. Livadas and D.T. Small

..

Segsion E:i Parallelization - 0 -

Parallelizing Sequential Programs by
Algorithm-Level Transformations
S. Bhansali, J . R. Hagemeister,
C.S. Raghavendra, and H, Sivaraman

Towards Automated Code Parallelization
Through Program Comprehension
B. Ui Martino and . Iannello
Issues in Visualization for the Comprehension
of Parallel Programs
E. Kraemer and J.7T. Stasko

Session ¥ Database

Using Procedural Patterns in Abstracting Relational Schemata

Q. Signore, M. Loffredo,
M. Gregori, and M. Cima

Relational Views for Program Comprehension
T. Jones, W. Allison, and D). Carrington

Object Data Models to Support Source Code Queriss:
Implementing SCA within REFINE

8. Paul and A, Prokash

Session Gt Exploratory Trends and Tools

Determining the Usefulness of Color and Fontsin a

Programming Task.......o e

R. Tapp and R. Kgzman

SFAC, A Tool for Program Comprehension by Specialization. ..o,

5. Blazy and P. Facon
Theory and Practice of Middle-Oui Programming to

Suppoert Program Understanding. oo

K.H. Bennett and M.P. Ward

A0 Mmoottt e ey et o s

154

. 182

Message from the General Chair

Welcome to the Third Workshop on Program Comprehension!
~ This is the third workshop in a series that began in 1992 in Orlando, Florida. The
second workshop was held in 1993 in Capri, Italy, and the success of that conference led

..-to.the.planning.and. organization.of .this. third- workshop.in. Washington, D.C.,.in.1994. ...

These meetings have attracted leading researchers and practitioners in the the field of
program comprehension from around the world and we are pleased to recognize the
international appeal and focus of this particular workshop.

The field of program comprehension is often called by the synonym, “software
understanding.” It deals with the often neglected human side of software engineering, and
it is there that the organizers believe many software engineering problems are rooted —
and where they have to be resolved. Program comprehension has a direct impact on a
programmer’s productivity and capability and therefore, presents a significant and
necessary area of research. Kristen Nygaard put it in a very succinct way: “To program is
to understand!”

I would like to thank all of the volunteers who have made the Third Workshop on
Program Comprehension a reality. 1 would also like to thank the professional staff
members for their concerted efforts.

[wish all of the participants a pleasant stay in the Washington, D.C. area and |
hope that they glean many new and stimulating ideas from the 1994 Workshop on
Program Comprehension. -

Vaclav Rajlich
. Wayne State Universtty

Message from the Program Co-Chairs

Welcome to the Third Workshop on Program Comprehension. As the role of
program comprehension has come to be recognized as a substantial part of software
engineering, so too has this workshop evolved. Not only is it fully refereed, but there has
also been a conscious attempt to broaden the scope of the workshop -~ both in terms of
the topics addressed and the participants involved.

The workshop includes a keynote address, seven paper sessions, and an open
discussion of the future of program comprehension. The sessions range from experience
reports to exploratory trends, from architecture to databases, from object orientation to
paralielization, and from the role of people in the current process to automated analysis.

This workshop would not be possible without the help of many people. We wish
to thank the authors for their efforts and timeliness, the program committee and the other
reviewers, and the IEEE Computer Society — particularly Regina Spencer Sipple — for
her assistance in putting the proceedings together. Last but not least, we wish to thank
Vaclav, without whom there would be no Workshop on Program Comprehension at all.

Once again, welcome to WPC'94. We hope you gain new insights, ideas, and
contacts from this truly international workshop.

Spencer Rugaber Aniello Cimitile
Georgia Institute of Technology University of Naples

viii

WPC ’94 Committees

General Chair
Vaclav Rajlich
Wayne State University, USA

- Program CoiGhairs ™

Aniello Cimitile s
University of Naples, Italy

Spencer Rugaber
Georgia Institute of Technology, USA

Program Committee

Aniello Cimitile, Universiry of Naples, Italy (Co-Chair)
Spencer Rugaber, Georgia Institure of Technology, USA (Co-Chair)
Paolo Benedusi, CRIAIL Italy
Ted Biggerstalf, Microsoft Research, USA
William Chu, Chia University of Taiwan, ROC
Ugo De Carlini, University of Naples, Iraly
Prem Devanbu, AT&T Bell Laboratories, USA
Philippe Facon, IIE-CNAM, France
John Foster, British Telecom, UK
Lewis Johnson, Information Sciences Institute, USA
Paul Layzell, University of Bari, Italy
Panos E. Livadas, University of Florida, USA
Euore Merlo, Ecole Polytechnigue of Montréal, Canada
Glenn Racine, Arimy Research Laboratrory, USA
Steve Reiss, Brown University, USA
Harry Sneed. SES, Germany
Larry Van Sickle, Great Hill Teclmology Group, USA
Giuseppe Visaggio, University of Bari, Italy
Anneliese von Mayrhauser, Colorado State University, USA
Norman Wilde, University of West Florida, USA
Linda Wills, Georgia Institute of Technology, USA
Horst Zuse, Technische Universitar Berlin, Germnany

ix

Anneliesa von Mayrhauser

A Greedy Approach to Object Identification in Imperative Code

B.1.. Achee & Doris L. Carver

Louisiana State University

Absiract

The benzgfits of stch recent innpvations as
object-priented programming are nof realized in most
ystems currently in use becquse they are, on
average, over 10 years old. Additionally, they suffer
from extensive maintznance, This paper addresses
these concerns in the context of reverss engineering.
It discusses the development of a method to identify
objects in imperative code, specifically
FORTRAN-77. An algorithm that uses a greedy
approach 1o object extraction is presented. The
imperative code is analyzed at the subroutine level
and, wsing the concepts of graph theory, a set of
objects is penerated.

1. Imtroduction

buch of the scientific and commercial software
in use today i an average of 10 w0 15 years old. Most
of these systems have undergone exiensive
mainienance and now suffer from poor structure and
documentation. Morgover, the age of these systems
prevents them from taking advantage of the benefits
of such recent software innovations as object-oriented
programning. [8]

The benefis of object-orienied programuming
include code reuse, modularity, deferred commiument,
and a model that closely resembles the read world, In
the object-oriculed paradigm, the object is the
primitive clement. The object ¢an be viewed as an
abstract data type, encapsulating a set of dam (e
atribuies) and a corresponding set of permissible
actions on the data (1.e. methodsy, Each object 15 an
autonomous entity and ineracis with other objects
during the execution of the sysiem. [9]
Reverse-engineering involves analyzing o system (o
"ideatify the system's componeats and thelr
interreiationships” and to "create a representaton of
the system in anotber form or at a higher level of

+-8186-5647-6/04 304,00 © 1994 IEEE

absuaction.” {31 Therefore, by using iechniques of
reverse-engineering o achieve an object-oriented
design, the benefits of curment software technologies
can be readized without discording a working system.

As the connotations of reverse-engmeering have
changed from negative to necessary, there bas been a
concentration of research in the area. Mo longer i
reverse-engineering clouded by the idea that it is an
admission of failure because of the "get it right the
first time” mentality, Today it is realized and widely
accepled that a software system is dynamic. "It is not
possible to predict what you will want the system o
do five, of even two, years from now.” [11]

The widespread appeal of object-oriented
progoumming and e realization of the necessity of
reverse-cngineering as a soflware malnienance
activity have motivated rescarch on re-engineering
procedural code to object-oriented code, The concept
of the object module as a means of restructuring
FORTRAN code into an objcct-oriented style is
introdueed in [12]. While code structured with object
modules i not truly object-orionted, it marks the
beginning of the research along that path. A method
for identifvine candidate objecis based on routines
which use global variables and the types of formal
parameters and retura values 13 discussed in 3] The
problem of object identification is approached by first
developing a formal specification of the code and then
proceeding io idenufy objects from e formal
specification in {4]. Object identification based on
hints from the user and information in common
blocks is discussed in {81 "A method for becoming
familiar with a procedural system so that it can be
converted into the object paradigm” is discussed in
(101 but the issuos of object dentification e not
addressed. The results of die RE' project, which
includes eriterion for identifying abstract daia types io
existing sofiware systems are discussed in [1] and {2].
The development of the Ghinsu tool, which performs
dependence analysis on a subsct of ANST C or Pascal
programs 15 discussed in [6].

This paper presents an approach to extract
objects from FORTRAN-77 code. An algorithm for
the deflinition of the objects is given. The input to the
algorithm is structured FORTRAN-77 code and the
output is a set of candidate objects. Throughout the
paper, a simple example is used o demonsirate the
algorithm.

2. Object Identification Algorithm

This method to identfy objects analyses the
program at the subprogram level and uses a
data-driven, boltom-up approach o construct objects.
An object, O, is defined as a two-tuple, (D,M) where
D is the set of data items and M is the set of methods
that act on those data items.

In the process of developing the algorithm, a
choice was made between using a top-down approach
or boitom-up approach (o object construcdon, A
top-down approach would begin with all daa
elements being contained in a single object and
proceed to divide the object into smailer objecis.
Although this approach has some merit, the margin of
error would be on the side of objecs that are too
small. The bottom-up approach constructs objects by
determining the cohesive strength between two dala
items. We chose the bottom-up approach.

The algorithm, given in Figure 2.2, analyses
a program o extract objects in a boltom-up manner.
The funcionality of a program is viewed at three
fevels. At the top-level, the functionality is that of the
entire program. This view s, indeed, too coarse
grained to aid directy in object extraction, however, it
may provide some insight into the type of objects that
may appear. The second level concentrates on the
funcionality of the individual subroutines, The third,
and most fine-grained view, considers (e
functionality of each line of code. The view of a
subroutine as the unit of functionality is the approach
of the algorithin. By considering each subroutine as a
unit of functionality, the actual paramelers are then
necessary o perform the function of the given
subroutine. DBased on these guidelines, the algorithm

seeks to obiain the smallest set of parameters needed

strenglth of a pair of parameters is measured by
determining the frequency in which they are both
necessary to perform vartous functions {where the unit
of functionality is the subrouting). Measuring the
cohesion of a pair of parameters for a given function
results in the consideration of three cases: (i) both
paramelers are necessary , (ii) only one parameter is

necessary, and (iil) neither parameler is necessary.
The value of cohesion of a given pair of parameters is
affected by ecach case as follows: case (i) increases the
value, case (ii) decreases the value, and case (iii)
leaves the value unchanged. The greedy approach
taken by the algorithm resulis in a cosling function
that, for a given pair of parameters, weights the

necessity of both parameters of the pair as a stronger

- condition than the necessity of only one parameter of
the pair. Thus, the cost function for a pair of .

parameters 1 and j with respect o subroutine £ is as
follows:
¢it, j) = clij) T neither i norj is necessary

for the execution of f

= c{ij)+.2 1iff both i and | are necessary
for the execution of f
= ¢(ijy-.1 iff ¢ither i orj (not both} is
necessary for the execution of f

A'bouom»up approach is used (o construct a graph
that maintains the frequency of their common
occurrence. This graph is represented as a weighted
adjacency matrix M, where M[i,i} is assigned a real
number based on the result of a costing function,
c(ij). Thus, data that appear functionally related only
a small portion of the ime are given a lower weight
than those that appear functionally related a majority
of the time. By setting a threshold on the weight
necessary to be considered relevani, the set of data
contained in an object is determined. One benefit of
this representation i that it facilitates the
consideration of various sets of objects based upon
varyving the threshold,

Fm M be the set of all sets of methiods where \
M=M, UM, U UM,
Let A be the set of all sets atribuies, where
D=DwD, U UD,
Let O be the set of all objects, where
O0=0,U0,U. U0,
and O; = (B, M) foreachj=1.1

If method m, changes the value of data attribute d,
anddy € Dothen M_ =M Um,

k Method Priority Rule

Objects are determined by first grouping the data
togetiber to form atirbute sets and then affixing
methods 1o the sets of attributes. Thus, once the data
elements have been partitioned to represent the
atlribute sets, the next siep is to delermine the
corresponding methods. The process of determining

the methods involves two steps: defining the methods
and assigning the methods to the appropriate attribule
set. When defining the metbods, it is important (o
realize that the attribute sets are comprised of the
actual parameters of the original FORTRAN source
code. Thus, the procedure for method definition
evaluates the subroutine code exclusively. The
methods are auached to attribute sets using the
following heuristic to define priority: priority of
attachment is to that set of altdbutes whose state is
changed by the method in consideration (Figure 2.1).

The algorithm for identifying the objects is given
in Figure 2.2. A simple program, given in Figure 2.3,
i5 used throughout the paper to demonstrate the
application of the algorithm. The program,
STATISTICS, inputs two arrays of experimental data
and two inlegers representing the number of data
elements in each array. The function STD is used i
compule the standard deviation of the data set.
Finally the resuits are output using the subroutine
PRINT. Following is the trace of the example
program on the algorithm given in Figure 2.2:

P is the program STATISTICS. It has n = 4
subroutine calls and m = & distinct actual parameters
and function resuliants, Following step (i) we create
the following sets of actual parameters and function
resultants based on the subroutine calls in ¥

CALL,= {m,expa, n, expb]

/¥ using CALL INPUT(m, expa, n, expb) %/

CALL, = { expa, m, stda]}

/* using stda = STD{expa, m) */

CALL, = {cxpb, n, sudb}

/* using stdb = STD{expb, n) */

CALL, = {expa, m, stda, expb, n, stdb}

#* psing CALL PRINT(expa. m, sida, exph, n,

sidb} */

Proceeding to step (i) we inilialize graph, G, by
forming the sets V and B as follows:

Vo= { m, gxpa, n, cxph, stda, sdb}

E={}

Realizing that there is an arbitrary ordering imposed
on the elements of V, we refer to e elements of V as
v, = 1, v, = €Xpa, vy = 1, v, = exph, vy = stda, and vy
= sty

In step(iii) the weighted adfacency matrix is
inigialized. Since the algorithm is using &
constructive approach 1o creating the graph, the
matrix 5 initially the zerp matrix representing a
graph with no edges.

The matrix AP is a boclean matrix that is used o
represent the appearance of actual parameters and
function resuliants in a subroutine Invocation
stauement. Thus, AP[i,j] is set to 1 iff v; is used in

subroutine invocation statement 1. This is determined
by considering CALL,. If v, (as designated by V) is an
element of CALL, then AP[i,j] is set to 1, otherwise it
is set o 0. The matrix AP corresponding 1o program
P is as follows:

AP:

i 2 3 4 5 6
i wo expa i expb stda stdb

1 1 3 I 1 O

2 i 1 0 0 1 0
3 G O 1 I 0 i
4 l i I 1 i 1

Once the matrices M and AP have been
imitialized the analysis begins. Following is a partial
trace of the analysis using the first and last values of 1.

i=1:

k i 2 3 4 5 6

] m expa n expb stda sidb

i] 02 02 02 0.1 -0
m

2 0 0 02 0.2 01 -0.1
expi

3 ¥ e 0 0.2 0.1 <01
i

4 0 0 0 0 0.1 -4l
exph

5 G O 4] 0 0 0
stda

& { 0 0 0 G tt
stedb
i=d;
k } 2 3 4 3 6

j m expa n expb stda sidb

i 0 e 02 02 0.3 3.1
m

2 {0 0 0.2 02 (3.3 (1.1
expa

3 g it G 0.6 0.1 03
il

4 0 O ¥ 0 -0.1 03
expb

3 { { 0 0 0 0
stda

6 0 0 0 O 0 d
stdb

Let P be astructured FORTRAN program
with n subroutine calls
and m (distinct} actual parameters and function resultants.

(i) Fori=1tondo
e CM_.L, = et of actual-paramezers of subroutine call T
if subroutine i is a function

weethen CALL = CALL union with the function-resultant of subrowtine i

od
{11) Let G=(V,E)beagraph
YV = the arbitrarily ordered set of actual parameters and function resaltants,
and denote the elements of Vas v, vy, ., v, Hnote (Vism */

m

E={} /* wnitally E is empty */
(i11) M[1.m, l.m} ARRAY of REAL; /* & weighted adjcency matrix %/
AP{l..n, I.m] ARRAY of BOOLEAN; 1* 1 sets of actual parameters */

/* Caonstruct the graph, represented as an weighted adjcency matrix */
/* Initially GG consists of only a set of vertices with no edges */
Fort=ltwomdo
Forj=1tomdo
Mli,j] = 0
od -
od
/* Initialize the sets of actual parameters; AP{ij] = 1 iff v, is an element of CALL, ¥/
Fori=ltondo
Forj=1tomdo
v is an element of CALL,
then AP{1j] =1
else AP{1,)] =0
od
od
/* Perform the analysis on the sets AP ¥/
tori=1iondoe
Forj=1ltomdo
Fork=i+l tom do
iF AP[L,)] = 1 and AP[ik] =1
then M{jk] = MIjk] + .2
clse iFAP[j] =0and AP[LKI =0 /* inconciusive #/
then skip
else Mijk]=M[k]- .1 {* only one is O ¥/
od
od
od

{(iv) The output is r < n connected graphs. The vertices of cach connected graph

represents the attributes for a distinet candidate object.

Figure 2.2
Greedy Algorithm for Object Identification

Program STATISTICS

INTEGER m,n

REAL expa(14), expb(14), stda, stdb

CALL INPUT(m, expa, n, exph)

stda = STD{expa, m)

stdb = STD{exph, n)

CALL PRINT(expa, m, stda, expb, n, stdb)
END

SUBROUTINE INPUT(m, expa, n, exph)
INTEGER m, &
REAL expa(14), expb(14)
READ (5, 10, end = 153) m, (expaii), 1= 1, 14)

15 READ (5, 10, end = 30) n, (expb(j), j = 1, 14)
10 FORMAT /* excluded #/
30 END
FUNCTION STD(expx, x)

INTEGER x

REAL mean, expx(14), ind{14), 1ot

tot = 0.0

sum = 0.0

DOsG i=1,x
ot = tot + expx{i)
&0 CONTINUE
mean = ot fx
DOT0 §=1,x
ind(j} = mean - expl(j}
sum = sum + ind(jy #* 2

70 CONTINUE
STD = SORTsumfx- 1%
END

SUBROUTINE PRINT (cxpa, m, stda, cxph, a, stdh)
REAL stda, sudb, expa(id), exph{ld)
WRITE(S,80) " Experiment A" Measurements', ({expali), i = 1, m)
a0 FORMAT /* excluded */
WIRITE, 90 Standard Deviation’, stda
a0 FORMAT/* excluded #/
WEITES, 100) " Experment B) 'Meagurements|, ((expayy, i = 1, o)
140 FORMAT /* excluded */
WRITE, 90) Sundard Deviation', stdb
RETURN . . A
END

Figure 2.3

\\ Sample Program

At this peint consideration must be given (o the
appropriate threshold value. If the threshold is set too
low, the data sets of the candidate objects will be too
big; however, if it is set too high, the data sets will be
too smail. Consider the following possible values for
the threshold: 0, 0.2, and 0.3 (Figure 2.4).

(I;H'ES!IOH Prata Sets
0 {m, cxpa, n,expb, stda, s1db}
0.2 {m, expa, stda}
{1, expb, stdb}
(3.3 {m, cxpa} {n, exph}
[stda} {sidb}
Figure 2.4

Data Sets based on Threshold Values
- /

As expected, the value of the threshold is
inversely proportional to the size of the data sets. The
chart above can be divided into three categories, based
on the follewing {wo important characteristics of the
data sets: (i) all data sets below a given threshold
consist of a single data set containing all of the
parameters, and (u) all dala sels above a glven
threshold contain at least one singleton, e, a data set
ol cardinality one. In Figure 2.4, all data sets below
the threshold of 0.2 contain all parameters, and all
data scis above 0.2 coniain 2t least one singleton.
Thus, the threshold value classes are as follows: class
ong s the see of threshold values { 0} class two is die
sep of threshold values { 0.2 }; and class three is the
set of tireshold values { 0.3 1. Onee such a division
is obiained, the threshold value 0.2 is chosen for
determining a desired data set.

The choice of the threshold value as 0.2 gives
wo objects. Object one has IV = {m, expa, stda} and
object two has D= {n, cxpb, stdh}.

3. Method Definition and Assignment

After D is defined for each object, the next step is
to define the methods, M, for each object. The
methods for these high level objects consist of state
changes to the data sets of the objects. The methods
are determined using both the invocation statements
and the bodies of the subroutines. The invocation
statements are used to provide the proper mapping of
formal parameters to actual parameters while the

following __types: . . . incrementng,

bodies of the subroutines are considered line-by-line
to define the actzal methods.

Rudimentary methods are identifled using ooly
the assignment and VO statements of the subroutines.
During this line-by-line analysis of the subroutine, an
assignment statement is classified as one of the

computing or re-defining. An incrementing

- assignment-statement-dakes the-form X = X+ &, where.

¢ is some constant and X is any variable. Such an
assigament staternent resulis in the method
Increment X (X3 Similarly, a decrementing
assignment statement takes the form X=X - ¢, and
results in the method Decrement X(X). When X
appears only on the left band side, as in X = EXPR,
where EXPR 15 any valid expression but not a
function invocation, the resuliing method i3
Compute_X(var_list) where var list is a Jist of all
variables in EXPR. Finally, in all other cases where
X appears on both the feft hand side and nght band
stde of the assignment statement, the resultng method
15 Redefine_X{var_list) where var_list is a list of ali
variables on the right hand side of the assignment
statement {including X}. The I/O statements appear
as methods virtually as is. A Read statement resulis
in the method Read(un) var_list, where u is the unit
number and var list is the st of input variables
appearing in the statement. Similarly, a Write or
Print statement results in the method Write(w)
var_list. The unit number is retained to provide the
maxunum amount of information about the original
code. A ling-by-line review of the subroutines
generales a set of methods from each subroutine.
These methods are referred to as "formal” methods
because they are generated using the formal
parameters. Once each subroutine has produced a set
of "formal” methods, the invocation sttements are
used 1o provide the proper mapping of formal
parameters to actual parameters resulting in "actual”
methods. Every invocation statement 15 used (o
generate a set of "actual” methods, Tt is these "actual”
methods that are assigned 1o the objects. The "actoal”
methods for an invocation statement are genecrated by
substituting each formal parameter in the "formal”
methods with the appropriate "actual” parameter (as
determined by the invocation statement).

Using the example program, Figure 3.1 shows
each subroutine and the comesponding “formal”
methods. The svbroutine Input generales two
“formal” methods; Std generates five "formal”
methods and Print generates four "formal” methods.
Figure 3.2 shows each invocation statement and the

decrementing,

corresponding “actual” methods. There are a total of
sixteen "actoal” methods identified.

o

broutine

"Formal” Methods
Input{m, expa, n, expb) Read(3) m, expa
Read(5) n, expb
Stdexpx, ¥) Redefine_tot (lot, expx)
Compute_Ind(mean, expx)
Redefine_sum{sum, ind)
Compute, std(sum, x)

Print{expa, m, stda, £xpb, n, stdb) Wriie{S) expa
Write{6) stda
Wriie(6) exph
Write(6) stdb

Figure 3.1
"Formal' Methods Generated from Subroutings

N /

@()cation Statement "Actaal” I\-Ietho-b

Call Input(m,expa,n,exph Read{5} m, expa

Read(5} n, expb
Stda = Std{expa, 1} Redefine_tot (o, expa)
Compute_mean{iol, n)
Compute_Ind(mean, expa)
Redefine sumf{sum, ind)
Compute_std{sum, n)
Stdb = Std{exph, m) Redefing_{ot {(tot, expb)
Compute,_mean{iot, m}
Compute_ind{mean, exph)
Redefine_sum{sum, ind)
Compute,_sid{sum, m}

Call Print{expa, m, stda, exphb, n, stdb)
Write(6) expa
Wriie(6) stda
Wreite{6) expb
Write(6) stdb

Compute_mean{tot, xj |

Figure 3.2
"Actual” Methods Generated from {nvocatiany

Once the "actual” methods are idendfied, the
final step is attaching the methods to the data sets
form objects. Each method is attached to a data set

13

where the pricrity of attachment is given (o that object
whose state is changed by the method 10 consideration
(Figure 2.1). At this stage, human intervention is
necessary o attach a meaningful name to cach object.
The objects ideatified using the example are
given in Figure 3.3, As expected, the two objects
identified for the example are very similar. They have
data sets of equal cardinality and type signature, as
well as method sets of equal cardinality. Moreover,
" the methods are virtually identical, varying only in the
variable lists. Such similarities are expected and are
necessary for addressing the issue of class abstraction
which will be considered 1o later work,

/&UECT i

~

D = {m, expa, stda}

M=
Read(5) m, expa
Redefine totftol, expa)
Compute_mean{tot, m}
Compute Ind{mean, expa)
Compute_sida(sum, m)
Write(0) expa
Write(6) stda
Redefing_sum{swmn, ind)

}

D= {n, expb, stdb}
M = |

OBJECT Z:

Read(5) n, expb
Redefine_toi {iot, expb)
Compute_mean{tot, n)
Compute_Ind{mean, expb)
Compute_stdb(sum, n}
Write{t) exph

Write{s) stdb
Redefine_sumfsum, ind}

I

Figure 3.3

Candidate Objects

.

4. Conclusions

/

The algorithm described in this paper evaluates
the subroutines of a FORTRAN-77 program to
determine a set of objects. The relationships among
the actual parameters are evaluated o construct the
attribute sets of the objects. By using the invocation
statements of the program, a measure of cohesion is
recorded in a welghted adjacency matrix. Using this

measure of cohesion, a threshold value is determined
and the data is partitioned into disjoint sets each
corresponding t0 an attribute of a disunct object.
Methods are then generated by considering,
line-bry-line, the subroutine code. Finally, the
methods are attacked to data sets to form objects with
an attachment priority based on state change of an

obiect W e continuing 10 mipand ts ot
. Adentification process along with the method

identification process.
5. References

{1} Canfora, G, Cimitle, A., Munro, M., &
Tortorella, M. "Experiments in Identifying
Reusable Abstract Data Types in Program Code"
Prec. [EEE Second Workshop on Program
Comprehension, July, 1993, pp. 36 - 435

(2] Canfora, G., Cimitile, A. & Munro, M. "A
Reverse Engineering Method for Identifying
Reusable Abstract Data Types” Proceedings of
the Working Conference on Reverse Engineering,
May 1993, pp.73 - 82

[3] Chikofsky, EI & Cross, JH “Reverse
Engineering and Design Recovery:
A Taxonemy" In [EEE Software,
Jan 1990, pp 13 -17.

4] Gannod, G.C. & Cheng, BILC."A
Two-Fhase Approach 1o Reverse
Engineering Using Formal Methods”
In Proc Formal Metheds in
Programming and their Applications
Conference, June 1993, pp. 335 - 348,

[5] Liu, 8.5, & Wilde, N. "Identifying
Objects in a Conventional Procedural
Language: An Example of Data Design
Recovery” In Proc, Conference of
Sofiware Maintenance, 1990,
pp 266 -271.

11

(11T Waters, R.C, & Chikofsky, I,

{6] Livadas, P.E., Roy, P.K. "Program Dependence

Analysis” Proc. [EEE Cooference on Software
Maintenance, Orlande, November, 1993,
pp. 356 - 265.

(7] Ong, CL. & Tsai, W.T. "Class and
object extraction from imperative code”

~ JOOP Mar/Apr 93, pp 58 - 68.

..{8] Osborne, WM & Chikofsky, EL."Fitting ...

Pieces to the Maintenance
Puzzle" IEEE Software, Jan 1990,
pp. 11 - 12,

{91 Pokkunuri, B. P. "Object Oriented

Programming” In SIGPL.AN Notices,
Vol 24, No 11, Nov, 1989, pp.96-101.

[10] Sward, R.E. & Steigerwald, R A,

"lssues in Re-Engineering from
Procedural to Object-Orientzd Code”
In Proc 4th Systems Reengineering
Technology Workshep, 1994,

pp 327 - 333,

"Reverse
Engineering: Progress Along

Many Dimensions™ In CACM Vol 37,
No 5, May 1994, pp 22 - 24,

[12]Zimmer, JA. "Restructuring for Style”

In Software - Practice and Experience,
Vol 20(4), Apr 1990, pp 365 - 389.

This work is supporied in part by the National
Science Foundation Grant No. COR-9307917.

Program Comprehension Through the Identification of Abstract
Data Types

A. Cimitile, M. Tortorella
DIS
Dep. of “Informatica e Sistemistica”
University of Naples
Naples 80125, Italy

Abstract

This paper presents the resulta of experiments car-
ried out on identifying Abstract Data Types in erisiing
code by an improved algorithm described in previous
work. It presents o brief description of the improved
algorithm and then deseribes the results of the experi-
ments. It addresses issues in program comprehension
from the perspective of software reuse.

Introduction

The comprehension of existing software systems
plays a major role in many software enpgineering
projects, encompassing such activities as testing and
debugging, validation, migration, maintenance and
enhancement, re-enginecsing, and reuse. Identifying
the assets in an existing system reguires technignes
to decouple the components from the external envi-
ronment. By doing this and splitting a program into
simpler more cohesive modules the system becomes
ensier to comprehend and mainfain.

There are a number of approaches fo program com-
preliension, one of which is a systematic approach
where the maintainer examines the whoele program
and works eut the inferactions hetween various mod-
ules that constifute the propgram. This task is made
more diffienlt i the code is not modularized or has
heen modularized is an ad-hoc manner leading to high
coupling between, and low cohesion of, the modules,
Without these attributes of low coupling and high co-
hesion the modules, and thus the program, will be
more difficult to understand and therefore more diffi-
cult to maintain.

The approach adopted here in this paper is to apply
a method of identifying Abstract Data Types (ADTs),

these heig the basis of new, retisable, modules of the

program. The premise of this work is based on the as-

sumphion that the identified ATTs will divide the code

into modnles that will have the necessary atiributes of
low coupling and high cohesion. The drawback of the
approach s that it 13 not always possible to identify
ADTs in the code hecause for example the original de-
sign of the system preciuded the use of ADTs, or be-
cause the program has heen so heavily modified that
it is impossibie to disentangle any coherent structure
from it.

0-8186-5647-6/94 $04.00 © 1904 [EEE

12

M. Munro
CSM
Centre {or Software Maintenance
University of Durham
Durham DH1 3LE, UK

The Identification Process

Some criteria for identifying ADTs in existing code
has already been defined in {1, 2, 3, 4]. The ap-
proach hy Canfora ef, ol. has been applied in a
series of experiments [3], where the method is hased
on the relationship existing hetween the user-defined
data types and the procedure-like components (proce-
dures or functions) that use them as formal parame-
ters and for as a return type of a function.

The methad can be expressed simply by considering
the set 8TYP of couples (c,t} such that ¢ represents
a procedure-like component and ¢ represents a user-
defined data type used to define a formal parameter
and/or a return type and such that ¢ does not use a
super-type of 1. Given this set the following relations
can he defined:

ABTY P = (trans(STY P)STY Py
CCTY P = {trans(STY PI\STY Pi*trans(STY P)

where trans{R) and R* are the transpose and re-
flexive transitive closare of the relation R.

The relation ABTYP defines the supporting strue-
tnre of the ADT that is the user defined data types
that contribnte to the make-np of the candidate mod-
ule. The relatinn COTYP defines the operators on the
candidate ADT, that is the procedure-like componenis
that are included in the candidate module. Software
engineering knowledge and henristics are necessary io
climinate coincidental and spuricus connections possi-
hly existing among the components [G].

A new, more precise method, has been proposed hy
Canfora et. al. [9], that extends the work described
ahove. In this extended method the call graph to-
pether with the deminance tree is used fo give a more
precise set of modules and ADT. Before describing the
extended method, some basic definitions are given.

The call directed graph (CDG} of a program can
he described by the triple (s, PP, E). in which s is the
main program, PP is the set of procedure-like compo-
nents and B is defined hy the cail relation on {s}UPP
x PP. I recursion exists in the program, CDG is
a cyclic graph and. then, can contain strongly con-
nected subgraphs. By collapsing each subgraph into
one nodethe call directed acyclic graph (CDAG)
can be generated {11]. CDAG is defined as the triple
(s, PP'. E"}, where each element in PP’ is a compo-

nent of PP or a collapsed subgraph of PP, and E'
is the call relation defined on {s} U PP' x PP'. In
a CDAG the dominance relations are defined: a node
px dominates a node py if and only if every path from
the initial node of the graph to py span px; a node
px directly dominates a node py if and only if all the
nodes that dominate py dominate px; finally, a node

- -px.strongly direct dominates anode py if and-only if px--

directly dominates py and it is the only node that calls

..p¥..The direct dominance tree (DDT).is defined as...

the triple (s, PP', ED}, in which ED describes the di-
rect dominance relations on {s} U PP' x PP'. The
strong direct dominance tree (SDDT) is ohtained
from the DDT by marking all the edges that connect
nodes having the strongly direct deminance relation.
A method using the call-graph generated from a sys-
tem and its transformation into a dominance tree has
heen proposed by Cimitile and Visaggio [7, 8].

The need to use the dominance relations to improve
the quality of the ADTs identified with the method
illustrated ahove arises from the ohservation that, in
each module, the set of procedure-like components he-
longing to it is not complete. In fact, the method for
looking for ADTs is exclusively based on the reality
that some procedure-like components use some user
defined data types as formal parameters and/or as a
return type of a function. It does net take into ac-
count that there are some procedure-like components,
selected to constitute the set of operations of an ADT.
that call other procedure-like components that, not
referencing to any interesting user-defined data type,
have not been selected. Moreover, the set of ADTs
identified does not reveal any relation of USE hetween
the various ADTs. In fact, it can happen that the com-
ponents of an ADT call the components belonging to
other ADTs, establishing an USE relation. The direct
and strongly direct dominance relations offer an useful
instrument for the compiction of the ADTs and for
the re-engineering them.

The extended method consists of an algorithm of
seven steps and a set of rules and is described in de-
tail hy Canfora e, el [9]. The aim of the new al-
gorithm is to identify all and only the procedure-like
components invelved in the implementation of some
of the ADTs. It is an iterative process that discards,
in each iteration, the procednre-like components that
will not be involved in the implementation of some of
the operations of the ADTs. The identification of the
components to eliminate comes from the following the
observation that a procedure-like component strongly
direct dominated from the MAIN program is called
just from the latter, and it will not he called from
other components helonging to some other module.
The iterative operations of elimination in the CDGA
of these components and re-definition of the SDDT
gives the conclusive set of interesting procedurc-like
components. When the final set of interesting com-
ponents is obtained, the set of rules establishes the
USE relations that can be defined hoth hetween com-
ponents and between modules. The main instrument.
on which the rules are based, is the final SDD'T com-
posed of only the interesting components identified
above and opportunely equipped with additional in-

13

formations about the relations of call for the compo-
nents that, not heing strongly direct dominated, are
called from more than one components. On the other
hand, the components that are strongly direct domi-
nated are called from the respective dominators, The
rules indicate some guidelines that help to identify the
proceditre-like components not selected in the previ-
ous step-helonging to some modules, the hest way to
nest procedure-like components belonging to the same

module-and-how-a:module-USES-other moduleg:=Fop- s b

example, if a component is strongly direct dominated
and it belongs to the same module of its dominator or
to no module, it will he nested in its dominator, other-
wise. if it helongs to a different module of its domina-
tor, a USE relation hefween the two modules is estab-
lished. Analogously, a component not strongly direct
dominated js called from more than one other com-
ponents if it has not already heen established which
module it helongs to, it will belong to the same mod-
ule of the calling components, otherwise, a multiple
USE relation hetween modnles is defined.

Results from Experiments

To show the validity of the method proposed above.
a set of Pascal program are used in a series of exper-
iments. These programs were analysed by Canfora
et.al. [5] to test the strength of their criferion for
looking for ADTs and, hy comparing the actaal re-
sults with that they obtained, it will be shown how
improved sohutions are obtained by applying the new
process. Moreover, it will be shown how the method
adopted facilitates to the splitting of a software sys-
tem, no matter how complex, into more than one mod-
ule, that are simpler and easier to analyse and to com-
prehend.

The analysis system uses a Prolog program dic-
tionary to keep all the main information relative to
the subject program. A dictionary is prodnced hy
static code analysis and it is composed of facts of ar-
ity 1 {proc(procedure_name), func(function_name) and
user_def.typef{type_name)}. to describe the kind of each
software component. and facts of arity 2 (proc_use_ty-
peanainterfoce(procedure-name, type_name), funcou-
se-typesin_interfacel procedure neme, fype_name). u-
sed_to_define(type_name_1 type_name 2}, proc_func.de-
ofprocedure.name_{ . procedure_nome.2), and proc_fun-
cocall{procedure.name. ! procedure.name.2)}. to descri-
be the reintions existing between two software compo-
nents. By query of the program dictionary, a Pro-
log program generates the ADTs proposed for the
reuse, and another Prolog propram penerates the
dominance relations existing hetween the procedure-
like components. The second program constructs
a second Prolog dictionary hy storing facts of ar-
ity 2, dircdom{procedure.name_1,procedure.name.3)
and str_dir.dom{procedure_name. !, procedure_name.2),
expressing if a procedure-like component is either di-
rectly or strongly direct dominated and the component
dominater.

The data for the experiments consist of four Pascal
programs, developed in different periods and by differ-
ent people. Clearly, for the different expertise of the
developers, the programs present different character-

istics, but the results obtained are comparable.

Al the programs analysed have a size between 1000
and 2000 LOC. A brief description and the relative
analysis for each program follows. For each program
the structure of the identified modules are presented.
The notation adopted here uses EXPORT as the in-
terface apecification, that is all the information, the
names of the types involved and the operations that
act on those types, that the module exports; and uses
BODY for the implemnenitation, that is the represen-
tation of the type, the local resources and the imple-
mentation of the operations on the types, that s, all
the information that the module hides.

Editor.pas

This is a version of the Unix text editor. The pro-
gram is angmented with functions that have been writ-
ten for a particular environment to carry out opera-
tions such as opening files and detecting interrupts
from the user.

The first results, obtained by applying the method
for the extraction of ADTs, gave three modules. The
first two modules were well-formed and easy tfo as-
sign a meaning; on the contrary, the third appeared
as a large ‘pot pourri® module, compesed of five user-
defined data types and thirty-seven procedure-like
components. This clusterisation was due to the use of
an enumeration type. As discussed in {9]. sub-range
and enumeration types are often the cause of the clus-
terization of more than one simple medule in a bigger
one. The isclation or, if possible, the replacement in
code of these types with other kinds of types, for ex-
ample infeger types, allows to the splitting of the mod-
ule ohiained in the simpler modules. The operation
described ahove and the re-application of the ADTs
method split the last modnle into three simpler mod-
ales. Definitively the modules identified are presented
in the following table:

M. user-dofined provsd ure-hike compoagonts
sl duty types

1 travesiring strage

2 Tinoptr ol e, freclinegetind gelnow,
votpak.goetixtlinkap

kS Flennmestring asaigniie.doread dowrit. goetfnupen

4 linesteing adtset,ctol,eeediset et rond cnnl
rendline. readiorm

5 wrystring, wimuticheatsubdunmppat.getoch gotvhs

putturnstring lorsteanukpat.nak:ubanatehoomatel,

poisiz.stolossulst

In reality, as cited above, the modules now pre
sented are not complete. In fact. the procedure-like
components invelved in the constitution of a modude,

call;-in-the implantation. other compenents that-do.

not use the user-defined data types, that are part of
the subject module, in their interface. are not included
in the same. Moreover, at this point of the analysis,
the relation of USE existing hetween the varions mod-
ules is not clear. To solve these problems the method
hased on the dominance relation is used.

In Fig.la the strongly direct dominance tree
{SDDT) is presented for the program Editor.pas; the
solid lines represent relations of strong direct dom-
inance, and the dashed lines the relation of direct,

14

but not strong, dominance; the number in some of
the nodes indicates the module that the procedure-
like component represented from the subject node be-
longs to. As described above, Fig.1h shows the SDDT
ohtained from the CDAG of the program by deleting
all the components not belonging to any modules and
that are strongly direct dominated from the MAIN.
In fact, for the definition of strongly direct dominance
the above components will be called only from the
MAIN and not from components belonging to some
modules. The tree in Fig.1b has been obtained after
a recursive process that in each iteration deletes from
the CDAG the components with the above peculiari-
ties and all the links in and links out of them, creates
hypothetical links in from the MAIN with all the com-
ponents that are remained without components calling
them, and re-consiructs the SDDT associated with the
new graph. In addition, the informations placed inside
the nodes not strongly direct dominated indicate from
which module or which component {if this does not
helong to some modules) the component mentioned in
the node is called.

Tnt the operation of creating the final SDDT, a con-
siderable number of procedure-like components was
discarded. Analysis of the code has revealed that
they are either components never called, or initial-
isation components. or components referring to the
nser-defined data type SiaiusRHenge, hefore isolated,
and checking the states codified from that type after
a nuthber of different operation.

Definitively, it can he said that the software com-
ponents of the program Editor.ps can be grouped in
the ADT TraceString with a debugping routine as the
only operator; the ADT implements the type Lines
with the operations to manapge two lsts of lines, the
list of the nsed lines {the ones that currently contain
text} and the list of free lines; the ADT Files with ali
the primitives to manage a file; the ADT LineStrings,
with the operators for reading a line from either the
terminal or a file buffer, modifying a piece of text and
inserting an escape character; and the ADT Patiern-
Matcher with the operators for searching and substi-
tuting strings. and of pattern matching.

The frst two module do not present a particular
structure, in fact, as can be seen in Fig.lh, they do
not use other modules, and do not call componenis
different from that discovered with the method look-
ing for ADTs. The only observation that can be made
is on the order of declaration of the componenis of
module 2 for example. the component getnew has to
be declared before, or nested in, the component allo-
line, since the fornier is sirongly dominated from the
latter and then @ called only from it 7 7

More interesting is the discussion of the other mod-
ules. For module 3 the SDDT reveal, by means the
information annotated under some nodes, that it uses
modules 1.2 and 4. Moreover, module 3 includes the
component skipbl, hecause it is strongly dominated
from doread. The structure of $his module follows:

wodule MOD3 USES MOD1I MOD2MOD4
type eMNumebirimgstatusRange: EAPORT
function open(fileNuuefileNuimeStringidirdinteger rintegers
function dowrit{fromLinc,toLincinteger;
fileNumefiloNunieString) statusRange:
function derced (inesintogerdfileNamerfileNameString}
statusRanpe:
Tunction gpetfu(var fileNomerileNueStringdstatusRange:
vitist BODY

statusRunpe=(NOSTATUS, -OKSTATUS,
ERRSTATUS, EOFSTATUS.INTSTATUS)
function epen(fleNumefileNanStringaliniateger) futegen
oy retion B En FEE{ Ve FIDEXUekc v Bl apgas s
fileNumeString: dininteger)integer;

Legin ... el
begin .., end
function intrpt{var x :
begin eud

function dowrit{fromLine toLincinteger;
fileNamedfileNumeStringhtutusRange
begin v, end
function doread{lincintegeridfileNamerfleNumeString)

integer} @ booleans

sstatusRunpger
function injpakivar stsmetatusRunpel=totusRangs
begin ... end
bBagin v, end

function getfn{ver BleNamoifileNumoeString) s tatusTiange
provedure skiphl;
begin ... end
Boegin ... end

Module { uses module 2 as it can he established
by observing the component injpak. The struciure of
module §, appearing more complex, follows:

wodule MODS
type wrghiringy patfornStriug:
function mmstolargString: frencintogen
var pubiputlernStringlantegen
function mukpotfargiagString: fronmzintogen
delimchar vur patrpattersString)integer;
funetion nistch(lhoorgStringvar putiputiernString)thuelenn:
function subst{suhipaticrnStringgfagbootonn Bintegen
funetion getrhalvar subipatternString
var ghagbosleanjintegers
procedure dum]l;sut(puttp:\tturuStriug: Jintepery
LSS ovniiiiianin
type argSteing = HpeStrings
patternString == HucString:
function smstoh{lnargStringifronintegen
var patipatteraStringhintogen
fenciion suntch(BudlineSivngivar Givtegurs
putiputternString: Binteger):hoolean:
function lseate{etchar: patipatiernString:
uffzetsintegeri:hoolean:
fwuction patsiz{peirpetiernStringnintegor jintegen
function makpatisrgrergString fromsintegen;
delimzchar var patipatternString Fintegor
Tunction getecHuargargString var integer;
var pad patternString: var Rintegerhhooionn
funution stefes{var putipatternString:
var lustj lnstelintegeriintegen
function matchilinmurgStringoar patipatternStringthoolean:
function subst(xubepatfcenString: glugboolenn iniegen
typoe stuta=Range={NOSTATUS, OKSTATUS,
ERRASTATUS.EQFSTATUS INTSTATUS):
function du]ut::(frmnLinc,tuLinc:intugur):rslutusﬂuugu:
function previn{linsinteger jrintegers
procedure catsabllin:dineSinng: L aintegers:
sulepatternString; var strlineString:
vir kiintegen: maxnewsinteger):
funetion getehs{var subipuiternString:
var giiagshooleun lintegen:
function suuksublargurgString: Ginteger:
delimiichar var salepatternStang tintoger:
proveduare dumppat{patipetiornString: Jrintaeper);

USES MODI.MODLMOD
EXTORT

BODY

type fileNumeString=Packed array [1.MAXNAME] of char;

15

Module 5 nses module !, 2 and 4, includes com-
ponents like delete and prevl that, in the structure
of the module, will he nested in aubst, and it con-
tains more complex functionalities, composed of sub-
functionalities belenging to the same module, like am-
ateh that implements the sub-functionalities imple-
mented by omatch, patsiz and locate, that can be
nested in the dominant component.

ExamMarker.pas

“The program fmpletients 5 system for the evilua

tion of multiple choice examinations. Tt is particularly
suitable for Universities that adopt a college organi-
zation like that of the University of Durham. The
program inputs the number of questions, with the al-
ternative answers and the exact answers, and the in-
formation ahout the students, with their answers, and
produces the resulting marks in various orders.

The analysis of the program with the method de-
seribed above splits the program into seven modules.
A first incomplete picture of these modules follows:

N. wser-difined procedure-tike componcuty
rewed, dati typos
1 sirings rouatring
2 colfepes neweullvge rendoollege,
writccollege
3 listelement alphaprecede, collegepreeede:,
highermark. swup
4 cundidatesines checkevatfublendternatives,
pUPGrs checkeandidute, chicekextradata,
readunduohicckunswers,
writcpurticulars
5 Wetslaes guarkfudge, | getpreliog narios, read g,
rarksohomes, writelitic
guostasu titic
8 Bists tisthycollegedistbymurk
listhyname liatforstudenty,
perite.guick=ort
d e wialyso.duin plofile,
getpurticnlars listserted resalts,
wark sumoarise, validute

The first five modules were ohtained simply by ap-
plying the original algorithm leoking for ADTs in soft-
ware code. It also produced the last two modules clus-
terized in one big module. This clusterisation was due
to the use of two subrange types. The operation to
isolatian of these types and the re-application of the
method looking for ADTs pave the final situation as
Mustrated in the table above.

For the program ExamMarker.pas. in the opera-
tion of deletion of components not helonging to mod-
ules, only one component. initialise. has been deleted.
The procedure initinlise is a component, called from
MAIN, executing the necessary initialisation at the
start of the program. The final SDDT, obtained after
the deletion, is presented in Fig.2

The program ExamMarker.pas can be seen as im-
plemented by seven modnles, interacting with each
other on the basis of relation of USE. In particular
meodule I, implementing the type Siring and with the
only operator ReadString to read a string to a maxi-
mum length from a file, is used only from the module
4- Module 2, implementing the type Colleges with the
operators to write and to read the name of the college
as well as the components already discovered, includes

also the components lower and capital, with the first
nested in the operator readeollege. The structure of
module 2 is the following:

mudule MOD2
type colleges;
procedure ReadCollege {var colicgercolleges
wviur unkeownibeoleansvar sourge,cchofile:r text):
procedure WriteCollege {collogeicollegesyvar vutfilestext):
procedure NewCollege {vollogeieollepe:
var lusteolicegocollogesivar outfiloitoxt);
typu colleges = (grey, colltigwood, Ierys, trevs,
wmilderet,pidans, hatficld,chinds johos,
cuthscastle kildandbeden
function capitul (ch clined: churs
provedure ReadCollege {var colicgaicoileges
var unknown:booleanvar source,cchefile: text):
fenction lower {chichur)ghar;
procedure WeiteCollege {collegecollegesivar outfiletoxt):
procedure NewCollege (college:colle
var lasteollegeresllepesivar outfilertexth

EXPORT

BODY

Module 3 implements the type ListElements with
the operators to compare students records on the basis
of alphabetical order of their name, their marks or the
college which they belong.

Module 4 implements the type CandidatePapers
and it contains all the operators for reading and check-
ing the data of a student and his answers and print.
ing out the resulting mark. As is revealed in Fig.2
from the number 4 under the same of the compo-
nent writecollege. module 4 nses module 2. Besides,
it includes in its implementation the declaration of
the components seekchar and checkierminafor, whose
declaration will he added also 1n module 7.

All the operations fo read the title of an exam. the
total number of questions, the marking scheme. and to
produce a form echo-printed into a file arve offered from
module 3 implementing the type Seripl, necessary io
acquire the initial information for the examinabion.
This module does not use other modnles,

Module & implements the type Lisis and contains
all the operators to list the results of an exam in dif-
ferent orders on the basis of the college, the mark, the
name, and the students. Tt also contains the opera-
tor to dyaw the histogram of the resulis, the operators
quicksort, to order in different ways, and permute to
exchange two elements. Tt willinclnde the components
dire and getrandomnumber nested in permute. For its
implementation the module nses module 2 and 4.

The final module, 7. is the fundamental module.
By using all the. other.modules, with. the. exception
of module I, it implements the type ezams. It man-
ages the whole exam, with operator to use module 5 to
input the information about the exam, module 2 {0 in-
put information about the colleges, module 4 to input
information about the candidates and their answers,
module 3 to verify the validity of the information ac-
quired, module 5 to list the candidates and their an-
swers in different way, and the operator to analyse the
exam, assign values and validate the legality of all the
terms.

18

Minicalc.pas

This program implements a simple spreadsheet, It
is provided with a simple portable interactive user in-
terface, and shows the display divided into cells, la-
belled A to H vertically and 1 to 5 horizontally. The
system takes as input the user commands that can
be either be commands for the management of the
spreadsheet or information to input into the cells.

The analysis of this program showed in [5], even
showing interesting resulis, was not complete in terms
of operations presented for each module. In fact, the
application of the criterion to only the procedure-
like components declared in the MAIN did not take
into consideration operations that are fundamental
for some ADTs but are implemented by components
nested in others. Different results lave been ohtained
by not considering the nesting hetween components in
the first stage of the analysis. When compared with
the previous results, the new results appear richer in
terms of operations for each module, Also in this case,
a real partition of the software compenents in more
than one hierarchic module is obtained. To be pre-
cise, five modules are ohtained, and they are shown in
the following table:

N. user-defined procedure-iike components
mod. data types

1 AT 1L crrothandier, wrileuscr

2 cont il eeteom mund

3 inputiype, writeuserinput,gelccl gettoken, goting

token alplisheticekipblunks getchurnamerice
getuscrinput.ungoetchur, postinbel
] nsdepty chavkexprizoemaluale prioxprossion,
factor,expression.nunkenodesubexpr,
parscuxpression.bernuw dioexpression
5 cellid docellex pradoceillnb el docellchunge

To obtain the last three modules the human in-
tervention was necessary. In fact, after the applica-
tion of the meihod based on the AD'Ts. the last three
modules were clusterized in one big module, compre-
hending in the structure more user-defined data types,
sub-range, and more procedure-like components. The
isolation of the sub-range fypes brought simpler mod-
ule, hut equally complex, composed of the set of all
the components that appear in the st three mod-
ules. The splitting of the module was obiained by
analysing the call relations between the procedure-like
components and those existing between them and the
nser-defined data types. The clusterization was due
to components, makenode, checkerprivee and parseer-
pression, that implement the characteristic functional-
ities to manage and to evaluate algebraic expressions,
and are strongly dominated (Fig.3) from other compo-

nents.with the same purpose, hut use in the interface

the types inputiype.foken and cellid. The insertion of
the components causing the clusterization in medule
4 brought io the configuration presented above.

Fig.3 shows the final SDDT obtained after the dele-
tion of uninteresting components. Only three compo-
nents used to initialise the system, were discarded.
As it can bhe seen in if, the components in module
1 do not call other components, but are used from
other modules. Module 1is very simple, it implements
the type User Messages manapging the messages to the

user., The second module, User_Commands, contains
the operator to read and to interpret the user cam-
mands. It uses module I and operations of module 3.

Module 3 implements the type Input with the op-
erators to manage all the different kinds of inputs,
that is commands, or information to store in the cells
of the spreadsheet. This information ean he a Ia-

bel, or numeric values, or references to other cells.

“The module contains operations to vérify the correct-
ness of the information by analysing eventual links

= hetween-cells Thefinal SD T revesls thiat ssmie coims™

ponents (alphabetic, getcell, numeric. ecc.) implement
sub-functionalities of another component (gettoken).
and that they can be nested in the latter. Also the
component simpledoken can be nested here. This was
not apparent from the first analysis and was thus not
added to the module, but can since it is strongly dom-
inated from getfoken. The routine monetocell called
from postiabel will also he inserted in this module. It
appears that the subject module uses module 7. These
and other ohservations, that can spring from Fig.3,
bring to the final structure of the modufe.

Module 4 is interesting in that it implements the
ADT Ezpression with the operators to read and to
memorize in the spreadsheet, to write, to check the
correctness of and to evaluate an expression. In
particular, the operation to read and to memorize
the expression is tmplemented by the components ez-
pression, subexpr, term and factor that constitute a
strongly connected component in the call graph, This
component is represenfed by the node called EX.
PRESSION. Tt will be nested in parscezpression., that
will be nested in gelezpression. The modnle will in-
clude also the component addiodependlist nested in
checkexprivee. Module 4 uses module | and module 3.
In the module the type counter is also defined: this
type is used from some components te consider the
depth in the representation of the managed expression
like binary tree. The above information is synthesized
in the following schema:

module MOD4 USES MOD1.MOD:3
type nodeptricounice EXVFORTY
procedere WriteExprossion{ ExpeNedePtrLevel:iCounter):
function GetExpression:NodePin
function Evaluate{Expr:NodePirvar Dufinediboolean rrenl:
function CheskBExprTreo{ BxprTree:NodePtr;
var CountiCounterhboolewn:

BODY

LOUSE werirrrrrorasris
type Ceanter = #.maxint;
LineType = urruy] . MAXLINE]of char:
InpueiType = reoord
Linu @ LineType:
Length, Lust 1 Countoer;
cid;
proceduare WriteBxprossion{ExprNodePtnLeveliCuunterl;
funciion GetExpression:NodePtr;
function PurseExpression(Userbup:InpulType): Nodepte
function MukcNode(NedeValuerreal;
Left, Right:NodePtr):NodePin
function Expression:NodePtr:
function Term @ NodePtrg
function Fucter : NodePir:
function SebBxpr: NodePitr
function Evulente{ExprNodePtrivar Defined:hoolean)rronl;
function CheckBExprTrec(ExprTroaNodePtr;
var Count:Coanter)iboolenn;
procedure AddTeDependList{var Count:Counterl:

17

Finally, the last module implements the AD'T Cells,
This module, by using all the other modules, manages
the spreadsheet, with all the operators for the acquisi-
tion and the checking of lahels, cell addresses and nu-
meric expressions, In particular, for the last task, the
component docellexpr declares the components eval-
uatecells, buildgraph, sorteells and findzeroes, whose
names express the kinds of implemented operations.

Format.pas

e Thigds an-ancient publicdomain pretty priviter pros

gram for Pascal that has been changed and added to
hy a numbher of different people.

The previons application of the method bhased on
ADTs to the Format program produced very low re-
sults. Three modules were obtained with a very simple
struture,

This time, the first incomplete modnles obtained
are the following:

N, wsecr-tufined precodure-like components
s Jdatn types

1 wlphseymtols choeeckfur, doatmtlistinserizyhel

F connenttext width dublock.dostetmont

4 B Ying clisngetirginty

4 sytnholzet dodeclurativnuntil, doficidiistunti

& optivnzize bBunch

4 Jrritii e rewdin

Fig.4 shows final SDDT of the Format program.
From the original SDDT. only the initialization
procedure-like components have heen discarded; all
the other components enoperate together fo the im-
plentation of the functionalities expressed in the iden-
tified modules. The six modules ohtained look very
simple. hut in reality, are very complex. 1t ap-
pears that they canuot he re-engineered to be reusable
ADTs becanse they are poor of operations, and, more-
over, the large nse of global variables wonld suake this
task very difficult. However they ean offer an usefnl
trace of the complexity of the code. They can he con-
sidered as main functionalities which is compoesed of
the set of functionalities offered from the whole pro-
gram. By using each other these modules cooperate
in ohtaining the goal of the program.

The study of the call graph reveals the existence of
the following four strongly connected compeonents:

SCC1i:dobleck,doprocedures

SCC2:dostatemant, dostmlist
SCC3:dorecord,dofieldlistuntil,dovariantrecord
5CC4:readsymbol , skipcomment, docomment

The existence of the strongly connected compo-
nents is the main cause of the recursion hetween the
modules. In fact, §CCZ is composed of a procedure-
like component belenging to module and another one
helonging to module 2. Since there are two compo-
nents that are mutually recursive we should expect the
two modules to he mutually recursive. On the other
hand $CC4 does not contain components helonging to
some module, but it is used by module 1,2 and 4, and
it uses some of this module, then its components cause
the mutual recursion between module 1.2 and 4.

The other strongly conmnected components are
SCC1 and SCC3. The former, having a procedure-
like component, doblock, belonging to moedule 2 and
the other one, doprocedures to no module, will im-
plement a sub-Tunctionality of module 2 that will in-
clude both the procedure-like components. compo-
nent, SCC3, will belong to module 4 because it con-
tains one procedure-like component, dolisifielduntil,
belonging to this module and two to no other module.
Analogously to the previous case, the last fwo compo-
nents will be included in module 4 to enrich the struc-
ture of it. Another cross use hetween modules, and
hetween components can be seen in the final SDDT.
The only medules that are not involved in the recur-
sions and not used fromother modules are module 3, 5
and #. The names of the procedure-like components,
helonging to these modules, are eloguent enough to
indicate the kind of functionalities implemented. For
example, module 3 is responsible for implementing one
of the layont parameterizations, namely the width of
the indentation. It is quite difficult to identify the way
in which these functionalities are implemented. This
is probably caused by the number of anthors respon-
sible for writing the program and the unavailahility of
the original program design.

Format is an important experiment even though
poor results were achieved. This'is because a pariition
of the program into simpler modules was obtained,
and becanse it shows the importance of program de-
sign and that the loss of documentation is very often
the main cause for not understanding a systen.

Conclusion

The paper has presented a set of experiments to
show the validity of a method to identify reusable ns-
sets in Pascal code thus making the programs easier
to understand. By splitting the subject program into
more than one modules, each of which implements an
abstract data type or a group of functionalities, the
method proposed can he used for the comprehension of
the code. At the end of the application of the method,
the program appears as & collection of simpler systems
that, for their dimensions, are easier to comprehend
than the {nll program. Also the interactions exisfing
hetween the obiained meodales to the pursning of the
program goal. are identified.

Unfortunaiely, despite obtaining hetter resulis than
in past experiments, in some cases the comprehension
of the implementation of some modules is difficull.
This is due either to the original sysiem design. that
often does not follow guidelines nseful for a corract
programming, or to changes that weaken the vajidity
of the program’s specification and design,

“The efectiveness of the method can be shown also

on ‘C’ code, hut the limited use of typedef in the O
programs so far studied produces results that are not
really significant to be presented here.

The method and the experiments presented here
have been developed in the RE? project. a two-years
research project funded by the Ttalian National Re-
search Council {CNR} and jointly developed by DIS
(Dep. of Informatica e Sistemistica) at the Univer-
sity of Naples and CSM (Centre for Seftware Malnte-

18

nance) at the University of Durham. The project ad-
dresses the wider issnes of software reuse through the
exploration of reverse engineering and re-engineering
techniques to identify and extract reusable assets from
existing systems.

References

[1] Lin 8.5., Wilde N., Identifying Objects in
a Conventional Procedural Language: An
Example of Data Design Recovery, Proc.
of IEEE Conference on Software Mainienance,
1990

Duna M.F., Knight J.C., Automating the De-
tection of Reusable Parts in Existing Soft-
ware, Proc. of IEEE International Conference on
Software Enginesring, 1993

Canfora, G., Cimitile, A., and Munro, M.
RE?: Reverse Enginecring and Reuse Re-
Engineering, Journal of Software Maintenance,
Research and Practice, Wiley. 1993

Canfora. G.. Cimitile, A., and Munre, M., A
Reverse Engincering Method for Identify-
ing Reusable Abstract Data Types, Working
Conference on Reverse Enginecring, IFEE, May
1993

Canfora, G.. Cimitile, A., Munre, M., and
Tortorella, M.. Experiments in Identifying
Reusable Abstract Data Types in Program
Code, Workshep en Frogrom Comprehension,
TEEE, 1903

Canfora, G.. Cimitile, A, Munro, M., and Taylor,
C.}., Extracting Abstract Data Types from
C Programs: A Case Study, Conference on
Software Maintenance, IREE, 1993

{7} Cimitile. A and Visaggio, G.. Seftware BSal-
vaging and the Dominance Tree. o appear
an Jowrnal of Systema and Software, 1083

Cimitile. A, Fasolino, A B, Maresca, P Reuse
Reengineering and Validation via Concept
Assignment. Conference on Software Mainte-
nance, IEEE, 1903

Canfora. G.. Cimitile. A, Munro, M., and Tor-
torella, M., A Precise Method for Identify-
ing Reusable Abstract Data Types in Code,
International Conference an Softwars Maoinde-
nonee, JEEE, 1094

De Lacia, A.. Di Lucca, G.A., and Fasolino AR,
Towards the Evaluation of Reenginecring
Effort to Reouse Existing Software, Inferna-
tional Conference on Achieving Quality in Soft-
ware, 1993

[10]

[11] Hetch, M.S.. Flow Analysis of Computer
Programs. Elsevier Norih-Hollund, New York,

1977

P —
i{xrvmn;lé!umpp-{l

‘ - B gt ponny
gﬁgﬁ WS vy grreaey
\um'vW\ .mmé ff:«a,mz. "‘@!%!mmul"l

: prkey ey 3 oy ¥ - oy
enew 3 & e
'gw j lgﬂﬂpﬂil lrﬂd"-"m% lm“‘f!lem!chl {fresiing] Tekp M Frmove infpab!npe-[gemlsuhsl]ﬂn«e-d}nlectmezssl[dcpm{dnmn}xpmn geghs]
g‘,. PR Trma -’C RPN g’(_)_”_.me ‘d/«; n’“._{a‘v‘ww‘%' ".\:.u-.wk‘ M”‘ \MMW%N‘" ‘,i
el i I . o L. .. SOOI o-.c. IO
sy
[durnppet}
Zosrn _ poamil
e N E- eI . s Y
ilgeﬁr\dz i f"“h’ Sé'ﬂ"’hnrkupl
2

by
\;’M ond ‘-‘_.AM“.M.““\,,,“EH

P grees 5 ovs 2 Rgny
_;rmdlr.-vm[[u-nu:hi !pa!s&zi

Y

i
Sty g S I e g %ﬂn candivre e ot feias . oo ook
fiaea o e foedin
Tue oot e L e E]

-

= & s M T o e ana
- E: £ 5 i 3 i 7
T 4 Eid T s ~ iyse
{gurmptofild .dﬂ"dd}ﬂﬁkﬂﬂﬂwlﬂ’ fparteularslhnckeminute[sulidste] !. km‘”} [wrllaﬂtir] I-”’z““‘f !a\'gﬂpi 4 -Im veel
; s : ; 4 P12 S T SN R TR

VR S A RPN S PO S S |

b b e

-
ot ;lJ E;: relitrdnaghrch py sl Heaiternst st =" '&*u ! ' ltforstaded 7 cott 2l
[psm e} 9 fxd ook pvstisbleattzineg I; ke gridl dxlilﬂflMﬂ"’Q‘ia!ma;ﬂettde‘] lckscl{;s!bwum@]ilemn mﬁ{ k]e?ogram‘]wm]Hsu{udm ¥ ety
Lot ELACRERCIRT TS S PSSV OT. S I BB,T Dereeseeesiieecn s dan e i .

FeRrIEI IR Lot

prasas

S] K
idimi frengtite}

F

Rzt

[REPPER]

iggtrs'\daﬂr‘unbg(!

N ! :
[te;dmlitge elds!ztng] cw:eliegf}

Fig.2 - Final SDDT of ExamMaker.pas

E
ee==2822%
e M'— o T o
Er— u-”“”"""w(“" e "

-
= . o
ER
{ eempﬁ"’ Twrilcuscr] fpet 1uktnfﬁ~ F‘N"kaﬁf‘i ovelocell] Ewr'lwsm;npu e tearinpui) jdoaslicxpr] [wr!:m.‘xvms:imi‘éﬂmﬁchar& [
9 1 3 2 o 4,

2N talue: i 4B s;/‘/3, ‘ — 5 R AU
i

{:m:uexpsesm'

Bnamaren sonsianil

2F

{a:idtm'zper'é!!m;

33.’1??‘.3‘,‘.‘??1 Fig.B - Final SDDT of Minicalc.pas

- -
e T R T T g b : Tl BTt e R Y h I
Meiusm,nmnmnm.nca readacherncter & SCC4 ! seca 14,8602 ;é‘unvuwsse sccﬂ Tasortaymbol]
{Sol’brmﬁtlwglg{lrrcl_lveujwlle_s % g, nntheses wiltecom ET Sy * nChatac 1__a(mmanndlrer:!lves, [P
P s L ' ‘ ey ‘|'°$’)‘7 Py seiveqri AR & Ao gy
Edc!:tmal:mdhecl!vrfcem k-rd rectives}5 dolcrmatietdirestivel thecktor] §dadmlauﬂma-nl- chsngemarglmo] [SCC‘.’]
wrresen et bt osenct SECE rompilediimetve b st Rivecrnin o cornnend 3,24, dopinoedut e i \
[reldlni 15CTy] {wrllecomneﬂ!][hunch]
R i i Trurer vereeed fam. and
Fig.4 - Final SDDT of Format.pas Froouaroms

A Tool for Understanding Object-Oriented Program Dependencies

Panagiotis K. Linos
Tennessee Technological University
Computer Science Department
Cookeville, TN 38505, USA
email : PKL3678 @tntech.edu

Abstract

In this paper, we present a tool for understanding and re-en-
gineering C++ programs called OO!CARE (Object-
Oriented Computer-Aided Re-Engineering). OOICARE
demonstrates some practical solutions to the problem of
extracting and visualizing object-aoriented program
dependencies (i.e. data-objects and their relationships). It is
an extension of an earlier tool for maintaining C programs
called CARE (Computer-Aided Re-engineering). In this
paper, we also discuss some early experiences acquired from
using the tool. For instance, an important observation made
during a re-engineering exercise is that some characteristics
of the object-oriented programming paradigm such as
inheritance and polymorphism contribute significantly to
the complexity of understanding program dependencies.
Moreover, in this paper, we discuss how object-oriented
program dependencies differ from the procedural ones and
explain how they can be visualized within the same
environment.

1. Introduction

Program dependencies include information regarding the
relationships between various compenents in computer
programs such as the interaction between modules {i.e.
files), the use of variables and their types, as well as the
calls among functions. Today, there are many software
environments which facilitate the comprehension of
programs written in procedural programming languages by
systematically extracting a large number of program
dependencies contained in the source code. These
dependencies are stored in a database and then visualized in
various graphical representations, Taxonomies of software
visualization environments and their characteristics can be
found in Price [8] and Stasko [12]. These environments
have been reasonably successful in helping to reduce the
time and effort spent to understand existing programs
written in procedural programming languages. However, a
new problem arises from the fact that object-oriented lan-
guages are quickly emerging from the procedural ones.
Although, the new features introduced by object-oriented
languages offer flexibility some complications during
program understanding can arise {16]. In particular, the
use of cfasses and inheritance often leads to a plethora of
small program compenents (e.g. objects) with many
relationships (e.g. message passing) [14]. Consequently,
locating and understanding object-oriented program
dependencies becomes a difficult problem. Today, there are

20
0-8186-5647-6/94 $04.00 © 1994 [EEE

Vincent Courtois
Hautes Eiudes Industrielles
13 Rue de Toul
59046, Lille
France

several commercial and academic tools available for
understanding and re-engineering object-oriented programs.
Examples of commercial tools include the ObjectCenter
by Centerline Software Inc. [1], the ObjectWork by
Parcplace Systems and the Objective Cfrom the Stepstone
Corporation. In addition, several research prototype tools
for maintaining object-oriented programs are available
today. A software environment described in Lejter {3} en-
tails a relational database with an interactive interface
which supports queries about programs written in object-
oriented programming languages. Another software iool
provides browsing features through the source code of
object-oriented programs using hypertext techniques [10].
Finally, some visualization mechanisms for maintaining
object-oriented software are described in DePauw [15]
which are based on a language-independent approach.

Many of the above tools utilize graphical representations
which become difficult to understand when medium-o-large
programs are displayed. In addition, they support limited
abstraction mechanisms and transformation tools for
facilitating the re-engineering of object-oriented programs.
In this paper, we address the above issues by developing a
software environment for understanding and re-engineering
C++ programs called OOICARE (Object-Oriented
Computer-Aided Re-Engineering). This effort focuses on
the dynamic behavior of object-oriented programs and it
supports the general hypothesis that visualization of
program dependencies is most effective for program
comprehension [8]. The OO!CARE environment evolved
from an earlier tool for maintaining C programs called
CARE (Computer-Aided Re-engineering) [5]. The new
environment facilitates the understanding of existing C pro-
grams as well as the difficulties introduced by the C++ lan.
guage, The rest of this paper is organized as follows @ the
second section explains how object-oriented program depen-
dencies differ from the procedural ones. Then, a description
of the OO!CARE environment is given in the third section.
The fourth section presents a brief history of the OO!CARE
project and finally in the fifth section we present our
conclusions, '

2. Object-Oriented Program Dependencies
Programs written using a procedural programming language
(e.g. Pascal, C) consist of various components which em-
body data-efements, data-types and sub-programs. Examples
of data-elements in procedural languages include variables,

constants and parameters of the program. Data-types can be
standard or user-defined and sub-programs represent
functions, procedures or modules (i.e. a group of functions
or procedures). These components are linked via various
relationships such as calls between functicns, the use of
parameters by a procedure or the definition of a variable as
of a data-type. We call these compenents and their
relationships Procedural Program Dependencies (PPDS)

between X and Y. For example, the iriplet <Variable, Type,
is-defined-as> presents the fs-defined-as relationship
between variables and data-fypes An instance of this
program dependency is <counter, integer, is-defined-as>
meaning that a variable called counter is defined as an
jateger data-type in the program.

On the other hand, programs written in an object-oriented
language entatl different kinds of components and relation-
ships due to the different programming paradigm supported.
Today, there are two families of object-oriented languages;
the pure object-oriented ones where all computation is based
on message passing (e.g. Smalltalk, Eiffel) and the hybrid
- object-oriented languages which have evolved from the
‘procedural ones (e.g. C++) [11]. They usually include a
“mixture of features from both families of languages.
*:Programs written in a pure object-oriented language consist
“of data-objects, class-types and methods. We call these
entities and their relationships Object-Oriented Frogram
2o Dependencies (OOPDs). Similarly, an OOPD can be
“represented by a triplet QOPD=<X, Y, R> where the
“pntities X and Y can be data-objects, class-types or
"methods and R represents a relationship between X and Y.
For ‘example, the triplet <Class, Method, implements >
- defines the implements relationship betweerr Classes and
5 ,M_et_b_o_ds An instance of this relationship is <Shape, draw,
implements> meaning that the class Shape implements
i.e.:defines within its body} a method for this class called
draw. Finally, programs written using a hybrid object.
riented programming language entail a combination of
both procedural and object-oriented program dependencies.
: An’ example of such dependency is represented by the triplet
. =<Class::Method, Function, calls > meaning that class
o methods call user-defined functions. An instance of this de-
':_pendency is <Shape::draw, PrintLabel, calis> indicating
~.that'the draw method of the class Shape calls a regular
L funcnon caiied PrintLabel,

~In ﬂ:us work we have selected C++ as a hybrid object-ori-
nted. programming language in order to study how object-
riented program dependencies can be visualized, C++ sup-
orts the object-oriented programming paradigm while
mamt_ammg the procedural features of the C language. In
bject-oriented programming paradigm data and behavior
f'a program are strongly connected. C++ implements this
- concept by the use of classes whose instances are objects
2L A classconsmts of a set of values (data members) and a

"PPD <X, Y, R> where X and Y can be data- eiements, data-
Larfypeyor subsprograms Cdnd R depicts A rélationship

collection of operations (methods or member functions) that
can act on those values. For example, we can create a class
called GeometricFigure where the data members are the
cenler and perimeter and where methods are operations using
those members such as draw-figure. Inheritance is a way of
deriving a new class from existing classes called base
classes. The derived class is developed from its parent by
adding or altering code. Inheritance is said to be singleif a

class is derived from only one parent, or multiple if it is

developed from several base classes. Moreover, access
privilepes to classes and their members can be'managed and -
limited to whatever group of functions needs to access their
implementation (this is accomplished in C++ by the use of
the keywords public, protected and private). Also, functions
and operators can be overloaded in C++. Overloaded
functions or operators are also known as polymorphic
entities because they can take many different forms {i.e. can
have several distinct implementations). In particular,
polymorphic funciions are implemented by virtual member
functions in C++.

A. Polymorphic Program Dependencies

The above mentioned features of object-oriented
programming languages introduce some additional
complexity towards extracting program dependencies from
source code. In particular, the use of polymorphic entities
create dynamic program dependencies in object-oriented
programs. As we know, static program dependencies are
exiracted directly by analyzing {i.e. scanning) the source
code and execution of the program 15 not necessary.
However, dynamifc program dependencies are only
determined at run-time and they require program execution.
Message passingto a virtual member function in & C++
program is an example of a dynamic program dependency.
In order to demonstrate this dynamic behavior we present a
C++ example shown in Figure 2.1. As we can see in this
figure, the ¢lasses named Box and Circle are derived from
the class Shape. Also, the class Sguareis a subclass of
Box, Moreover, a variable P is declared as a pointer to a
Shape ar to any of its subclasses (i.e. Box, Circle and
Sguare). When the program statement P->draw() is
executed a message is sent to the virteal member function
draw(). However, all four classes in the program of Figure
2.1 implement their own version of this method.
Therefore, the version being called can only be determined
at run-time, depending on what kind of shape P points to at
the particular time of execution. This dynamic behavior is
also demonstrated graphically in the same figure. When the
while loop of the program in Figure 2.1 is executed for the
first time the message is sent to the method Shape::draw
because P points to a Shape object but on the next
iteration P points to a Box so the message is sent to
Box::draw. During the following loop iteration, the same
message is sent to the Circle;:draw method and then to
Square::draw . This sequence continues until execution of
the program stops. With this example, we demonstrate the
fact that a statement such as P->draw() can have several
different meanings (i.e. polymorphic entity) and can be

21

determined only at run-time. We call such dependencies
Polymorphic Program Dependencies.

B. Implicit Program Dependencies

In addition, program dependencies can be implicit or
explicit. Explicit program dependencies appear in the
program and can be directly extracted from the source code.
However, implicit program dependencies do not arise
explicitly in the source code and thus some additional
complexity is introduced for extracting them.

winclude <iostream>
class Shape @ { virtual void draw{veid)
{ vout =< "drawing a Shape™, } 1,
class Box ¢ publis Shape { virwal void drawivoid)
{ cout =« "drawing a #ox™ 1 1
class Circle @ public Shape { virual void drewivoid
{ cout =< "drawing z Circle™ } |
class Square : public Box { virtual vold draw{void)
{ cout << “dravwing a Squure™ 1§,

main () {

Shape * P, int i=0; int limit=10;

Shape Sh; Box Bo; Circie Cb Sgquare Sq;

while (i<limit)

(
switch (1%4) {
case 00 P=Sk;

break;
case it P=Bo;
break;
case 2: P=C;
break;
case 3: P=5q;
break;
1
Pe=drawl};

b
1

Circle™
e

Figure 2.1 : A C++ program demonstrating dynamic
program dependencies

In order to demenstrate some caveats regarding implicit
program dependencies we consider a small C++ example
shown in Figure 2.2, The output (with some explanations)
generated by this program is given in Figure 2.3. Although
only four objects {i.e. ashape, abox, somesquare and
othersquare) are created in the main{) function of the pro-
gram as shown in Figure 2.2, nine constructors (i.e.
member functions used to create objecis) are executed (see
their output in Figure 2.3). This happens because in the
program, a square is defined to be a special case of box and
a box a special case of shape. Thus, in order for the
program to create a square object, it first builds a shape
object, then constructs a box object of this shape, and
finally turns this box into a square. This results in the

1o
1)

execution of additional statements which do not appear
explicitly in the source code. Moreover, in this example,
there is no explicit call to destructors {i.e. member
functions which deallocate space for an object). However,
several destructors are invoked implicitly in the program for
the four objects created (see their output in Figure 2.3).
Notice that the program sends a message to three different
destructors in order to destroy a square.

Example of implicit operations performed by O+
rinclude <iostream.h>
class shape |
private: double area;
. shape(y

at <= "l am oaosh

shapo{veid)
{ cout << " am 1o sha
I
class box @ public shape |
private: double LL:
public @ boxivoid)
{ cout << 7 {amabox " << end}; }
hbg)x(vcid)
{ cout == "F am the box destructor "<« endl;)
i
class square © public box {
private; double side,
public © square{void}
[cout =< " i wm asquare "
"squarc{vnid)
{ coul << | am the square destructor” <= endly}
i
maing) |
shape ashaps,
bog aboy;
SQUAre somesguare, othersquars,
somesquare = othersquare,

i

po destnicion

¢

" e it
<< enidl)

<< endh |}

Figure 2.2 : C++ spurce code demonstrating implicit
program dependencies

In addition, C++ provides defauit constructors and
destructors (i.e. none defined by the programmer).
Conseguently, another versicn of the program in Figure 2.2
is shown in Figure 2.4. The two programs are functionally
equivalent however, the program of Figure 2.4 depicts a
higher abstraction of implicit program dependencies {i.e.
constructors and destructors are not defined explicitly in the
source code) than the program of Figure 2.2. Evidently, the
above mentioned features of object-criented programs can
compiicate the task of understanding program dependencies.
In this paper, we-focus on the above issues with respect to
extracting object-criented program dependencies from C++
programs. Also, we explore ways to efficiently visualize
such dependencies in order to facilitate the comprehension
of object-oriented programs. To this end, we have designed

and implemented a software tool for understanding and re-
engineering C++ programs. An overview of its main
features is given in the next section.

OuUTPUT

PRODUCED BY

T am a shape
I am a shape

1.1 ama box’

I arn a4 shape

. lama square

I am a shape

,iama box

,iamsa square

I arn the square destructor
t arm the box destructor

! am the shape destructor
f am the sguare destructor
I ar the box destrucior

I am the shape destructor
I am the box destructor

[am the shape destructor
I am the shape destructor

constructor of ashape
constructor of abox

“gonstructor of “abox

constructor of SOmesquare

CoRSHrUCHEor FomesguEre |

constructor of somesquare
constructor of othersquare
constructor of othersquare
constructor of othersquare
destructor of othersquare
destrucior of othersquare
destructor of othersquare
destructor of somesquare
destraclor of somesquarc
destructor of somesguare
destructor of abox
destructor of ahox
destructor of ashape

Figure 2.3: Quiput produced by the C++ program
of Figure 2.2

3. The GO!CARE environment

This section explains how OO!CARE (Object-Oriented
Computer-Aided Re-Engineering) evolved from the CARE
{Computer-Aided Re-Engineering) tool. Then, it presents
the architecture of OOICARE and the data model used to
construct its database. Finally, it describes the presentation
model used to display data-flow and control-flow
information graphically.

The OO!CARE environment evoived from an existing soft-
ware tool called CARE which facilitates the comprehension
and re-engineering of existing C programs [5]. The
OCICARE tool extends the existing features of CARE in
order to facilitate the comprehension of C++ programs.
Specifically, the original functionality and user-interface of
CARE are extended in order to extract and visualize ohject-
oriented program dependencies. The user-interface in
QOICARE is done through specially designed windows
including the main panel as well as graphical and textual
windows. Each window in OO!CARE is equipped with a
group of typical operations for manipulating graphs or text
(e.g. hide, highlight, zoom, code etc.). The architecture of
OO!CARE is comprised of the code analyzer, the
dependencies database and the display manager. The code
analyzer extracts program dependencies from C++ source
code and populates them into the database. In OO!CARE,
eight kinds of program components are extracted from C++
code namely data-types, user-defined functions, constants,
variables, parameters, objects, classes and member
functions (methods). These components and their relations
are populated in the database based on the data model shown

in Figure 3.2. The type node in the figure represents Ct++
standard or user defined data types. The functions of the
program are depicted by the function node. The constant and
variable nodes in the graph represent constants and variables
respectively. Moreover, the object node represents data-
objects (i.e. instances of a class).

/A modified version of the C++ program
| M shown in Figure 2.2

#include <iostream h>

constructors and destructors are not defined explicitly
/ in the source code but provided by Cot
class shape @ { double area; };

class boy public shape { double LLS 1
class square ; public box { double side; |
main(} {

shape ashape;

box abox;

SquAre samesquare, othersquare;
somesquare = othersguareg;

]

Figure 2.4 : A C++ program with highly abstracted
implicit program dependencies

Information passed to a function or a method is depicted by
the parameter node which can be defined as a class oras a
type. A class encapsulates data with member functions. A
member functionis a function declared within a class and it
can only be invoked by instances of this class. The
relationships between these components are also shown in
Figure 3.2 by connecting arrows. For example, the
connecting asrow between class and member function means
that a class implements {defines) a member function within
its body. The program dependencies included in the database
can be displayed using a presentation model designed for the
OQ!CARE environment. This model includes hierarchical
displays for presenting class inheritance, control-flow
program dependencies and file dependencies. In addition, an
original display called colonnade (i.e. a sequence of
columns displayed at regular intervals} is utilized in order to
present data-flow program dependencies graphically. Such
graphical displays are created and manipulated by the use of
several graphical editors in OO!CARE. These include the
data-flow, control-flow, inkeritance-hierarchy and file-
dependencies editors. Textual information (i.e. code) can
also be manipulated in the OO!CARE environment using a
traditional text editor (e.g. emacs, vi). The file dependencies
editor presents the incfude relationships between files using
a hierarchical display. Each file is represented by a node and
included files are linked via connecting lines. The control-
flow graph editor displays user-defined and member
functions using different graphical notations. Table 1
includes a list of C++ program function types supported by
the editor and their graphical notation. Function calls or
message passing is denoted by connecting lines between

functions and methods (i.e. member functions).
Specifically, a connecting line between two functions (or
between a method and a function) depicts a call relationship.
A connecting line between two methods (or a function and a
method) represents a message being passed. Moreover,
information regarding polymorphic program dependencies is
also displayed in the control-flow graph.

returns as a valug

“inherits -
properties
{rom

defined

./ delined

relurys ar » walue
mplernents

returas ag 2 wale

member
fungtion

overwrites sends a

sends a message (o

has

calls has

message to

paramete

N—

defined as defined as

Figure 3.2 : The data model used in OOICARE

For example, in the case of a message passed o a virtual
member function (i.e. known at run time) the parser
determines all possible entities where a message could be
sent. In this case, OO!CARE creates a dummy member
function of an unknown class (displayed as
?umember_function} which is connected to all possible
mermber functions with the same name. This approach is
illustrated by an example in Figure 3.5. In this example, a
message to a polymorphic member function called drawis
sent. The function drawis implemented differently within
the classes shape, box, circle and square. OOICARE
displays a dummy node called ?::draw which is linked to all
the member functions named drawvia connecting lines. An
example of the control-flow graph of a C++ program is dis-
played by OOICARE as shown in Figure 3.6. This
example contains four user-defined functions namely main,
getname, getid and getsal (ali displayed by an oval shape
according to Table I)and three virtual member functions
called student::print_virtual, teacher::print_virtual and per-
son:iprint_ virtual. Moreover, we can see in Figure 3.5 that
the main function of this program sends a message to a
polymorphic function called print_virtual (all possible
paths of this message are shown in Figure 3.6). In addition,
the main driver function sends a message to three different
types of constructors namely student::student,
person::person and teacher::teacher and to their
corresponding destructors namely student:: “student,

person:: "person and teacher:: "teacher. The above
constructors call the user-defined functions getid, getname
and getsal respectively. Finally, each of the three virtual
member functions student::print_virtual, per-
son:print_virtualand teacher::print_virtual sends a message
to a print member function to their respective class.

NOTATION MEANING

User-defined functon

Public member function

Protecied member funciion

Private member function

Virtual member function

Table I: Shapes used in the control-flow graph
and their meaning

Hshape::drawﬂ “box::draw ” “circle::draw” ”square::drawﬁ

Figure 3.5 : Visualization of a message sent to a
polvmorphic function called draw

The data-flow program dependencies are presented separately
in OO!CARE using a graphical display called colonnade
{i.e. a sequence of columns drawn at regular intervals).
Experimental data have shown that the colonnade display
appears 10 be a promising graphical model for visualizing
data-flow program dependencies [7]. It produces crossing-
free, easy-to-draw and sesthetically pleasing layouts, The
colonnade includes information about Variables or Objects,
Types, Parameters, Functions, Methods, Classes and
Constants. The relations between entities are represented by
connecting lines between columns. Figure 3.7 gives an
example of a colonnade display of a C++ program produced
by OOICARE. From this figure we can see that the first
column displays the variables (or objects) of the program
and the second column depicts the data-types. The next
column contains the parameters and the following one
embodies the functions (i.e. user-defined or member
functions).

Finally, the fifth column displays the classes and the last
one entails the constants of the program. Among others,
Figure 3.7 depicts two constructor member functions for
the classes student and teacher respectively. The main
function is also displayed in the colonnade which uses an
integer variable called i and six objects named aperson,
myperson, ateacher, myteacher, astudent and mystudent .
These objects are instances of their corresponding classes.

24

\\\\

wwd grts e snd drnt

m :.; ne~taaeher —

\\

Feprivg_vitresl

pirsnIz-pereon

sadengzzprimt_sirtal m

: teneherrprint victual

»:,3?.,:3 wirtual

ol amprint

Yanthermprint uﬁ

FATER Raptint

_ pArFanspersen m

Aud totystud am — — ttathirtesaher

T D

Flgure 3.6: ODICARE displays the control-flow graph of a C++ pragram

25

sdefault () Tennesses Technological Univers v 1992 - 19494

VARIABLES : TYPES PARAMETERS FUNCTIONS CLASSES CONSTANTS

—_—

3 hirme ‘

JIYLTE

'w Teri e

[rmed]

1]
| : e
R T A T R T e e A T e LT T Y Y : a TN T oy pry— - T ———

Figure 3.7: A colonnade display by Q0JGCARE

26

Also, the mainfunction references a variable called fist
which is an array of pointers to a person object. Finally,
main utilizes a constant called arraysize. If two columns
are not adjacent, the relations between their entities are
hidden. In order to display such relations, the colonnade
allows the user to change the placement of the columns
using a move-column operation. For instance, if the

relationships between~ functions—and -types need-to-be -

visualized, the move-column option can be used to create a

“-differert layout: Finally; the‘inheritance graph-includes-all

the classes defined in a C++ program and their inheritance
relationships (i.e. both single and multiple inheritance).

4. History

OOICARE {Object-Oriented Computer-Aided Re
Engineering} is a software environment for understanding
and re-engineering C++ programs. It is apn on-going
research project since 1990 and it evolved from an earlier
effort towards maintaining C programs. It is partially
funded by Tennessee Technelogical University (under grants
#9211, #9423 and #9512) and it involves a faculty member
and three research studenis. A protolype version runs on
DEC stations under the Ultrix operating system and it uses
the X window manager {9]. Finally, the Jex utility available
in the Ultrix environment is also used to implement the
code analyzer [4].

5. Conclusions

in this work, we have designed and implemented a sofltware
ool for understanding and re-engineering C++ programs
called OO'CARE (Object-Oriented Computer-Aided Re-
Engineering). During the implementation of s prolotype
version of GOICARE, we made some observations with
respect to understanding object-oriented program
dependencies (i.e. data-objects and their refationships). First,
we have observed that the unique characteristics of the
ohject-oriented programming paradigm such as inherilance
and polvmorphism can increase the complexity of
understanding objeci-oriented program dependencies. In
particular, tracing the control-flow program dependencies
{i.e. message passing between objects) of a medium-to-large
size object-oriented program becomes a difficult task
because the maintenance programmer is forced to travel
through a vsually large hierarchy of classes. Moreover,
polymorphic program dependencies contribute significantiy
to the complexity of object-oriented programs because their
values cannot be known before the execution of the
program (i.e. they are known only at run-time). Finally, the
use of implicit object-oriented program dependencies (i.e.
the ones that do not appear explicitly in the source code)
adds some additional complicatiens to the task of program
comprehension. Although, we do not have any
experimental data to support these observations at this
point, our experience during the development of OO!CARE
indicates that object-oriented program dependencies appear
to be complicated enough in order to make tools for
program comprehension a compelling area of research and
investigation. These environments need to focus on

1
-

efficient ways of visualizing object-oriented program
dependencies, simple abstraction mechanisms and effective
transformation tools. Such features can be useful to the
maintenance programmer for understanding the difficulties
introduced by object-oriented programs.

Refercnces
[1] Centerline Software, "Ohjeét Center "Reférence,

Centerline Software Inc., Cambridge, Massachusetts, USA,
R e i A ot 8 o

[2] Gorlen K., Orlow §., Plexico P., {ata Abstraction and
Object-Oriented Programming in C++, Wiley and Sons.

[3] Lejter M., Meyer 5 and Reiss S., Support for
Maintaining Object-Oriented Programs, JEEE Transactions
on Software Engineering, Vol. 18, Ne 12, pp. 1045-1052,
December 1993,

[4] Levine J., Mason T., Brown D, Lex & Yace, O'Reilly
& Asscciates, Inc.

[5] Linos P., Auhet P., Dumas L., Helleboid Y., Lejeune
B., Tulula P., CARE : An Environment for Understanding
and Re-engineering C programs, 1EEE Conference on
Software Maintenance, Montreal, Canada, 1993, pp. 130-
139.

i6] Linos P., Aubet P., Dumas L., Helleboid Y., Lejeune
P., Tulula P., Visualizing Program Dependencies,
Soltware-Practice and Experience, Vol 24(4), April 1994,
pp. 387-403 .

{71 Lincs P., Aubet P., Dumas L., Helleboid Y., Lejeune
v Tulula P., Facilitating the Comprehension of C
Programs : An Experimental Study, 2nd 1EEE Workshop
on Program Comprehension, Capri, Italy, 1993, pp. 55-63.
181 Price B., Baecker R., Small 1., A Principled Taxonomy
of Software Visualization, Journal of Visual Languages and
Computing, Vol. 4, 1993, pp. 211-266.

[9] Reiss L., Rodin J., X Window inside-out, McGraw
Hidl

[10] Sametinger J., A Tool for Maintenance of C++
Programs, VEEE Conference on Software Maintenance, San
Diggo, California, 1990, pp. 54-59.

[11] Sebesta R., Concepts of Prograruming Languages, The
Renjamin/Cummings, 1993.

[12] Staske J., Patterson C., Understanding and
Characterizing Software Visualization Systems, 1EEE
Visual Languages Workshop, Sealtle, Washington,
September 1992, pp. 3-10.

[13] Stroustrup B., The C++ Programming Language,
Addison-Wesley.

[14] Taenzer D., Ganti M., Podar S., Object-Oriented
Software Reuse : The Yoyo Problem, Journal of Object-
Oriented Programming 1989, pp. 30-35,

[15] Wim DePauw, Helm R., Kimelman D., Viissides J.,
Visualizing the Behavior of Object-Oriented Systems,
OOPSLA'93, pp. 326-337.

[16] Wilde N., Huitt R., Maintenance Suppert for Object-
Oriented Programs, 1EEE Transactions on Software
Engineering, Vol. 18, No 2, December 92.

Recovering the Architectural Design
for Software Comprehension

G. Canfora®, A. De .Lucia*, G. A. Di Lucca*, A. R. Fasolino™

{canfory/delucin/dilucen/Tasoling) @ nadis dis.uning.it

Dep. of "Informatica ¢ Sistemistica” - University of Naples "Federico 11" - ITALY

Dep. of "Ingegneria dell'Informazione ed Ingegneria Eletirica”
University of Salerno, Facuity of Engincering at Benevento - ITALY

Abstract

The work described in this paper addresses the problent of
understanding a software system and focuses in particular
on the comprehension of the system drchitectural design, A
method is proposed to reconstruct the architecture of a
system and represent it in the form of a structure chart. The
method assumes the system was originally designed with a
Junctional decomposition approach, and aggregates program
units into modules swhenever these {mplement a
Sunctionality of the systesr. A directed graph that describes
the activations of program units is used 1o model the
systemn, and the concept of node dominance on a directed
graph is exploited to aggregate program units imto modules
and to derive intermodular relationships from the unit
activazions. Finally, the svstem data set [5 partitioned into
sets of data ftems which are local o a given module and
sets of data items which are global 1o the modules
belonging to 4 subiree of the structure chart, and the
interfaces of modules are identified.

1. Introduction

The steady increase in sofiware production costs has
caused the Enginecering of Existing Software to emerge as a
viable discipline. A number of experiences have shown that
it is often cost effective to keep an existing system alive by
adfusting it over time a8 the user requirements and/or
operating environment change. Keeping existing sysiems
alive 15 sometimes indispensable because they encode
knowledge and expertise which is not available anywhere
else than in the source code. Indecd, many picces of
software exist that perforn valuable tasks for which no
writien documeniation is available,

Software maintenance, evolution, re-engineering, reverse
enginecring, migration and reuse are a few examples of

This work has been supporied by "Progetis Finolizzato
Sistemi Informatici ¢ Calcolo Peraliele” of the C.N.R. (Iinlion
National Research Council) under grant n. 9301633PF60,

0-8186-5547-6/94 $04.00 © 1954 [EEE

a0

activities that aim 1o prolong a soltware system's lifetime.
Al the heart of all these actlivities is soflware
comprehension, and in particular the ability 10 comprehend
systems develeped by other people.

For a software sysiem 10 be completely understood three
different aspects have o be analysed: the {unctienal layer
(what systemn modules do), the low level design fayer (how
modules work) and the architectural layer (how modules are
organised to form the system).

Artificial intelligence techniques and knowledge-based
systems have long been recognised as pioneers in
automating some aspects of software understanding, mainly
related 1o the functional layer [10, 12]. Common
approaches featare: (i) an intemal representation of the
program conirol and data flow; (ii) a library of
programaing plans and clichés, and (i) an algorithm to
map program fragments onio these clichés. The main
problem with these approaches is the size of the plan
library, whick must coniain both domain independesnt and
domain specific plans, and the size of the mapping
algorithun search space. This greatly limits the fength and
complexity of the programs that can be tackled and, in fact,
aritficial intelligence iechnigues have not yet been
realistically applied in any particular application domain.

Several reverse engineering tools have been proposed in
the Hterature that aim io faciliiate software comprehension
at the low level design and architectural iayers, Most of
these iools are essentially browsers that provide psers with
different textval and graphical views of the code. While
these tools have been seen to be effective in supporting
comprehension at the low level design layer, they often fail
o address the architectural layer. Notabie examples of
successes in understanding the low level design layer
include the automatic gencration of low level Jackson or
Wamnier/Orr documents from COBOL source code [2], the
work of Snecd ef al. on software recycling [13], and the
GRASP/Ada project [5]1. All these experiences show that
understanding the low level design of a module essentially
requires little more than re-mapping objects and the
relations among them, which are already explicitly shown

in the source code, into nicer and more readable forms. This
is exactly what browsers do. Understanding the architecture
of a system, on the other hand, involves abstracting views
which may not be explicitly shown in the code. For
example, many tools exist that produce structure chart-like
views of a system. This is the case of VIFOR [11], which
graphically displays the calls and references to global items

" in a FORTRAN system, and the VIASOFT toolset, which

produces structure charts from PERFORM statements.

‘Indeed, while resembling striscture charts, the views these™

tools furnish differ considerably from the structure charts
that can be prodoced in a forward engincering process.
Reverse engingering tools often merely assimilate the
concept of a module in a structure chart o a program unit
of the coding language {a routing in FORTRAN, a
proecedure in Pascal, or a perfonmed section/paagraph in
COBOLY, thus failing to aggregate program units into a
maodule whenever these contribuie io implementing a
system functionality or to break a progriun unit info several
modules whenever it implements more than one
funciionality. The identification of the module interfaces is
also often performed simply on the basis of the langoage
characteristics, for example by derving the intermodular
relationships from calls to routines or PERFORM
statements and compiling the Hst of the data ffowing in and
out from each module according to the st of parameters
exchanged in a routine call. The conscquence is that the
structure charts produced are a snapshot of the system
structure rather than o representation of s architectural
design,

Understanding the architecturad design of a software
system requires much more than just depicting relations
already explicit in the code, such as a procedure call or the
binding of an actual parameter to the corresponding formal
parameter in the form of boxes, bubbles and edges. The
type of decomposition, either functional or based on the
ideas of datn encapsalation and ohject orientation, which
Brought about the architectural design of the systern must
guide the definition of what the content of a madule 15, ie
which kind of abstraciion each module implements. Once
the moduale content has been defined, the relative
abstractions have to be localised in the source code, and the
relationships between the resulting modules have to be
derived. This requires the formulation of hypotheses on the
way abstractions in the design have been mapped onio cade,
It is worth stressing that both the criteria and models
adopted o localise the modules and the techniques used to
derive the imermodular relationships vary considerably
according to the kind of decomposition that drove the
griginal development of the sysiem, i.e. according to the
type of abstraction to be identified in the source code,

This paper deals with the comprehension, at the
architecturai level, of a software system designed according
10 a functional decomposition approach, A method is
proposed to reconstruct the architecture of a software system
and represent it in the form of a structure chart. The
structure chart nodes are not simply program units, but
aggregates of units, cach aggregate implementing a

31

functional abstraction. Consequently, edges are not a mere
representation of routine calls or PERFORM statements
but, rather, depict the different kinds of relationship that can
exist between modales and, in particular, the "uses” and "is
composed of” relationships [6]. The concept of node
dominance on a directed graph is cxploited 10 aggregaie

relationiships from the anit activations,
The architectural design produced by our method does not

“pEke G dectin T the lintitdidons of “either - the-coding

language or the operating environment: it is a sori of ideal
architecture, Le. the system architectural design as it could
be implemented on an idea! platform. This means that all
the design decisions deriving from considernsions on the
internal consistency of modules and the abstractions they
implement are reflected in the structure chard, while the
decisions dictated by Ihnits of the implementation platform
are filtered out. This is a matter of considerable importance
as the platform limits usually corrupt the ideal design, thus
making it difficult to understand the meaning of modules
and their interconnections. Filtering out design decisions
related to the implementation platform allows the
architecture of the systemn as it was originally conceived by
the designer o be reconstrucied, and this is a valuable aid o
comprehending the system. On the other hand, the structure
chart we produce cannot be seen as a re-modularisation of
the system ilsell, as tricks and shortcomings may have 1o
be re-introduced in the architectusad layer in order to make
the modularisation feasible.

2. Recovering the system modular
architecture

Several methods have been proposed in the literature to
identify modules in existing systems with the aim of
remodularising thew, ie. substituting a large program with
a functonally equivaleni coliection of modules. A varicty
of reasons can trigeer syslem modularisation processes,
including the prodiuction of reusable assets, improving the
guality attributes of a system or migrating it from a
mainframe to a client/server platlomm,

For example, Sneed ef al. [14] ackle the probiem of
remoduolarising large application programs in the context of
migration from mainframe sysicms to distributed
architectures, The paper snggests three different approaches
to program downsizing (a procedural approach, a functional
approach and a data type approach) and describes experience
gained in practical applications of the methods. Markosian
et al. {8] describe a tool for modularising large COBOL
programs. The paper tackles the technical problems of
constructing the modules but docs nol suggest any strategy
for planning the new modular architecture of the software
system, Ning er al. [9] propose program slicing as a tool
for recovering functionally related code segments from
legacy systems so that they can be packaged into
independent reusable modules.

program units into modules, and to derive intermodular

None of these methods, however, proposes the
reconstruction of the system's original architectural design,
As the objective is simply to remodularise code, these
methods reconsiruct an high level design documentation
which is nothing other than a snapshot of the actual
implementation, and make no atlempt to distingnish the
real design decisions from the choices imposed by the
implementation platform, . .

In this section we propose a process for reconstructing
the architectural design of large programs in order o get a
better understanding of them. The process consists of two
phases: first the system modules are identified and the
functional relationships between them are derived; then the
focal dasy and interfuces are reconstructed for cach module,

Next step consists of producing the specification of each
modole. This requires comprehending what modules do,
what each intermodular relationship means and which
concepts of the application domain data items implement.
These activities cannot be completely automaled because, as
Biggerstaff ef al. state [3], the way human-oriented concepts
are associaled with soflware components and related
relationships is not precisely formalised. Knowledge of the
application domain and human expertise play a fundiumental
mole in program understanding.

2.1, ldentifying modules and intermodular
relationships

‘The method we propose identifies the systetn modales by
aggregaling program units that implement a functional
abstraction, and produces the system architecture by
deriving the functional relationships that exist between
moduies (4], The method is based on functional dependency
relationships, which are expressed in terms of dominance
relationships [7] between the nodes of a graph deseribing
the activations of program units. We will call such a graph
the "call graph” of the program. Two different kinds of
intermodular relationships are singled out, namely "uses”
and "is composed of” relationships [6].

The identification of modules and their relationships is
divided into the following steps:

Step 1. Production of the Call Graph and Dominance Tree

The Call Graph CG of a program P is a flowgraph
CG= (N, L, 8), where:
s Negw PP s the set of the program units and s is the
main program;
= I describes the activation relation on (s W PP) x PP,

() Dominance Relation. In a CDAG a program unit px
deminates 2 program unit py if and only if all paths from the
oot of the CDAG to py go through px.

Direct Dominance Relation. A program unit px directly
dominates a program unit py if and only if px dosminates py and
all the program units that dominate py deminate py too.

Strong Direct Dominance Relation. A program unit px strongly
and directly dominstes a program unit py if and oaly if px
directly dominates py and px is the only program unit in CDAG
that activates py.

The existence of dircet or indirect recursion between
program units produces cycles inside the CG. A cyclic CG
can be reduced to a Call Directed Acyclic Graph (CDAG),
by collapsing every strongly connected subgraph {i.e. each
subgraph containing one or more cycles) into a single node.
In fact program units linked by recursion contribute 1o the
implementation of a single functionality and can, therefore,
be regarded as a single module. Figure 2.1 shows a sample
CG and its corresponding CDAG.

Figure 2.1. A sarmpie CG and the relalsd CDAG

From the call graph it is possible to obtain the
dominance tree by computing the dominance relations([7]
between the nodes in the CDAG. Moere specifically, the
rellexive and transitive closure of the dominance relation on
the CDAG is a tree, called the Direct Dominance Tree
{(DDTY. The dominance tree outlines the hierarchical
functional dependences between program units: if a program
unit py dominates a progeam unit pa then each activation of
P is preceded by an activation of py.

The Strong and Direct Dominance Tree, SDDT, is
obtained from DDT by marking those edges that link two
nodes in a strong and direct dominance relation. The strong
direct dominance concept capiures a fundamental
characteristic of a typical functiona! dependency between
two program units in a software system: if a program unit
p2 is activated only by the program unit py, then pa
implements a subfunctionality of a more general
functionality defined by py. Figore 2.2 shows the SDDT of
the call graph in figure 2.1. Production of the CG, the
CDAG and the SDDT can be {ully automated. The SDDT
is a wuseful starting point in identilying functional
abstractions clustered in whole or partial subirees.

Step 2. Production of the Module Tree

CG and SDDT can be used 1o reconstruct the set of
modules making up the high level architecture of the
program P and the intermodular relationships between

< SATORE RO EHIECT g ol g

dominance refation

“ifirect duniinatoe B
relation

Figura 2.2, The SDDT of the CDAG in Figurs 2.1

them, We have aiready outlined a first rule for the
identification of modules ona CG:

a) a strongly connecied component of the CG can be
considered as a single module implementing a recursive
functionality.

The second rule we use (o identify moduoles consists of
aggregaiing whole subtrees each of which implemenis a
single functionality represenicd by its ro0t:

by each subtree of SDDT which holds only marked edges
generates a module formed by all the program units
belonging (o this subtree.

Tach nede of such a subireg, except the root, IS a program
unit that implements a service that can be accessed only
through its own strongly direct dominator node and can
therefore be considered a subfunctionality of this dominator,
The Reduction of the Suong Direct Dominance Tree,
RSDDT, is the trec obsained from SDDT by collapsing
each subtree of SDDT having only marked edges into one
neude. Figure 2.3 shows the RSDDT of the SDDT in figure
2.2.

strong and direct
dominance relation

diret dominance
selation

Figure 2.3. The RSDDT of the SDDT in Figure 2.2

Each subtree which holds both marked and nnmarked
edges may constitute a module implementing a
functionality represented by its root. However the
subfunctionalities implemented by the dominated nodes
cannot be indiscriminately clustered and hidden in this
module. In fact the nodes connected to the root by a marked
edge represent subfunctionalitics that may be considered as
componenis of (he more general functionality represented

33

by the root, Vice versa, cach node connected to the root by
an unmarked edge represenls a common service (a
functionality used by more than one program unit) and
therefore it must be clustered in an independent module:

¢} each subtree of RSDDT which holds both marked and
unmiarked edees generates a module that aggrepaltes the
root of the subtree and the leaf nodes representing single
program units which are linked to the root by marked
edges. Each of the remaining program units defines a
oImodule., .. .

The tree obtained by dpp!ymg rule c) to Ehe RSDD‘F is

called the Module Tree. This tree partitions the sets of
program units into a set of modules and identifies a
hicrarchical decomposition of the functionalides of the

original system. Finally, direct and strong direct dominance

relations between the modules idemified on the Module Tree
can be interpreted as follows:

d each of the marked (uamarked) edges of the Module Tree
is a candidale to generate an "is_composed_of” ("uses”)
refation between the sofiware componerys represented by

the nodes that the edge links.

Figure 2.4 shows the Module Tree oblained from the
RSDDT in Figure 2.3, The Module Tree shows the
functional relations between recovered modules. These
relations now have to be completed with intermodular data
relations.

‘uses’ relation
— e ey

& O

Figure 2.4. The Module Tree fromthe RSDDT in Figure 2.3

RER fzapﬁs* i of relation

2.2, Identifying local data and interfaces of
modules

Apgregating program units into modules and recognising
the hierarchical functional relations existing between them
is not sufficient io ensure full comprehension of the
program, because information has o be gathered on module
data coupling. As a first aid to reduce the comprehension
effort, we partition the global data set of the program by
singling out the set of data items local {o each module and
the set of data ilems global 1o the modules in a subtree of
the Module Tree. Using this partition and the call relations
between modules, the data items that potentially belong to
the module interfaces are also identified. This preliminary
decomposition does not take into account intramodular and
intermodular data-flow, so we are unable to identily whether
one and the same data item is used as local data in different

LOCALM1) = &
LOCAL(M2) = (¢}
LOCAL(M3) = @

LOCAL(MG) = @

LOCAL(MS) = [c)
LOCALMIO) =@
LOCAL(M11) = &
LOCALMI2) =10

GLOBALMD = [a}
GLOBAIL(M2) = {b}
GLOBALM3) =@
GLOBALM6) =3
GLOBALMS) = {d, 1)
GLOBALMI10)=@
GLOBALMID =
GLOBALMI2)=&

INTERFACEMD = &
INTERFACEM2) = {)
INTERFACE(M3) = {a, b}
INTERFACE(MS) = {a, b)
INTERFACE(MS) = {a, b)
INTERFACEMI0) = {a}
INTERFACEMID) = (b, 4, f)
INTERFACEMI2) = {d} ..

Table 2.1. The data sels of the modules of Example 2.1

modules, However, this {irst decomposition is a useful
starting point for software comprehension becavse it allows
for global variables to be deall with as exchange parameters.
Finally dam-flow analysis (1] is exploited to refine data sets
and interfaces,

Given a flowgraph G= (N, E,), we denoie with N{(G)
and E{(G) the sets of nodes and edges in G, respectively. Leg
M = {my, .., my} be the set of modules of the Module
Tree and let P(m;) be the set of program units ¢lustered into
the module mj (i = 1, ..., n). We define the relation
MCALL ¢ M x M as follows:

MCALL = {(m;, mp)e MxM {3 ppe Plmy),
Pk € P(my) such that (py,) € E(CDAG))

1t is worth noting that py must be the root of the module
mj because of the construction of the dominance tree and
Module Tree. For each module mj € M we also define the
sets of immediate successors and predecessors on the
relation MCALL:
ISUCC(my) = {mj& M | (m;, mj) € MCALL}
IPRED(m) = {mje M | {m;, mj) & MCALL]

and the sets of successors and predecessors:
SUCC(m;) = ISUCCGm)) Um;eISUCC{mi) SUCC{my)
PRED{m;) = IPRED(m;) Umﬁ IPRED(m;} PRED(IHJ')

Similarly, for each module m;e M, let MTSUCC{my)
and MTPRED(m;) be the sets of successors angd
predecessors of my, respectively, on the Module Tree.
Finally, we use DREF(m;) to denote the set of varinbles
referenced in the module m; and MREF(D) 1 denole the set
ol modules referencing the variable d.

For each module m; we construct the following data
sels;
LOCAL{m;) is the set of variables local to mi, i.e.,
the set of the variables which are only referenced in the
module mj:
d € LOCAL(my) iff MREF(d) = {m;)

Fach variable d is considered global 10 the minimum
subtree of the Module Tree that contains modules in which
d is referenced;

34

- GLOBAL(my) is the set of variables which are global
1o the subtree of the Module Tree rooted in my;
d € GLOBAL{my) iff
B de LOCAL(m) and
2) MREF(d) ¢ ({m;] v MTSUCC(m;)
By my & MTSUCC(my)
not (MREF(d) < {({my) v MTSUCC(mh)

It is worth noting that each variable d € GLOBAL(m;)
can be considered local to m; and can be propagated to cach
module my referencing it through the interfaces of the
modules in the call chain that connects m; to mj:

- INTERFACE(m;) is the set of the variables potentially
belonging to the interface of my, i.c., the variables that
o module oy export/import 1/from another module m;
when (mj, miye MCALL:
d g INTERFACE(my) iff
I de GLOBAL(mj)
for some mj € MTPRED(m;)
2) gither my e MREFY or
dmg & SUCC(m) m MREF@)
The interface of the module my, the root of the module

iree, coincides with the interface of the origingd program, if
this exists,

and

and

Example 2.1, Let us consider the Module Tree in Figure
2.4 and suppose that variables a, b, ¢, 4, ¢ are referenced in
the original program:

MREF(a) = (M1, M2, M6, M10)
MREF(b) = (M3, M11)
MREF(c) = [M8)

MREF(d) = {M8, M12]

MREF(e) = {M2)

MREF(f) = (M8, M11}

Table 2.1 shows the recovered LOCAL, GLOBAL and
INTERFACE module data sets.

Intermodular data-flow analysis technigues help in
understanding the intermodular data relationships, by
detecting the module that defines the value of a global
variable and the module that uses it, thus enabling the data
sets and interfaces of the recovered modules to be refined. In

fact, it is possible that a variable v, which is global to a
subtree of the Module Tree, is assigned to the INTERFACE
set of some module m in the subtree. However this variable
counld be used as a logal variable in this module, ie.:
- every lime the value of the variable v is used in the
module a1 it is also first defined in m;
- no other module uses a value of the variable v which
is defined in the module m..

In this case, the variable v has to be mévcd fromihe “
ANTEREFACE 1o the LOCAL set of the module . Tet us

consider example 2.1, The variable [has been assigned o
the GLOBAL set of module M8 and 1o the INTERFACE
sct of module M11, However, if no definition of { in M§
reaches a use of Tin MI1 and no definition of { in MI1
reachos a use of £ in MBS, then [s used as local variable in
hoth MY and M11. This means that £is the same name for
two distinet data items and then i must be in the LOCAL
sets of both modules M8 and M1

3. Case study

The method for reconstructing the architecturat design of
a system has been validated by applying it in a set of case
studies, the results of which are shown in this section.

The set of case studies consisis of five COBOL programs
selected from a university's halls and residence information
system, The system consists of 103 programs and Y0 more
Copy and Screen files; the overall size of the system is
approximately 200 K fines of code, The soltware sysiem
was designed by adopting a lunctional decomposition
approach and respeciing the software reusability requisiie:
for insignee, functionalities that are frequently used in the
systeim are encapsulated in independent programs activated a
npumber of dmes through CALLS. Table 3.1 shows some
siructural characteristics for cach of the five programs
analysed and, in particular, the number of Lines of Code
{LOCy, the nomber of Paragraphs/Sections and the number
of different programs activated with o CALL instruction,

NAME L.O.C.| PARAGRAPHS | CALL
AUDIT 336 23 3
UTTRGRENT 43 b7 [
DAMAGE 1 (01 32 13
LETTGEN 352 EM [
ROGMANM 1667 43 12
TOTAL 3618 157 40

Table 3.1. Structural Characteristics of the analysed
programs

Although our method has been introdaced and discussed
withoui making reference either to the coding language or
the operating environment of the software systems, il now
becomes necessary to make a number of considerations that
are typically language-dependent. The characteristics of the
language require certain peints to be clarified regarding the
proposed model but without diminishing the model's
generality. Consequently, the first part of this section is

35

devoted to customising the proposed method for COBOL
systems, while the second part illustrates the resulls
obiained.

3.1. The architectural design recovery method
in COBOL environment

The model proposed for the reconstruction of the

“architectural design ol existing sofiware systems-is based on

the program call graph, The defirition of CG introduced

=refers“tothe-concept-of program-units-that “make-up-a -

program. However, while the identilication of these
program units for languages like Pascal, Fortran and C is
almost immediate as they coincide with syntactic structures
such as procedures, functions and subroutines, this 18 not
irue for COBOL. COBOL does not allow "procedure like"
units 1o be declured inside a program, which is monolithic,
Nevertheless COBOL makes it possible, through the
Procedure Division segmentation mechanism, for a progrim
io be functionally decomposed into severid sections which
can in turn be decomposed into & number of paragraphs,
The PERFORM verb is used to activate a paragraph or
section, or a scquence of paragraphs or sections. In
agreement with these considerations, 2 COBOL. program P
can be modelicd through a call graph defined as
CG= (N, E, 53, where:

s DD is the set of the performed Paragraphs, Scctions and
sequences of Paragraphs/Sections of P
« I describes the activation relation of program units in

PP by means of the PERFORM verb.

Defining the set PP oag the set of performed
paragraphs/sections means that the resulting call graph does
not represent transfers of control from one paragraph o
another due to the fall-through execuwtion or GO TO
statements. Consequently this model faithiully reproduces
the execution of those programs in which syntactic
mechanisms different from PERFORM have not been used
to transfer control between program units, and in which
GO TO statements have been used in a structured way, i.c.
without producing any jumps outside the performed
prOgram unil,

Apart from this characterization of the call graph adopted,
the modules and relative intermodular relationships are
identificd as described above. The way in which the data
referenced by each module my is distributed among the sets
LOCAL(n;), GLOBALGy) and INTERFACE(m;)} remains
unchanged,

3.2, Experimental resulits

In this section the application of the proposed method is
shown with reference o the "LETTGEN" program, one of
the five programs analysed, LETTGEN consists of 552
L.OC and is structured in 42 paragraphs. The call graph,
prodaced by a commercial code static analyser, and the
related dominance tree have been used Lo recover the
architectural design. Figures 3.1 and 3.2 show the call
graph and the recovered Module Tree respectively.

Figure 3.1. The CG for the LETTGEN program

ML

- - ’/
-
|a133| |n133] |JML:_‘

M4
. ‘uses relation
m———r
‘ M0 l [ﬁ_ﬁl is composed of relation
e

Figurs 3.2.The Module Tres for the LETTGEN program

In Figure 3.1 each performed paragraph/section has been
idenlified with a progressive number, while the noumberg
associated with each module in Figure 3.2 corresponds (o
the root of the subtree clustered in the module itself. In
Table 3.2 the composition of each module is shown. The
subseguent step is dedicated to the reconstruction, for cach
module m;, of the sets DREF(m;), LOCAL(m;),
GLOBAL(m;) and INTERFACE(n;). Table 3.3 shows the
GLOBAL, LOCAL and INTERFACE data sels for cach
module.

This is followed by the reconstruction of a data dictionary
which is achieved by assigning a meaning in the
application domain to cach data item. Meaning assignment
is a process that cannot be easily formalised as itis founded
on groups of clues and hints hidden in the code, such as the

34

MODULE
M1z (1)
M2= (2, 3)
Md= (4,5,6,7,8,9,10,11,12.14,15,16,17,18,19,20,
21.22,23.24.25.26.27,28.29,40)
M13= (13, 36)
M10= (30, 31)
M32=(32)
M33=(33)
M4z (34, 37, 38)
M33= (35, 39)
Md1= (41. 42)

COMPOSITION

Table 3.2, The composition of the modules in Figure 3.2

choice of variable names, the position of the declarations,
the comments inserted by the programmer, etc.. It often
happens that logically correlated data have declarations that
are physically close in the code and their names are assonant
with the nomenelature adopted in the application domain.
For example, Figure 3.3 shows the declaration of the data
item describing the identification number of a college room
conlained in the Working-Storage Section of the LETTGEN
program. The use of names that are very close to the
tenninology of the application domain makes it casy {0
understand the meaning of the ‘mormalised-room-number’
data ilem.

text-lensth

Ji%1 INTERTFACE(MD LOCAL(M) GLOBAL(M)

M1 wene s tetter-pir, letter-record, letter-file, text-file,
masier-record, input-room-number, error-
parameter, input-address-lines, text-pir,
text-length. svstem-parameter-block

M2 Fetter-ptr, text-file, text-pir, diff e

letier-ptr, letter-file, text-record, text-ptr,
master-record, input-room-number, Faput-
address-lines, error-parameter, text-length

text-parameter, word-buffer,
‘full-offer-room, pericd-cound,
teanpdate, temp-value,
femp-amount. parnptr

issing-record, sssembly-bulfer

missine-record

MI3 | aszemibly-bufTer. svsteni-parameter-hlock full-date e
M30 | tetter-pir. letier-record. assemblyv-huffer baffer-ntr, len [one
M32 | letter-record, lenes-file sves aeas
M33 | feter-pir, letter-recornd s o
M34 | ieher-pir, letierrecord, letter-fife, master | Is-fexi-file-name, eof-flag, -

record, inpui-room-number, texi-file, text-file-name, letter-file-pame

error-parameter, input-address-lines, texi-

[, text-lensth, svstem-parameter-hlock
MA3 [letter-record, Tetter-file. text-{ia e e
M4l | fetter-record, letter-file, master-record, s o

Tabie 3.3. Data set partitions for the LETTGEN program

1 ised-room~number .
k! in.
5
5 onrnersom-no
3 nrn-place

Figure 3.3. A sample code fragment

It was now possibic 1o tackle the problem of identifying
the functionality performed by each module and to deaft a
series of functional specifications in natural language {or
each of them. This required the specification of the
funcionality performed by each subtree in the Module Tree,
abstracting it from the ones performed by its component
modules. This procedure was performed using a boltom-up
techuique: first the functionality porfonned by the deepest
evel subtrees were identified, siariing from the leaf
modules; this gradually made it possible to rise in level up
to the root of the Moduaie Tree. This reduces the
comprefiension effort as the process is caried out on g
quantity of code that is smaller than the whole program;
morcover, the comprehension process can also be carried
out in paralle] for the various sublrees, Table 3.4 describes
the funciionalities obtained for the modules belonging to
the subtree with the root M4, and the global functionality
associated to the M4 module itself.

The experiment effectively shows the validity of the
proposed method. This ean be seen by the fact that once the
Module Tree has been obiained and the data has been
partiiongd among the various modules, the process for the
assignment of meaning o each data item and module was
considerably facilitated compared to the effort that would
Ive been required if the process had been conducted on the
whole system as a single entity. It was also possible to
conduct this process in parallel by svitably proning the
Module Tree. The experiment showed that pruning the
Module Tree vertically (ie., depth first visiting severat

37

MODULE FUNCTIONALITY

M Prints a line of a letter

M3 Uonverts and prinis the curremt date

Mg iJalcizs blanks {rom ihe fail of a string

M Heads e master file and prints the letter body

Table 3.4. Summary of the functionalities for module M4

subtrees of the Module Tree in parallel) was more effective
than horizomtal pruning.

4. Conclusions

The work described in this paper addresses the problem of
understanding a software system and focuses in particalar on
the comprehension of the system architectural design. A
method has been presented to reconstruct the architecture of
a system and represent it in the form of a structure chart
which we call module tree. The method assumes the system
was originally designed with a functional decomposition
approach, and atlempis (o aggregaie language program units
into modules whenever these implement a functionality of
the system. The system is represented in the form of a
directed graph describing the activations of program units,
and the concept of node dominance on a directed graph is
exploited 10 aggregale program units into modules, and to
derive intermodular relationships from the unit activations.
Two types of intermodular relationship are singled out,
namely the "pses” and “is composed of” relationships.
Finally, the system data set is partitioned into sets of data
ilems which are local o a given module and sets of data
items which are global to the modules belonging 1o a
subtree of the suructure chart. The analysis of both these
partitions and the activations of the program units forming
a module allows the set of dala items potentially belonging
to the module interface o be identified.

The architectural design this method produces does not
reflect either the characteristics of the coding language or
the limitations of the operating environment. While this is
an imporiant feature in the comprehension of the system, it
implics that the recovered architecture cannot be directly
assumed as a basis to re-modularise the system. In fact,
remodularising the system requires firstly mapping the

module Jocal data set and interfaces onto the programming . . .

language, and then possibly modifyving the recovered
architeciural design 1o take into account the limitations of
the operating environment,

For example, if the aim is 10 modularise a COBOL
systerm on the basis of the architectural design recovered by
our meihod, the sets of local, global and interface data liems
have w0 be mapped onto File Section, Working Sterage
Section and Linkage Section, The following two equations
define the Working Storage Section - denoted WS{m;) - and
tise Linkage Section - denoted LE(n;) - of each module my;
belonging (o the module tree of a COBOL sysiem:

WS(m;) = LOCAL(m;) v GLOBAL(m;)
LK(my) = (DREF(my) Umje 1SUCCm,) RO\ WS(my)

Of course, each module will have its own Input Output
Section and File Section in which the files will be
described. To illustrate the problem deriving from the
limitations of the operating eavironment, let us consider
the case in which the recovered architecture includes
modules that access one and the same file, This could be a
problem whenever the operating environment docs not
allow files o be shared mnong modules, as in the case of
OS/VS COBOL.

Acknowledgements

We wish o thank professors Andelio Clnitile and Ugo De
Carlind for thelr precious suggestions,

References

{11 AN, Aho, R. Sethi and 1.D. Uliman, “Compilers,
Principles, Techniques, and Tools”, Addison-Wesley,

1986.

38

i6}
{71
i8]

{10}

[11]

[z}

[13]

[14]

P. Antonini, P. Benedusi, G, Cantone and A. Cimitile,
“Maintenance and Reverse Engineering: Low-Level
Design Documents Production and Improvement large
application programs”, Proc. of Conference on Software
Maintenance, Austin, Texas, IEEE Comp. Soc. Press,
1987, pp. 91-100.

T.1. Biggerstaff, B. G. Mithander and D. Webster, “The

Concept Assigament Problem in Program
- Understanding”;— Proc.. of - the-15th--International -
Conference on Software Engineering, Baltimere,

Maryland, 1993, pp. 482-497.

A Cimitile and G. Visaggio, “Software Salvaging and The
Dominance Tree”, Int. Rep. PF-CNR "SICP” Sp6R77,
1992, Dep. of "Informatica e Sistemistica” - Universily
of Naples. To appear on The Journal of Svstems and
Seftware,

1L Cross 1T, "Reverse Engineering Control Structure
Disgrams”, Proc. of Working Conference on Reverse
Epginzering, Beltimoere, Maryland, TEEE Comp. Soc.
Press, 1993, pp. 107-1 16,

C. Ghezzi, M, Jazayeri and D, Mandrioll, “Fundamentals
of Software Engineering”, Prentice Hall Pub., 1991,
M.S. Hecht, "Flow Analysis of Compuier Programs”
Elsevier North-Holland, New York, 1977,

L. Markosian, P. Newcomb, R. Brand, S. Burson and T.
Kitzmiller, “Using an Enabling Technology io
Reengineer Legacy Systems™, Conmm. of ACM, vol. 37,
no. 3, May 1994, pp. 58-70.

J.Q. Ning, A. Engberts and W. Kozaczynski,
“"Recovering Reuszble Components from lLegacy
Systems by Program Segmentation”™, Proc. of Working
Conference on Reverse Engineering, Baltimore,
Muaryland, IEEE Comp. Soc. Press, 1993, pp. 64-72.

A, Quilic, “A Memory-Based Approach to Recognising
Programming Plans”, Comm of ACM, vol. 37, no. 5,
Muay 1994, pp. 854.93,

Y, Rajlich, N. Damaschinos, P. Linos and W. Khorshid,
"VIFOR: A Tool for Software Maintenance”, Software
Practice and Experience, vol. 20, no. 1, Janoary 1990,
pp. 67-77.

C. Rich and L. M, Wills “Recognizing a Program's
Design: A Graph-Parsing Approach”™, JEEE Software, vol.
7, no. 1, Jan. 1990, pp. 82-8%.

H.M. Sneed and G. Jandrasies, “Seftware Recycling”,
Proc. of Conference on Sofvwvare Maintenance, Ausun,
Texss, IREE Comp. Soc. Press, 1987, pp. 82.50.

H.M. Sneed and E, Nyary, “Downsizing Larpe
Application Programs”, Proe. of Conference on Software
Maintenance, Montreal, Canada, 1IEEE Comp. Soc. Press,
1993, pp. 110-119.

A Documentation-related Approach to Object-oriented Program Understanding

L H. Eizkorn and C.G. Davis

s The University of Alabama in Huntsville

Abstract

Object-oricited code is considered to be inherently
more rewsable than functional decomposition code;
however, abject-oricated code can suffer from a program
understanding standpoint since good obfect-oriented
style seems to require a large number of small methods.
Hence code for a particilar task may be scaticred
widely. Thus good semantics based lools are necessary.
This paper describes an appreach to object-oriented
code understanding that focuses largely on informal
linguistic aspects of code, such as comments and
identifiers.
Kevwords: obfect-orienied

program understanding,

software, software reuse, soffware maintenance.

1. Introduction

The use of the object-oriented paradigm should result
in the poals of software esgincering such as
maintainability and reussbility being more easily
achieved, This is duc to the encapsulation, inheritance,
and polymorphism aspecis of the object-oriented
paradigm. Studies have tended to show that reusability
(7, and maintenance {6] are beiter achieved with
objecl-oriented code than with functional decomposition
code. However, object-oriented code, due to the very
aspects that make it desirable, tends to suffer from the
wide scattering of the code that performs a parlicular
(even a fairly simple) task. It is considered to be good
object-oriented programming style to write small member
functions [10]. This results in an objeci-oriented system
consisting of a large number of small moduoles. Also, by
the use of inheritance, a class may inherit one or more
classes, with associated methods. Often, these inherited

0-8186-5547-6/94 304.00 © 1984 IEEE

39

classes way be inherited by more than one derived class,
and are not always defined focally. This tends to
underline the need for good. semantically-based tools for
object-oriented code [12]. Some structure-oricoted tools
for C++, for example, do exist, For example,
Together/C++ (by Object International, Inc. Austin
Texas) provides an object model in one window, with
associated C++ code in another window. If one window
is edited, updated
automatically. This type of tool has uscs both in

then the other window s

object-oriented sofiware development, and in
object-oriented software maintenance and reuse.
However, there is sttt a need for domain-based

understanding tools that would provide more than just
the structure of the code, but also a domain-based
understanding of the program concepts.

2. Background

Our primary rescarch area is the metrics-based aulo-
mated extraction of reusable from
object-oricnted code. A workable program understanding
approach is an infegral part of the extraction process.
There have been several knowledge-based approaches 1o
program understanding. These approaches differ in the
understanding methedologies, and in the prograum speci-
fications produced. Some of these approaches are more
autornated than others -- most require user intervention
at some point. Caldiera and Basili [4] provide an identifi-
cation methodelogy that automatically extracts
candidales for reuse. Then, in a following component
qualification phase, a domain expert analyzes and re-
cords the meaning of each candidate component. An
interactive (ool (the specifier) employed by the domain
expert assists in the formal specification of the candidate

components

component. Our approach is similar to Caldiera and

Basili's in that both approaches are metrics-based, and
both include an automatic candidate component exirace
tor. However, our understanding phase, instead of
attepting formal specification, provides a heuristic,
knowledge-based, concept-recognition approach 1o pro-
gram understanding of the candidate componeius, Our
system 15 called the PATRicia (Program Aualysis Tool
for Reuse) system. The concept-recognition module is
known as the CHRiS {Conceplual Hierarchy for Reuse
cuploying Semantics) module, A block dingram of the
PATRIcia system is provided in Figure 1. The resi of our
discussion is related to the approach cmploved by the
CHIUS module.
Typically, the more automated versions of the heuris-
program understanding approaches consist of
dentifving typical program components as being compa-
rable 1o those program compenent plans located in a
progrun-knowiedge base, and deriving a specification

tic

that is based on plans associated with the program com-
ponent plans that were identified. Rich and Wills {13]
take a graph-parsing approach to program understand-
ing. In this appreach, the program is first transformed
into a flow graph. This flow grapl is then parsed using
progranyming-knowledge plans (grammar roles stored as
sraphs), and o design tree (consisting of progriom compo-
nenis) is produced. A natural languape description
associnted with the programming-knowledge plans is
then produced. WNing and Harandi [3] (11 ke 3
hewristic-based concepl recognition approach This ap-
proach uses programming-knowledge plans, and 2
mechanism catled interval logic, to rccognize concepts at
various levels (structure-level concepts, function-level
concepts, eic.), and to formulale abstract concepts at
higher fevels. A natural language description associaied
with the progranmming-knowledge plans is then pro-
duced. More recenily, Koznczynski, Ning, and Engberis
8] used a transformation approach fo formulnie higher
level concepts frony lower level concepts, Low level con-
cepts are represenicd by absiract syniax trees. Production
rules are used o recognize language concepts. These pro-
gram cencepls arc combined io form more abstract
concepts. Note that all of these approaches (except
Caldiera and Basili's, which depends on a human domain
expert), look only at the code itsell {(or a version of the
code translated into an interinedinte formy), and ignore
the comuments, identifiers. and related documentation.

Biggerstafl, Mitbander, and Webster [2] [3] take a differ-
ent approach that employs informal information --
keywords embedded in comments, idenlifier names, and
design documents -- as well as code analysis. In this sys-
tem a wser would first identify a suggestive identifier
name. Then the user requests @ browser view of all func-
tions relaled to this identifier. The idenlifiers from these
functions give additional information. Various other
ools provide a pattern of relgtionships thai gives addi-
tional information. A concept assignment can then be
applied. Further aualysis can then ocour using this iden-
tificd concepi. This approach can be applied easily o
domuin-related concepts, whereas the earlier approaches
discussed {except Caldiern and Basili's, which relied on 2
damain tended 1o identify primarnidy
programning-oricnied concepls, or algorithms. Bigger-

engineer)

staff claims that there is g paradigm-shift when moving
from programming-oriculed concepls io domain- or hu-
man- related concepts, and not just a simple aggrepgation
of programming concepis to form a higher fevel domain
concept.

3. Object-oriented program understanding

The proposed approach for object-gpriented code
understanding cmplovs methods derived from the
Biggerstafl’ approach. a5 well as the programming
concepts approach. We think that a belicr concept
recognition engine could be buil that would employ
comment and ideniificr recogniion initially to derve
indtial tentative concept understanding, then apply o
programuning-concepl recognition approach o identily
programming-concepts related informalion within the
previously tentatively identified conecptl. (Note that
Biggerstall {2 {3] hias recommended a similar approach).
The sccondary undersianding cycle would serve muitiple
purposes. First, i would enable parual-filling of
previously partially undersiood concepis. Second. it
would serve as a check o make ceriain that the initial
tentative concept understanding had not been mistaken.
The primary geal is to achieve, as nearly as possible, a
tolally avtomated understanding system, with very little
human input required. This is beneficial in our primary
research area of interest, the aulomatic extraction and
cateporization of reusable code components. If good
auiomation could be achieved, and inlermediate resulls

Software package candidate
; component
of interest
storage

candidate
Rt Ui

oopamdidates i T
compuimt

“Component=:{:

Extractor

clasg hicrarchy
class couplings

dosin
concepts
Base

class hierarchy
chuss couplings

Metric
Analyzer

matrix
template

reusable
compaonents

understood

understood
candidaiz

{.‘QE!}FOHCI]I

destgn metrics/

not-design meteics

Figure 1. PATRicia System

could be reported, then this process could operate in the
background, and any extra processing lime required
would not be as important, Also. when discussing
object-oriented reuse, most of the programming-related
concept understanding would be performed on member
functions, which are typically short [10}. Thus some
intermediate resuits could be reported fairly quickly.
Some of the issues involved in combining the two
understanding approaches are:
1) Comment/identifier understanding (in an object--
oriented system, sce later discussion) is inherently
top-down, whereas programming concept understanding
is inherently bottom up. What is the best way to combine
the two approaches?
2) In the case of confusion or disagreement, how much
weight should be given to one method over the other?
3} There is a concepiual leap between comment/identifier
understanding and programming concepts understanding
(human concepts versus programming concepts) [3].
What is the best way to bridge this gap?

However, in object-oriented code. more so than in
functionally oricnted code, much understanding can be

41

pé{{onned simply by looking at comments and identifier
names alore. This is true since object-oriented code is
orgatized classes. with everything required 1o
implentend a class at least mentioned (if not defined) in
the class definition. Thus by a combination of the class
hierarchy {(easily derived), and identificr names and
conunents associated with each class, an at least partial
understanding of what that class does can be derived
more easily than in functionally oriented code. The
primary reason for this is that a class iself is a
more-or-less abstract concepl. Thus, instead of saying
"what possible (more or less) abstract concepts can I
build from this set of understood low-level concepts”, you
say instead (in many cases) "here is a concept -~ I think I
understand it based on my domain knowledge -~ do the
low level concepts it contains agree with my tentative
concepl assignment?” This has Iwo advantages. In the
first place the set of concepts that make up the class is
limited. You know that no concept associated with
another class that is not in this class' hierarchy (unless a
friend method or an altribute of a type which is an
abstract data type that happens to be another class) could

in

o ARSI e NG
: 6'(.3.111}’5(!.?.1.&%11.“. cEmEf e ey s
of reusc
quality

possibly be part of the makeup of this class. In other
words. some objeci~oricnied design metrics, such as the
inheritance and various object-orienied
coupling metrics (such as coupling tirough abstract data
iypes and coupling through message passing 9]) could
assist in the understanding process. In functionally
oriented understanding the subconcepts that make up a
concept would not be as easily identified. Dependencics
between concepts would have o be derived in o more
comphicated manner. such as control flow graphs, oo
{This might still be necessary portions of
object-oricnted code. primarily in the member function

hicrarchy

within

undersianding, bul i1 IS 1ol necessary, in nuny €ases, to
achicve a high level understanding of a class). Another
ahvantage of object-orienied class hierarchigs. is that
alter a particular class has been identified, a shrinking of
the domain occurs when aticwpting (o undersiand
derived classes. This can resull in g quicker and more
accuraic undersianding of the derived classes. Thus, in
MANY CASES, almost top-down

object-oricnted understanding can be taken,

an approach 1o
This paper will concentrale primarily on comment
and wentifier understanding,

3.1 Comment understanding

Comment and idestifier understanding has the
advaninge that not so much tune need be spend in setting
up plans i g knowledge base as is required when seiting
up code recopnition plans. For cxuuple, you nced not
concern yourscH with Thus, instead of
combining two nested Heration evenls (loops) and a swap
nested within the cvents o forn a
recognizable bubble sort alporthim, vou would recognize
the words "bubble sort”. Thus comment understanding
would start at an abstraction level bhigher than code

understanding. In

lcration.

two ileration

Biggersiall's system, primarily
keyvwords were scarched for in comments. In {2] he
reported use of a "linguistic idiom”. which represents the
expecied linguistic fonn of a conceptual sbstraction, He
mentioned that this linguistic imight be
implemented as a set of regular expression patierns that
match the previous natural-language forms in source
code identificrs or comments. We have made an analysis
of different types of common comments and identifiers,
and based on this analysis, we believe that this idea could

wdiom

be taken one step further, and a full (though limited)
natural language parser could in some cases (such as the
analysis of header blocks of subroutines) give beuler
resulis. Afler the parsing of the comuments associated
with the code, this could be useful in acquiring additional
information from external documentation {that
happened 10 be machine-readable). This would take the
form of a kevword and previously-identified abstract
concept search through the external documeniation,
fotlowed by application of the natural language parser 1o
the applicable area within the external documentation,

any

Having logked a1 pypical commonts, we can concludo

1y commenis are almosl always written in the present
tense, with either indicative mood or imperative mood.
For example:

Presont tense, indicative mood:
This routine reads the data,

Present tense, imperative mood:
Read the daia.

This resiriction mnkes @ natural fanguage parser onich
siimpler, since # need not handle past tense, present
perfect tonse. olc.

1) The sei of verbs bypically used Jor commenis is much
resiricied over the set of all English verbs (although
varying with domain

For example;

Verbs oficn used in conunentis;

is, uses, provides, implemicnts, accesses, prings, inpuls,
oulpuls, reads, writes, supplics, defines, reirieves, pels.
eic,

Verbs seldom used in conuments:

smiles, frowns, laughs, rides. Mies, jumps. sings. fights,
clectrocutes, falls, punishes. hires, fires. pats, throws,
pitches. calins, efc.

The sct of comment verbs, while still very large, is sull
in general wuch smaller than the set of natural language
vorbs, Also, since the domain will be resiricted, the

selection of verbs to support becomes much easier. Still,
although our goal is to understand as much as possible
awtomatically, it becomes clear that not all comments can
be parsed.

"3y Condineit s tend 16 'be ertalnivpds:
...) Header block comments

13} epcm[:mmi dcsrnp!mn

a) Thus item does (or is used for) something,
Far example:
This routine reads the data..

b} liemName does (or is used for) soinething,
For example;
READ DATA reads the data.

Both @) and b) arc often foliowed by more sentences
related to the operation of the itom.

For exaniple:

* READ_DATA reads the data. It opens the file for
read, then if reads the data a character at 2 time, */

2y definition

a) ftemName -- definition,
For example:
/* GeneralMatrix - rectangular matrix class */

b} definition
For example:
/* A rectangular matrix class #/

Both a) and b) are occasionally followed by more
sentences related to the operation of the item.

Note that header block comments are normaliy
considered to refer to the construct immediately
following.

B) Inline comments

1} operational description
For example;

43

/ Get malrix row
/! Get matrix column

2) delinition
For example:

A% ndex variable ¥/ i e
/% counter ei'mcommé clmmc!us */

Inline comments also work by the principle of locality, in
that they typically refer cither 1o the code line they are
appended 1o, or to a line or lines of code immediately
following. Less commonly they refer to a previous line,
{3 File header blocks

For example:

/* Koutines for reading data from files. This includes
ASCIE routines and binary routines, ¥/

File ieader blacks apply less of the principle of locality
than other comments. I parsed correctly, they could be
used in restricting the domain for analysis of the later
comments in the file. However, ofien only the fact that
this header Block is located first in the file allows us 1o
infer that it is a file header block. Tt can be difficult to
distinguish this from a header block for the first
construct within the file.

One of the primary requircments is o apply the
so that the
comment can be matched to the appropriate identifiers
{and 1o the understood code, when the code understander
is later wristen). Typically the principle of locality will be
A check of the comment versus the

comment to the correct section of code,

used for this.
identifier is usually necessary.

bt several cases the natural language parser can be
useful -~ primarily in the header blocks, although some
use could occur in inline operational description
comments. In the case of poorly commented code, the
identifier handler wounld have to operate largely alone.
(We can make the observation that code, in order to be
casily reusable, should be well commented, and thus the
fact that this system will work better on betler
commented code is perhaps a reasonable assumption for
our primary research area). We believe (hat a fairly
simple natural language parser, such as the augmented
transition network described in [14] will be sufficient.

The identifier handler will work similarly to that of

Biggerstafl [2] 13]. The trick here is {o first, have the
concept 1o be recognized in the kanowledge base, then
have as many reasonable variations (abbreviations) of the
name a5 possible also in the kpowledge buse. For
sxpmple, consider o bubble sort routine. Various
identifiers nught be: BubbleSori, Bubble Seort.
Bubble_sorl, Bsorl, B_sort. bubble. BublSri, etc, in some
the identilicr might be different from that
expecied, and 3 comment would be used {hopeluliy) 1o
match the dentificr to the concept. For exampie,
consider the previously mentioned GeneralMatrix class

{ 7 GeneralMatrix - reclangular matrix class ¥). One
nughi find, instead;

Cases,

A Ghat - rectangular matrix class #/
chiss GMat: public Matrix

{
public:
GMat(y. /ffconstrucior
real Trace():
vold GethexiRow(y
void GetNextColf)
'

i ihis case, the idestifior used would bave 1o be created
from the preceding comment. This exampie also can
lustrate sone of the benefiis (as woll as difficulies) of
his approach. For example, consider the above without
any good wentifier names:

* 30 - vectungular maptriy class */
class 11 0 public KK

i
public:

ERIGN Heonstrucior
real LL():
void MM():
void NNi

}

This ilustrates the unpoertnnce of the

44

conunecnt/identifier approach for mwost code. A
programmuing concept understanding system would
basically have this type of code input. It would then have
to interpret the LL), the MM}, and the NN{) routines by
ientifving the the functions, In the
conuuent/identifier approach. we are able to arrive at a
Ligh level understanding withow! the nccessity of even
lpoking at the code for the Trace (LL), for example.
However, this also shows some of the limitations of this
approach. 1f poor comments and identifiers are used, the
programaing concept system would stll work, However,
the conunent/ideniifier approach would pot. This is one
regsoir that g cowbined approach would be best. each
providing differcnt aspects of understanding. The
combined approach is also closest 1o how & human expert
woudd try to understand the code. First he would look at
documentation. comments and identifers, and mentally
endaiively classify the code. Then he would examine the
code and compare it with his mental image of what the
code should be doing. Based on information from both
code and documentation he would make a final code
classification decision,

code in

4. Summary

In sununary, we believe that, in our environment {the
extraction of reusable components from object-oriented
code). this approach has definite advaniages. First, the
combined approach. both cominents/ideniificrs and code,
leads to 3 more certain understanding decision. Secend,
semaniic-based tools in
object-oricnted code,

genernl are necessary for
due to the scatiering effect
possessed by obiect orienied code. The inheritance
hicrarcly of object-orienied code, due 1o the domain
shrinking effect as one descends in the hierarchy, enables
an avtomated understanding approach 1o succeed more
easily. The comments/identifiers approach is very useful
for object-orienied code undersianding, since so much of
whit s necessary to understand a class is present in the
class definition, whereas understanding a method alone
{which is what would primarily be done by progranuing
concepl understandersy does provide the full
undersianding of the class, A sysiem based on this
approach can provide an imtegral part of an austomatic
reuse extraction sysiem. Additionally, it could provide a
good mainlenance 100 for object-oricnted systems.

1o

References

{1] Basili,V. and Abd-Et-Hafiz, S K., "Packaging Reusable
Components: The Specification of Programs”, University of
Maryland a1 Coliege Park, CSSTR-2957, UMIACS-TR-92.67,
September 1992,

12} Biggerstall)T. "Design Recove Mai;
" Reuse”, TEEE Compuler, Vol 22, 15577, p. 36-45, Julv |

[3] Biggerstafl, T., Mitbander, B., Webster, 1., "Program
Haderstandmg and the Concepl Assigmment Problem®,
Communications of the ACM, Volume 37, Number 3,
pp.72-82, May 1994

4] Caldiera, G. and Basihi, V. "Identifving and Qualifving
Reusable Soltware Components®, IEEE Computer, pp. 61-70,
Febrimry 1991, '

{5] Harandy, MUT, and Ning, J.Q., "Knowledge-Tased Program
Analysis", IEEE Soltware,pp. 74-81, Jan. 1990

[6] Henry, Sallic M. and Humphrey, Matt "A Controlled
Experiment to Evaluste Mamtainability of Object-Oriented
Soltware", Proceedings of the IEEE Conference on Software
Mainicnance, pp. 238263, 1990,

|7} Kernighan, B.W. "The Unix System and Software
Reusabilaty”, IEEE Transactions on Software Engineering, Vol.
SE-HI, Number 3, pp. 513-518, September 1984,

{B] Kozaczynski W, Ning, 1, and Engberts, A, "PFrogram
Concept Recognition and Transformation”, IEEE Transactions
on Software Engineering, Vol 18, 18312, pp. 1065-1075,
Decemnber 1992,

[9] Li, W., and Henry, Sallie, "Object-oriented Metrics that
Predict Maintainability”, The Journal of Systems and Sofiware,
Volume 23, Number 2, pp. 1114122, Novesber 1993,

[10] Lieberherr, Karl J. and Holland, lan M., "Assuring Good
Style for Object-Oriented Programs”, IEEE Seftware, Volume
6, Number 3, pp. 38-48, September 1989,

[[1] Ning, J.Q., A Knowledge-Bused Approach to Antomatic
Program Analysis, doctoral dissertation, University of illinois at
Urbana-Champaign, Urbana, [1L, 1989,

[12] Rajaraman,C. and Lyu, M. "Reliability and
Maintainability Software Coupling Metrics in C++ Programs”,
Proceedings of the Third International Symposium on Software
Reliability Engineering, pp.303-311, October 7-16, 1992

45

{13] Rich,C. and Wills, L., "Recognizing a Program’s Design: A
Graph-Parsing Approach®, [EEE Software, pp. 82- 89, January
194,

14} Winegrad, T, Laneuage as a Coonitive Process

Addison-Wesley, 1983,
f()r__f_\.ﬂaimmi_a;_n_cu a__1_1_z.l_______ i

Layered Explanations of Software:

A Methodology for Program Comprehension

Vaclav Rajlich, James Doran, Reddi. T.5.Gudla

Department of Computer Science
Wayne State University
Detroit, M1 48202, USA
vir@es.wayne.edu

Absiract

in dealing with the legacy systems, one often
encounters poorly documenied and heavily maintained
software. Lack of undersiandability of these systems
complicates the ask of software maintenance, making i
time consuming and limiting the possibilities of the
evolution of the system. We present a methodology that
helps the programmers to understand programs. Qur
approach is compatible with the “lop-down theory” of
software undersianding, where the programmer creaies 4
chain of hypotheses and subsidiary hypotheses, concerning
the properiies of the code. Then helshe locks for evidence
{beacons) in the code. Our approach shortens the process
of hypotheses creation and verification, and allows
recording of successful hypotheses for the future
maintenance. All information needed for understanding s
recorded in lavers of annotations. An experiment was
conducied fo investigate how the proposed methodology
helps in progrom undersianding, A iool supporting the
methodology, is presented.

1. Iniroduction

The first step in software mainienance, which is ofien
the hardest, is simply understanding the code as it exists
tday. The software engincering field has a number of
methedologies and iools that help programmers in this
1ask, but as code complexity increases, so must a
methodology's capabilities. This paper describes a
methodology and an associated ool that facilizates the
comprehension of programs. It is based on the cogaitive
theories known from the lileratwre., The paper also
describes an experiment conducted io investipate how
the proposed methodology facilitates the ability of
programmers' 10 understand programs.

(-B188-5647-6/04 504.00 © 194 [EFE

Before presenting our approach o program
comprehension, we nesd 1o introduce some basic
terminology and facts, First, program comprehension is
the act of understanding a program on all levels;
that is, understanding what it does concepiually as well
as the fine details of the source cede {11, Some
estimate the time spent on understanding a program
alone 10 be 50 10 90 % of the otal time o maintain it
Although significant progress has been made in this field,
there is still a need for continued investigation.

Oy work is related 1o the work presented in (4], In 4],
Brooks mainiains that anvone who tries 1o comprehend
a program makes certain assumplions or hypotheses
based on both acquired and existing knowlsdge. The
hiypotheses are checked against the source code 1o prove
their validity, The moethodology presenied in this
paper, Layered explanation of sofiware and the
assaciated 1ool, the Tool for Lavercd Explanation of
Software (or "TLES" for shor), exploiis the Brooks'
theory of program comprehension, TLES identifies
construcis of code that need to be be explained; for
example, a class in a C++ program is such consiruct. It
organizes explanations of these constructs into layers.
Each layer provides a summation of the decisions that
the original analyst used when designing and
developing the sysiem.

in Section 2, we present a discussion of the top
down, botiom up, and flal comprehension theories.
Section 3 presents ideas and decisions behind TLES.
Section 4 prescnis the experiment and the results.
Section 5 describes the TLES tool. The appendices present
details of the experiment.

2. Program comprehension theories

In {43, Brooks postulates that the programmer
constructs 2 series of hypotheses to amive al an

understanding [4). He argues that the original developer
builds a program by initially gathering facts from a
problem domain., After a firm understanding of the
problem domain, the developer starts to apply or refine
that domain towards a computer program by making a
series of decisions which add multiple layers (e.g.,

‘algorithmic, representation etc.).” In short, the software
. gngincer takes a_top-down approach starting with the

" "most abstract concepls, refines them agdin and again,

and transforms them into 2 computer program. The
maintenance programmer performs a similar task. He
reconstructs the domains and mappings as he wies w0
comprehend a program,

Brooks based his theory on a related research in the
cognitive science. He puts forth the idea that people
learn by creating hypotheses which shrink the domain
of the problem space (i.e., narrow down the problem).
As an example, "sort numeric list" suggesis a great
deal about the structure of 8 program. From this
requirement, we know that we must create a data
structure that simulates a list (e.g. linked list), we know
the type of list {numeric), and we make assumptions on
the algorithm that could be used for the sort, We know if
the list is not very long, a simple bubble sort would do.
Longer lists suggest a binary sort or something more
complex. Also, there should be an input and output of
the list. All of these subsidiary hypotheses are based on
the original requirements,

In the process of reconstructing the program, the
maintenance programmer creales hypotheses based on
what he or she has learned from the documentation and
source code. These hypotheses Iead to more and more
refined hypotheses which create a tree-like structure
where each node is an assumption. Naturally, the
programmer will make incorrect hypotheses from time to
time. The hypothesis tree is then traversed until the
correct hypothesis branch is discovered. Hypotheses are
verified through the use of segments of code known as
beacons. Beacons are programming statements that help
mainlenance programmer prove hypothesis true or false.
For example, if a programmer is tracing through a
program which deals with a large database, he might
assume the access to the database is indexed. Upon
examining procedure names, the title "Read_Key Field"
is located, This procedure name serves as a beacon to
the programmer by indicating to him that the access to
the database is indexed as he thought. Beacons have
been studied experimentally and proven beneficial
when attempting to understand programs [10].

The concept of bottom-up comprehension is discussed
in [9]). The idea presented is programmers learn by
focusing on small pieces of code (perhaps as small as one
line of source code) and later combine this information

47

together, The result is the comprehension of a larger and
larger part of code. For example, a maintenance
programmer traces through a procedure named
Binary_Sort and a procedure named Match_Ttem_In_List.
He knows that another procedure calls Binary Sort with a
list and the output is passed to Match_Tiem_In_List,

~From this knowledge, he reasons that the procedure which
_calls the two subfuncuons must perfonn a search ona .
A T ._

The third type of comprehension {flag
comprehension) does not attempt {0 organize itself in
any direction (from top to botiom or vice-versa).
Current implementations of hypertext, like Neptune [9],
generally follow a flat comprehension structure,
Meptune is a CASE tool that runs a Hypertext Abstract
Machine (HAM). HAM provides analysts with
definition, modification, or retrieval of basic hyperiext
units, ie. nodes and links. A nede stores elements of
information and links connect it to other nodes. For
example, HAM could link 2 paragraph in a requirements
specification to the module of source code where the
specific requirements are implemented. The nodes that
link all of the information together are not organized in a
top-down or a bottom up fashion. Similarly, Horowitz
and Williamsons' hypertext-like application SODOS
also follows a flat structure of organization [8]. SODOS
stores documents from each phase of the software life
cycle in 2 database and links them together,

3. Layering principle

TLES oprovides an evolutionary history of the
constructs of the program. Every programming
construct, whether a variable, class, statement, an object,
eic. has its origins in decisions of the programmer. A
variable, for example, may represent an entity of the
problem domain. As a variable progresses through
successive refinements and design decisions to the source
code, it undergoes a ransformation: its scope is limited,
its type is defined, it is expanded into a structure, efc.
TLES allows the mainienance programmer o view this
series of transformations (known as knowledge domains)
by linking a number of layers of explanation to each
construct in the program, Each of these layers relates to
one of the domains used to define it,

In comprehending a program's source code, Brooks
[4] points out that the mainlenance programmer
constructs a hypothesis tree with the series of decisions
representing branches on the tree. TLES develops this
idea further. It looks atthe tree and horizontally groups
the nodes into layers.

Even though most of the constructs undergo a
transformation in every layer, some of the constructs will

remain unchanged. TLES accommodates the fact that
some variables and expressions in programs are crealed
in layers closer to actual implementstion or that
certain construcls remain unchanged from one layer to
another. As an example, say that a programmer created a
variable for an application called "timeout_counter”, that
starls counting when the system is inactive. Afier it
reaches a certain number, the system closes down
intuiting that the execution is deadlocked. This particular
variable would not be represented at & highly
concepiual layer because it serves mostdy a5 8 security
constraint on the system. If the applicaiion was a
banking application, dmeocut_counter would not represent
an actugd entity of the fnancial world. Us concept is
closer 1o the implementation layer; therefore, this
variable would not exist in the abstract (e, "higher™)
layers of TLES.

The layering principle allows maintenance
programmers quick access 1o necessary information.
Some programmers prefer 1o get a high-level view of the
system before searching through the details of the code.
Others want the dewils first hoping 0 join
informatign together in comprehending the system.
TLES can accommodaie both lines of thought. TLES
also allows a person 1o examine a program consbuct
within the code and bring up its full history -- its 7eason
for exisience, its transformation of scope or definition,
and finally its implementation,

In order 1o verify the concept of TLES, we conducted
an cxperiment, The experiment and its resulls are
described in the next seclion, The resulis supply an
evidence that layered explanation of software s a
helpful concept in understanding programs.

4. The experiment

The cxperiment was conducied in the winter of 1994
al Wayne Siaste University, Detroit, Michigan, The
subjects were 39 first-year graduate students, who were
proficient in C++ programming and Software
Engincering principles. The experiment was administered
to all subjects in one 35-minuic session. The subjects
were divided into 3 groups (A, B, O) of equal ability.
The basis for the division is the performance of the
students in a course on Software Engineering, with all
Grade A, Grade B and Grade C siudents equally distributed
into the 3 groups. Each subject was given a C++
program listing and documentation (different for each
group) and a question sheet (identical for each group)
containing several questions. All the questions were
multiple choice questions, with the subjecis selecting
the correct answer from 5 different choices (a,b,c.d.e).

48

Only one correct choice exists for each question, and there
was no ambiguity in the questions,

The program chosen for the experiment was an
implementation of a tool for the OODG (Object Oriented
Decomposition and Generalization) methodology for
object oriented software development {11]. The program
consists of four classes, with each class having 1-4 daia
members and 3-5 member functions (for a wtal of 17
member functions), The size of the program is 520 lines
of code. Both the domain and the programming language
{C++ language) were familiar 1o the subjects. Fach of the
three groups worked with a different documeniation
approach, namely Layered annotations, Mon-layered
annotations, and Embedded comments, They are described
in the following way:

Layered annoiations:

A complete description of the various componenis of
the source code was presented in three different layers,
namely : domain, algorithm, and representation. The
componenis of the source code that are annotated include:
classes, member functions of the classes, and selected
Iocal variables of the functions.

Problem domain layer coniains description which is
undersiood by an end-user and problem domain expert.
Programming skills and kmowledge of the implementation
programuming language are nol reguired 1o understand the
problem domain layer. Algorithm layer describes the
underlying algorithms used. Representation layer depicts
the constraing and assumptions made by the developer
during the coding. Al language dependent and machine
dependent issues arc presented in this layer.

A document was provided 1o the subjeets, coniaining
the code and the above mentionsd three layers of

zplanations. An index listing all the software
componenis and their cxplanations was provided. An
example of the layered annotations of the experiment
program 18 shown in Appendix B,

Non-layered annotations:

Same informaiion is provided in this scheme, butin a
single annotation without any distinction beiween the
three different layers.

Commented version:

The description of each component of the source code
is provided as a comment just preceding the program
component in the source code. All information as
provided by the layered and non-layered versions is
embedded in the source code as comments,

Results and interpretation:

While conducting the experiment, we tried to remove
all other influences on program comprehension, Therefore
all variable names were changed to meaningless names.
For each question, the subject is expecied to identify the

relevant portion of the source code and documentation,

The scores of the three groups, each group
...comprising of 13 subjects. is shown .in Table 1. It lists.....

the number of correct answers for each suh}ect Also
shown are the cumulative scores, means and variances of
each group,

Notice that the group receiving the layered version
scored consistenily higher than the other groups.
Surprisingly, a significant margin does not exist
between the scores for the non-layered and commented
version.

In order to quantify the significance of these resulls, an
analysis of statistical significance was conducted
following the methodology of [6). That is, we want to
know whether the difference in understanding between the
three groups of teams can be expected to be observed if we
had access not only to our sample of three groups, but to
all similar teams that we may encounter now and in the
future,

Our null hypothesis is that in the population, the
mean score for program understanding among the three
groups (layered or nonlayered or commented) does not
differ. To test this null hypothesis, we calculate the 't
statistic. A 't’ statistic greater than 2.00 or less than -2.00
is a sufficiently compelling evidence to reject the null
hypothesis [6]. The 't’ statistic for the three different
combinations of groups are:

t layered vs nonlayered 3.34
t nonlayered vs commented (.8524
t layered vs commented 3.6187

Since from the experiment data, the t layered vs

. nonlayered_ and t layered vs commented are greater than

2.00, we can regard these data as sufficiently compelling

...evidence to cause.us 10 reject-the.null hypothesis. - In-. -

other words, we can conclude that there is a reliable
difference between comprehension of programs with
layered annotations as opposed to other styles of
documentation (nonlayered or commented). On the other
hand, the t nonlayered vs commented is only (.8524, and
hence, we cannot reject the null hypothesis. In other
words, we cannot conclude, based on the experiment data,
that there is a reliable difference between the
comprehension of programs with non-layered annotation
a8 opposed 10 programs with comments.

Based on the positive result of the experiment, ‘a
prototype tool for Layered Explanation of Software
(called "TLES") has been developed at Wayne State
University, A dcscnpuon of the tool follows.

5. TLES tool

TLES is an interactive implementation notebook. Tt
allows a programmer 1o store and retrieve annotations
describing program constructs. The layering feature of the
tool supports records of an evolutionary history of the
constructs of the source code. When a maintenance
programmer selects a program construct (say a class in

SCORES Cumulative mgean variance
score
Commented:
3223443234432 39 3.0 0.2248
Non-Layered:
3334432433433 42 3.23 0.3313
Layered:
3444544434444 51 3.92 0.6153
Table 1

49

C++} a2 window pops up displaying the stored annotation,
if any, for the class at the layer chosen.

An important feature of TLES is the ability to
customize the layers, The definition and number of layers
changes from system to sysiem. For example, a program
that backs up files for a customer is conceptually easy and
would not require many layers of cxplanation. On the
other hand, tax accounting software could benefit greatly
from many layers because of all of the rules involved and
the fact that the progsam i3 50 apt o change from year o
year, For this reason, TLES allows customization. The
names of the layers as well as their number are specified
by the user, The programmer using TLES is responsible
for defining the intermediale domains the implemeniation
passes through in order 1o become a program. This frees
him from having w yse any particular software process in
order 1o use TLES.

Another feature of TLES is ihe abilllty 1o
updae/modify the documentation as a program is modified
and constructs continue to develop, A full-length, deailed
description of when and how a change was made may be
added to the existing TLES documentation for fure
enhancements. These moedifications could affect any layers
and any program construci. For example, changing z
variable from a string 10 an integer would effect only the
layers closest io implementation. However, changing an
account variable 1o ai socount siracture o include savings
accounts as well as TRAs would result in a change o the
uppermost layers causing a ripple cffect through all of the
layers underneath it, If these changes are made
consistenily, the programmer reaps the fill benefits of the
ook,

TLES protoiype was developed vsing ATET Cae
Language Sysiem Release 2.0 on SPARC workstations,
The graphic user interface was developed using Hview
tooliii release 3.1, The existing tool is used 1o docament
the {++ program constructs “class” in a T4+ source code,
at any number of layers.

When the tool is used, a menu appears aliowing the
user to select from iwo options: to view the
documentation for an existing project, or 10 document a
new project. When a new project is 10 be docomented, the
number of layers and their names at which the project is
io be documented are to be specified first. For existing
projects, class and layers have 1o be selecied from menus,
The particular annotation can be either read or updated,
based on the circumstances,

6. Conclusions

In this paper we have presented a methodology that
facilitates the understanding of programs. In this
methodology, an evolutionary hisiory of the basic

constructs of the program is documented in 2 layered
fashion, where decisions done on each layer are properly
recorded. This allows a user to examing a program
construct within the code and bring up its full history.

The experiment was conducted on a group of graduaie
students, reading the same program with three different
styles of documentation: layered annotations, non-layercd
annoiations, and commenis in the code. The result of the
experiment was that the group receiving the layercd
version scored substantiaily higher than the other groups.

A tool to support the layerad annotation scheme is
alse presenied. The 1ol supports layered explanation of
U+ programs al different layers. The number and the
definition of the layers is configurablz,

In future, a more powerlul tool supporiing layersd
explanation of source cods is to be developed. 1t will be
interfaced with a complete browser for the source code, and
it will allow full browsing based on the depeadencies in
both the code and among the annotations.

Acknowledgements.

The authors want 1o thank to Jagadish K. Kadekar who
implementated one of the the first versions of TLES, We
also would like to thank Vasik Rajlich for statistical
analysis of the results.

References.

{1] Robson, Dn1., Bennett, K.H., Cornelius, BJ.,
and Muonro, M. “"Approachss 10 Program
Comprehension.” Joumnal of Systems Software 14 {15913,
79-84.

[2] Benney, X.H. "The Sofiware Mainienance of Large
Soliware Systems. ” Reliability Engineering and
Sysiem Bafety 32 (1891), 135-154,

{31 Corbi, T.A. "Program Undesstanding: Challenge
for the 1920s.” IBM Sysiem Journal Vol.28 No.2 (19859
294-306.

[4] Brooks, R, "Towards a Theory of the Comprehension
of Computer Programs.” Intermational Jourmnal of Man-
Machine Studies 18 (1983) 543-554.

{51 Brooks, R. "Towards a Theory of the Cognitive
Processes in Computer Programming”. International
Journal of Man-Machine Studies 9 (1977) 737-75L,

{6} Judd, C.M., Smith, E.R., Kidder, I..H., "Research
Methods in Social Relations”, Sixth Edition, Holt,
Rinechart and Winston, Inc., Fort Worth 1591, 396-405.

[71 Bigelow, I. "Hypertext and CASE." IEEE Software,
Mar.1988; 23-27

{81 Horowitz, E. and Williamson, R.C., "SODOS: A

---Software Documentation Support Environment-- It’s use,” oo
12 (1)

IEEE Transacuons on Suftwam Engmeenng
{1986} 1076-1087 s
9] Basili, V.R. and Mills, H.D., "Understanding

and Documenting Programs.” IEEE Transactions on
Software Engineering 8 (1982) 270-282.

[10] Wiedenbeck, S. "The Initial Stage of Program
Comprehension.” International Joumal of Man-Machine
Siudies 35 (1991), 517-540.

[11] Rajlich, V., "Decomposition/Generalization
Methodology for Object-Oriented Programming.”
Journatl of Systemns Software 1954; 24:181-186

Appendix A: Selected part of the source
code:

void claa mldclas(classes& cmns, function& frmsn) {
int1i, j, k;
int comum = §;
int claon, efolanc;
FILE *fp;

fir = fopen{"memdoc”,"w");
claon = cmns.couentc();
efolanc = frmen.eicno();
for(i = Osi<claon;i++) {
fprintf(fp,"class %s [\n".cmns.etlacs(i});
fprintf(fp, ipublic\n\n™);
for(j = O;j<efolancij++) {
for(k = O;k<3k+4)
if(tramci[j}{i).mmaetrink] == "M
fprintf(fp, “t%s\a", frmsn.tfunge(j)):

fprinti(Ep, \i\protecteda";
fprintf(fp,"\...\n");

fprinti(fp,");\\i\n™);
fprintf(fp, \s\n"ERRORS IN MEMBERSHIPAn");
fpﬂfﬂf(fp " \ﬂ"),

for(i = O;icefolanc;i++) |
for(j = O;j<claon;j++) [
for(k = O;k<3;k++)
if(tramci[i][j).-mmaetrinfk] == ‘M)
COMUm-++;

if{(comum > 1) {

51

fprintf{fp, "\\t%s belongs to classes:”,
frmsn.get_func(i));
for(j = O;j<claon;j++) {
for(k = O;k<3;k++)
if(ramei[i][jl.mmaetrin[k] == M)
fpnmf(fp."%s " ,CINS. cﬂacsi’j]),

] -
fpﬂmf(fp,"\n"), e
comum = {;

}
fclose(fp);

Appendix B: Layered annotations.

function: claazuvildclas

Domain:

This function uses the relations between the deferred
functions and classes, and builds the skeleton declarations
of each of the classes. It also checks for errors in
membership. If a deferred function has "Class
Membership” relationship with more than one deferred
class, an error is reported.

Algorithm:

Open the ountput file.
for (each deferred class in the list)
write class name to output file,
for (each deferred function)
if (function has a 'class membership' relation
with the clasg)
write the function as & pubhc member function
of the class. '
for (each deferred function)
H (function has a 'class membership’ relation with
more than one class)
wrile error message.

Representation:

"memdoc” is the output file to which the skeleton
declarations of the classes are written,

cmns : Contains the list of all class names given as
input by the user. The maximum number of classes is 5.

frmsn : Contains the list of all function names given
as input by the user. The maximum number of functions
is 10.

claon :
list ‘cmng’,

efolanc ; Contains the number of function names in
the list 'frmsn’

comum : counis the aumber of 'class membership'
relations for a deferred function.

Contains the number of class names in the

Appendix C: Commented version

void claa i uildclas(classes& cmns, fanction& frmsn) {

/f 'This function uses the relations between the deferred
jf functions and classes, and builds the skeleton
Jf declarations of each of the classes. 1t also checks for
/{ errors in membership. If a deferred funciion has "Class
/ Membership” relationship with more than one deferred
/ class, an error is reported,

inti,]}, kg

int comum = {
{f comum : counts the number of 'class membership’
J relntions for a defered function.

int claon, efolanc;
/f clagn ¢ Containg the number of class names in the list
J lomng’.
/i efolane + Containg the number of function names in the
list "frmsn’
/ cmns : Contains the list of all class names given as
{/ input by the user. The maximum number is 5.
frmsn : Containg the list of !l function names given
// as input by the user. The maximum namber of
/{ functions is 10,

FILE *ip;
/f open the cutput file. "memdoc” is the output file to
Jf which the skeleton declarations of the classes are
If writlen,

fp = fopen{"memdoc”,"w"};

I number of classes
claon = cmns.couenic();
f number of deferred functions

efolanc = frmsn.cieno();
for(i = G;icclaon;i++) {
forintf(fp,"class %3 [n" cmns.etacs(i});
forintf{fp, “vpublicia\n™),
for(j = (zi<efolanc;j++) {
#{ Check for "Class Membership' rlationship
for(k = k<3 k++)
if{trameifjlii]. mmaetrintk] = 'M")

fpeintf{fp, ™t%s\n", frmsn.tfunge(i)):

fprintf(fp, nNproteciedn");
fprintf(fp,™...aa™);
fprintf(fp,”] \aeha"™;

)
fprinif(ip,\"\aERRORS IN MEMBERSHIPAGR™);
fprintf{fp,” AR

for(i = Oiicefolanc;i++) {
{/ Check for more than one 'Class Membership'
{f relationship
for{j = O;j<claon;j++) {
fork = Oik<3k++)
if{tramci[i]j].mmaetrinik] = 'M)
comurm++;

if(comum > 1) {

/i More than one 'Class Membership' ; Print error
/i message
forintf(fp, ™S belongs 1o classes:”,
frmsn.get_func());
for(j = O;jeclaon;j++) {
for(k = Ojk<3;k++)
if(trameifi][il.mmaetrin[k] == ‘M)
fprintf(fp,"%s ",cmns.etlacs(il);

)
fprintf(fp,~a");
comum = {;

}
fclosellp);

Appendix D: Experiment questions

1) A class/function pair has
2} Only one coupling relationship,
b} At least two coupling relationships.
¢} A maximum of iwo coupling relationships,
d) Any number (0 thru 4) coupling relationships.
e) At least one coupling relationship

2) The length of a function name is
a} any number of characters.
b} must be less than or equal o 10 characters.
£) must be loss than or equal 10 3 characters.
d) must be less than or equal 1o 30 characters.
£} must be less than or equal 10 35 characiers,

3} The madmum number of deferred [unciions, that can
be member functions of a class

ay 1

B2

c) 5

4y 8

2} noune of the above.

4} 'What happens i a function has a 'Class Membership
{847 relationship with 1wo classes.
a) Prinis an error message and quits.
B) Prints an error message and continues execution.
¢) Makes the function a member of both the
classes.
d} Makes the function a member of both the classes
and then prints an ermor message.
g} none of the above,

5) How many times can a user input/change the coupling
relationships between function/class pairs and view the
resulis in the output file "memdoc™.

ay 1

by 5

cy 10

d) Any number of times.

e) none of the above,

Experiences Using Reverse Engineering Techniques
to Analyse Documentation

Graham Fwart
Centre for Advanced Studies
IBM Torento Laboratory
844 Don Mills Road
Don Mills, Ontario M3C 1V7

Abstract

This paper discusses on approach token to analyse
{8M product documentation using Teverse engingering
technalogies, which are normally applied to the analy-
sis of system source codes.

Key words: program understonding, information
structure, Abstraet Syntex Tree

1 Introduction

Society's dependence on software maintenance and
program understanding continues fo grow. It is
estimated]8! that 30 to 35 percent of the total life-
cycle costs of a system are consumed in trying to un-
derstand existing software. Furthermore, these nesds
are very expensive: 330 billion is spent annually on
software maintenance worid-wide, 310 billion in the
US alone, constituting 58 percent of most dasa pro-
cessing budgets and 50 to 80 pereent of the working
hours of an estimated one million programmears. This
software maintenance and program understanding is
not an option.

“Program Understanding” is the process of devel-
oping mental models of a software system’s intended
architecture, purpose, and behavicur, One way of
augmenting this process is through computer-aided re-
verse engineering. Although there are many forms of
reverse engineering, the common goal is to extract in-

VThe following are tradermarks or registersd trademarks of
International Business Machines Corporation: [BM, AIX, Risc
Systern /6000, BookMaster, and SQL/DS.

Software Hefinery, REFINE, DIALECT, INTERVISTA, and
REFINE/C are trademarks of Reasoning Systems, Inc.

UNIX 18 & registersd trademark in the United Siates and
other countries licenced exclustvely through X/Open Company
Limited.

TeX is a irademark of the American Mathematical Society.

(-3188-5647-6/94 504,00 © 1954 IEEE

54

Marijana Tomic
Centre for Advanced Studies
IBM Toronto Laboratory
844 Don Mills Road
Don Mills, Ontaric M3C 1V7

formation from existing software systems. The often-
neglected partner in all this is the documentation that
goes with a software system. The focus of this paper
is the application of reverse enginsering technology to
system documentation.

2 Background

The Centre for Advanced Studies (CAS) at the IBM
Toronte Laboratory is a small research group whose
primary aim is to facilitate the transfer of research
ideas into the various product development groups in
the Laboratory. Interactions between these groups has
been identified as critically important in the transier
of research results within organizations.

The CAS Program Understanding Project includes
researchers at MoGill University, the National Re-
search Council of Canada, the University of Toronio,
and the University of Victorla. 1t has been using
computer-aided reverse engineering technology for the
past three years to help the 3QL/DS database systemn
tearn improve their productivity and the quality of
their product. The success of this work led to the
establishment, in 1983, of related services in the Soft-
ware Engineering Quality Consultants (SEQU) area of
the Toronto Laboratory.

Recently, we have begun to examine ways in which
reverse engineering technology can be applied to the
understanding of the structure of the documentation
that accompanies our products. There are many com-
mon characteristics between understanding challenges
presented by source code and those presented by doc-
umentation that suggest to us that the same kinds of
analysis are worthwhile. These include the require-
ment to understand complex structures and data ref-
erences; both code and documentation can be complex
and hard to manage.

Our hope is that our work will make the mainte
nance of product documentation easier and enable the
discovery of structural anomalies in cur documenta-
tion.

The methods we used to extract stryctural informa-
tion from product documentation was described ear-

“lier i [1]. These methods dre siinmarised inj the next”

_two pages. We then describe methods we have devel-

“oped to enhance the visual presentation of this infor-

mation, and discuss, in section 6, some preliminary
work we have done with Software Refinery to analyse
documentation.

3 Documentation Format

In the Toronto Laboratory, product documentation
iz writien (for the most part) using BookMaster, an
IBM product that supports a markup styld of docu-
ment editing using tags, control words, and macros.

Tags, which are the essence of markup, take the
form: :

slagname [<gualifiers>].

These tags, as with SGML (IS0 Standard 150
8879, “Information Processing - Text and office sys-
tems ~ Standard Generalized Markup Language”), are
uged to specify the function that each fragment of toxt
takes on in the document. Macres and control words,
while important to the document author, are not used
to specify the meaning of document elements.

In this environment, as with many others, a doe-
ument has a beginning, a middle, and an end. The
beginning contains the title page, preface, abstract,
table of contents, and other introductory matter; the
middle, introduced by the :bedy tag and typically the
largest part of a document, the text of the document;
and the end, introduced by the :backm tag, contains
the appendices, glossary, bibliography, and index. The
tags for such a document will be something?® like [9):

rusardoc ibmeopyr='1092, 1984°,
:prolog.

:title.C/C++ Tools: Standard Claas
Library Reference

:topic.C/C++ Tools: Standard Class
Library Reference

:version.Version 2.0

:atitle.

sdocnum. 5161180

2We have removed the author’s commentary and some tags
that are used to format the same source for different products
or different media as they would only serve to complicate this
exzmple

on

(911

teprolog,

tcover,

inotices,

tenotices.

itoc.

tbedy.

:hl id=potpg.Notices

:hl id=lgintro.Introduction--

:p.This book describes the ;
...Btandard class library included .. . =

‘with the C/C++ Tools.

These class libraries provide

seta of predefined [...]

th? idmesclf6.Whe Hhould Use

This Book.

[...1

teuderdoc.

As seen above, these tags are interspersed through-
out the text.

Overlaid on this hierarchical document structure is
a serics of references from within one part of the doc-
ument’s text to other parts. ¥or example, text in the
documentation conld refer to figures or tables that are
often nearby, but could just as easily bLe in remot_é
sections of the document. This is similar to the vari-
able definitions and variable references found in source
codes of a system.

As with traditional programming languages, the
source for & programming manual can consist of many
files, sometimes hundreds, which are *#incinded” us-
ing the “.in" control word.

In many respects the similarity in understanding
challenges between source codes and documentation
is a direct result of the similarity in structure between
traditional programming languages and the sources as-
sociated with product documentation. This similarity
is what led us to vonsider the application of the same
reverse engineering technologies to this area.

4 Approaches used to Analyse Source
Codes

FPresently, we are using or investigating several ap-
proaches in the analysis of source code:

RIGI is a research project being carried out at the
University of Victoria concerned with the visual
representation of complex systems. It has not
been used in production to date in the Toronto
Lab.

Software Refinery, from Reasoning Systems, anal-
yses sources, builds Abstract Syntax Trees rep-
resenting the internal structure of the code, and

provides a framework for writing rules that can
be used to uncover characteristics of interest.

It has been used in the Toronto Lab in support
of several quality initiatives, including
1. Programming language violations ({over-
loaded keywords, pdor data typing), '
2. Implementation - domain - errors - {data - cou-
pling, addressability), and

3. Application domain errors (coding stan-
dards. business rules) [3, 4].

Our project is also doing work at the National Re-
search Council of Canada on the pattern matching of
sourceg code at the text level, largely for the purpose
of clone detection®, and at the University of Toronto
on the integration of the underlying repositories that
support REFINE and RIGI[3, 2].

Both Boftware Refinery and Rigi operate on the
IBM Risc System /6000 platform, in the AIX (UNIX-
like) operating system environment. The work on
text-base clone detection, while currently running vu-

der AIX, has far less dependence on platform-specific

tools.

From our perspective, REFINE is more directed to
fine-grained analysis, while Rigi offers a more coarse-
grained view of the system under analysis{7l. This
view is mogtly opinion, and a reflection of our use of
these tools.

& Rigi

The Rigi system provides a versatile and exten-
sible graph display and editing environment that is
conducive to the discovery and analysis of the struc-
ture of large systems. As applied o traditional pro-
gram understanding problems, it supports the follow-
ing features{6]: '

e Parsing for a variety of programming languages,
including C, C++, COBOL, IATgX, and PL/AS
(an internal IBM language).

e A repository to store the parsed information, and

® An interactive graph editor that allows the user
to manipulate the displayed information.

3The technique of identifying scattered fragments of code
that ars in some respects (in this case, textually) similar. This
often points out instances of “cut and paste” programming.

56

Presently, the Rigi parser has no support for the
BookMaster “language”. Nor do we suggest that it be
extended to provide this. Rather, we are using an im-
portant feature of the graph editor, its tight coupling
with a command language (rel) that allows us to write
scripts to create and manipulate Rigi graphs.

This command language is based on TCL; it gives
Rigi an open-ended ability to extend its interface

miechanism by providing for scripts (either supplisd

with Rigi or user-written) that embody the definition
of commonly used operations. We use this interface to
create a Rigl graph from a stream of tuples that de-
scribe the interesting structural features of the subject
dorumentation. These tuples, which take the form

< relabionship-name, element!, elemeni?>

describe how identified document elements are related
to each other. For example, we might use the triple

<LOCATION, FiG2, HEADE>

to indicate “documnent element fig2 appears inside the
document element head&”.
We are considering the following relationships:

e The “is a part of” structure of the document ele-
ments, namely subsections within sections within
chapters within parts,

e The “data references” within one document part
to other document parts {figure references, head-
ing references etc.), and

e The relationship between the logical parts of the
document and the files that make it up.

5.1 Creating the Tuple Stream

Our approach requires us to provide cur Righ scripts
with a fat file containing & stream of tuples describing
the structure of the documents of interest. We create
this file using the facilitics of BoockMaster itself.

BookMaster consists of two layers. At the low level
s an “engine”, called SCRIPT/VS, which reads the
source files for the documentation and processes very
rudimentary control words that specify what format-
ting is to be done. One such control word is used
to define macros which, although made up of these
rudimentary contral words, can contain logic and ac-
complish very sophisticated formatting tasks.

The higher-level layer is a complex library of macros
that are “attached” to the tags described earlier, and
accomplish the real work of formatiing a document.

Normally when a document is formatted
SCRIPT/VS reads two files: the initial file for the doc-
ument to be formatted, and a profile file that “hoot-
straps” the macro library containing all the iag defi-
nitions.

We replaced the standard BookMaster profile file
with one of our own design in which we redefined the

“processing macros-for; the BookMaster tags that were~ -1~

of interest to us. Our macros, instead of formatting,

“rkeep tratk of “the diirrent “position”™ (part, ehapter,

section, subsection etc.) in the document and log
the structural information discovered. This iog is the
tuple-file we read from Rigi rel scripts.

5.2 Laying out the Graph

When Program Understanding or Reverse Engl-
neering tools are used to analyse the structure of an
application system, the order of functions within mod-
ules or modules within executables is often of little
concern. _

This is because this ordering is seldom of any signif-
icance to the understanding of the system’s operation
or, in fact, the actual operation of the system.* Con-
trast this to the “operation” of many books, where
the desired use is one of “straight through” operation
with as little branching as possible.

With this in mind, we felt it necessary to preserve
the ordering of book parts in our graphical display of
the structure of a book. We considered adding a “fol-
lows” relationship to the sequence of tuples we gen-
crated when first analysing our books, and continu-
ously returning to this relationship as we transformed
the graph. We abandoned this in favour of laying
out our structure graph in a way that preserved {in
some sense) the input order of the tuples as they were
placed on the screen, and then applying only trans-
formations that preserved a sense of this order. Our
initial attempt at this laid out the graph represent-
ing the book’s structure with the high-level sections
{front matter, body, back matter) across the top of
the display, with their immediate components ranged
beneath horizontally. This placed the leaf nodes of
this graph next to each other three or four rows below
the top level.

This proved unworkable: we were faced with the
choice of either spreading the leaf nodes out so that
their text (the titles) did not overlap, thus reducing
the number of nodes we could see on the screen at once
to the point where very little structure was evident; or

4There are, of course, exceptions to this: for example, local-
ity of reference ia & very important area of concern for those
doing performance analysis of systems.

57

reducing the font size of the text to the point where it
was unreadable.

Figure 1: Sample document: results of automatic lay-
oub

To address this problem, we decided to lay the
graph out on an angle, starting at the top left of the
sereen and proceeding down and to the right. This is
close to the layout presented in most of the examples
shown in this paper, although those examples were
“touched up” somewhat to to improve their readabil-
ity, proving to us that our search for a good layout
is not complete. This approach allowed us to place
neighbouring nodes much closer together without hav-

ing their text overlap.
The layout algorithm we developed is this:

do while not a end-of-file
~ read the input file
~ if this tupie describes a ‘‘contains®’
relationship bLetveen two document
sections:
- locate the ‘'pereant’’ node
- if Zound:
~ wove it and all of its
ancestors to the right R units
and down D uvnita,
- otheruise:
- create a parent nods R units
te the Tight of the last node
#g crested 2t any level
and on the top line
- endif
- add the child node B units below
the (perhaps moved) parent node.
-~ endif
endde

We experimented with different values of R, D, and
B to get the graphs shown in this paper.

In the actual construction of the graph, this loop
was followed by a similar loop which drew the non-
structural (that ig, all but “containg™) relationships.

We have applied this algorithm to several docu-
ments, including the C/C++ Tools: Standard Class

|

Eus Ean Dporminnd BORks Views Dgroas

o Eiarwern 7 {70 3 - fmel

[Fatm

AT, Comersea

1 o
st \ g
£
aotng
?{.}? ST g
: B [
cgc B 4. ‘\\\ %'"'L"M_um_
P e
A
EIaldE N
PR /__ cuatnin Jp—
R ST w0 Yew
e intis S LI
= =pnif¥R S
cegilfn &
nanipak LTSS
el 3,
e
e,
%ﬁ%ﬁ“w\?
c:mstqﬂ/ T
=l T,
=

T

Mivme Td Toeacad 3% rovies, 1304 mup

Figure 2: Sample document: The C/C++ Tools: Standard Class Library Reference

Library Reference with similar results. The resnlt of
this layout, showing only the structural elements {that
is, after the first loop) can be seen in Figure 1.

Asg is evident, this algorithm is far from perfect.
One fairly simple enhancement we are considering is,
after the initial layout, to visit each node, moving it
to the halfway point between its current and its initial
position. This mimics one of the activities we invari-
ably do manually when we “touch up” the graph to
make it more readable. We continue to analyse the
various other activities that seem to make the graphs
more presentable while preserving the matceh between
the actual structure of the book and the mental model
conveyed to us by the layout.

The top left corner of the graph presented in Fig-
ure T as touched up manually, is shown in Figure 2.

5.3 Viewing Structural Information

One of Rigi’s important features is its ability to
allow the user to manipulaie a graph. An important
aspect of this is the user’s ability to filter out nodes
and/or arcs to enable viewing of the aspects of the
graph of interest. The graphs shown in Figures 1 and
2 were not made by running only the first loop of the

algorithm described in the previous section. Rather,
they were produced by running both (the structural
and non-structural) loops and filiering out the “file”
nodes and all but the “structural” arcs.

Figure 3: The relationship between the sample docu-
ment and the files used to build it

When these nodes and arcs are returned and the
*structural” arcs are filkered out, the result is as shown
in Figure 3. We can see (barely) in this figure that
the front matter and the body are both introduced in
file CXXLMAST but the contents of the front matter
are contained in file CXXLOINT. This view of the

Figure 4: References within the sample document

document allows the user to view the overall structure
of the document and determine which file contains the
source text for any given part of the document.

Figure 4 shows the references between parts of the
document. It is not intended that the user be able to
analyse all the inter-section references in a document
by simply looking at this graph. The power of this
lies i the ability to use the graph to select regions of
the document or clusters of references, and then apply
the power of Rigi's scripting language to select its arcs
and/or neighbouring nodes for further analysis.

We have not shown the graph of the entire docu-
ment regized to it within the boundaries of the user’s
sereen. This graph, even when displayved on the user’s
screct, 18 a mass of indistinguishable nodes and arcs
occupying the main diagonal of the window.

6 REFINE

Our work with Software Refinery is still in its be
ginning stages.

Software Refinery consists of three parts {products)
as shown in Figure 5:

Tratalenn

PEFIE dbpe

Tane

Figure 5: Software Refinery structure

REFINE[11], = high-level programming language
with facilities that can create, analyse and trans-
form the Abstract Syntax Tree representation of
the system heing analysed,

DIALECT[12], which is used to produce parsers and
printers from specifications written in a high-level
langusges: and

INTERVISTA[1S], which ‘provides specialised 160615

to create user interfaces for REFINE applications,
such as window management, mouse handling,
nenus,

ahe,

6.1 Defining the domain model and gram-
mar

The first step in using REFINE to analyse source
code is to understand the language model that defines
the sot of object classes and the attribute definitions
that define the structure {(nodes and edges} of abstract
syntax trees (AST). This is the domain model; it de-
fines how the elements of a systemn will be modelled in
REFINIYs object base.

To define a domain model for a language, it is im-
portant to:

1. Determine the basic structure of the Abstract
Syntax Tree,

2. Define ohject classes for each type of node in AST,

3. Define attributes that capture the structure of
AST, and

4. Define atiributes for any annotations nesded.

A domain model iz’ based on object classes, at-
tributes, and objects.

Object classes modal the kinds of objects in the do-
main (programs, files, declarations, statements,

Objects model individual objects in the application
domain (the inventory program, its first file, a
function in the file, ...)

Object classes are arranged into an inheritance
tree via specialization. The general form of an
object class definition is:

var class-name: objeci-class subtype-of pareni-closs

The object classes we chose for analysis of Book-
Master are:

var DOC-DBJECT: object-class
subtype-of user-object
var IDENTIFIER: object-class
subtype-of doc-object
var FROWT-BODY: object-class
subtype-of doc-object
var FRONT-ELEM: object-class
subtype~of doc-objact
var BODY: object-clazs
subtype-of dog-object
var . BODY-ELEM: objecteclasa .

subtypa-of doc-sbject
The general form of an atiribute definition is:

var attribule-name:map(objeci? , objeeif) = {]1{}

Attributes model the relationships among ohjects
and also the features of objects {e.g., a program
with three files). In REFINE language terms, an
attribute is a global variable of type map whosa
domain type is an object class,

The attributes we chose {edges in the Abstract Syntax
Tree) for our BookMaster objects are:

var DOC-NAME:

map{identifier, symbol) = \{||\}
FAONT-LINK:

map{doc~object, front-body) = \{II\}

var

var FRONT-SEQ:

map{iront-body, seq(front-elem}} = iy}
var BODY-LINK:

map{doc-objact, body) = V{]I\}
var BODY-SE]:

map{body, ssqlbedy-elem}) = N1V}

In the domain model we define the classes and at-
tributes used to model the AST, More is required to
actually parse sources and populate an Abstract Syn-
tax Tree. A grammar that defines the characteristics
of the language under study must be contructed, using
IMALECT, so that the Software Refinery can build a
parser for the language. This parser is then used to
populate the AST.

The body of a grammar contains a set of produc-
tions and other clauses specifying the surface syntax
of a language. Productions specify the relationship
between text strings that are statements in the target
language and AST that are stored in the object base.

The general form of syntax for a production is:

< noniermingl-name> ::= [<synioz-for-class>] <aclion>

DIALECT's syntax description language extends
BNF in two ways:

1. Attribute names can be used instead of terminals
and nonterminals ou the right-hand side of a pro-
duction;

H]

2. Repgular expressions can appear in the right-hand
side of a production. In this way much more com-
plex surface syntax description can be written,
within a single preduction than in standard BNF.

Using DIALECT, we have built a BookMaster
FrammAr:

.grammar HookMaster}
file-classes doc-objmct

produstions
ideptifier::= [doc-namelbuilds idemtifier,
front-body::= [*’:frontm’’ front-ssg s 77,%7]

builds front-body,
praface:iz [’ :ipreface’’doc-ebiect-label’?. "]
builds preface,

CGur use of REFINE has not progressed past defin-
ing its grammar and building the domain model, We
anticipate using the work we have done to date to in-
vestigate ways these powerful facilities can be used to
perform further analysis of our docymentation.

7 Conclusions

At this stage we feel that both Rigl and REFINE
can be of great help in understanding the structure
of cur product documentation. We have progressed
much more quickly with Rigi than with REFINE,
mostly because REFINE is far more demanding in its
requirements to formally specify the problem at hand.
We have to date seen no real results from our use of
REFINE but we feel that this approach, if success-
ful, has the possibility of allowing much more sophis-
ticated analysis.

Higl, with very little cost, has provided views of
documentation that can help the Information Devel-
oper understand the structure of a particular docu-
ment. We believe that the view provided by Rigi can
be used as a front end to an editor so that selecting a
node (document section) will position the user at the
correct line in the correct file for editing.

Furthermore, we feel that Rigi provides & platform
for measuring usability characieristics, such as the
amount and kind of cross references, of a document.

About the Authors

Graham Ewart Cenire for Advanced Studies,
IBM Toronto Laboratory, 844 Don Mills Rooad, Don
Mills, Ontario MSC 1V7. evartQunet.ibm.com.
Mr. Ewart i5 a Senior Development Analyst in the
. Centre for Advanced Studies at the IBM Toronto Lab-
oratory. He is currently the Principal Investigator for

... the Program Understanding project at CAS. Prior to
jeining the Centre he was the Lead Architect for the

IBM C/370 family of compilers and runtimes. His
research interests include software maintenance, pro-
gram understanding, document understanding, and
reverse engineering.

Marijana Tomic Centre for Advanced Stud-
ies, IBAM Toronto Laboratory, 844 Don Mills, Don
Mills, Ontaric M3C 1V7. ntomic@vnet.ibm.conm.
Mrs. Tomic is a post-doctoral student from the Univer-
sity of Victoria, working in the Program Understand-
ing project at CAS, Her research interests include
software engineering in general, and software main-
tenance, program understanding, reverse engineering,
re-engineering, and re-structuring in particular.

Heferences

{1] Graham Ewart, Marijana Tomic, “Applying Pro-
gram Understanding Technology to IBM Product
Documentation”, CASCON'84, (Toronto, Ontario;
31 October - 4 November 19943, -

M.Bernstein, et al, *“Towards an Integrated
Toolet for Program Understanding”, CAS-
CON'94, (Toronto, Ontario; 31 October - 3
November 1994).

Erich Buss, John Henshaw, “Experiences in Pro-
gram Understanding”, IBM Canada Lab., Techni-
cal Report TR-74.105, Centre for Advanced Stud-
ies, July 1992,

F.Buss, et al., “Investigating Reverse Engineering
Technologies: The CAS Program Understanding
Project”, IBM Systerns Journal 33, No.3, 477-500
1994,

R.De Mori, H.Miiller, and J.Mylopoulos, “A Re-
verse Engineering Environment”, 1692, Proposal
submitted to NSERC's CRI} programme.

S.Tilley, M.Whitney, H.Miiller, M.Storey, “Per-
sonalized Information Structures”™, SIGDOC’93:

61

The 11th International Conference on Systems
Documentation, [Waterloo, Ontario; 5-8 October
1983), 325-337.

H.Miiller, S.Tilley, K. Wong, “Understanding Soft-
ware Systems using Reverse Engineering Technol-
ogy Perapectives from the Rigi Project”, CAS-
T CON'3, (Toronto, Ontario; 25-28 October 1993)
Kathleen Melymulka, “Managing Maintenance:
The 4000 - Pound Goriila”, CIO, 4, No.6, 74-82,
March 1981.
[8] “IBM BookMaster Reference Summary Release
3.07, IBM Corporation, 1980.

[10] Software Refinery Training Manual, Reasoning
Systems 1983.

[11] REFINE User's Guide, Reasoning Systems 1993.
[12] Dialect User’s Guide, Reasoning Systems 1983.

{13] Intervista User’s Guide, Reasoning Systems 1993.

Analyzing the Application of a Reverse Engineering Process to a Real Situation

Fabio Abbattista (*), Gregorio ML.G. Fatone (**), Filippo Lanubile (*), Giuseppe Visaggio (*)

&) Diparﬁmanto di Informatica, University of Bari, Italy
' ~ (%) Basica S.p.A., Potenza, Italy

Abstract

A reverse engineering process model was applied
and, on the basis of the data rcollected, some
modifications were made aiming 1o improve its efficacy.

The expericnce gave rise (o various congiderations of
interest, first among them being the clear interaction
beeween the quality of the product and the quality of the
process. A method of synergetic application of static and
dynamic analysis to improve understanding of the
program was consolidated. The experience enabled
modifications to be imroduced connecting the reverse
gnginecring process more closely with the understanding
of the programs and information deriving from the
applicatipn domain,

Finally, the probleos of the efficacy of the tools nsed
1o ghtain the reverse engineering products was made
evident during the experimentation on the fieid.

1: Introduction

We present an experience in which process guality
and produoct quality interact and muiually improve one
another, The process is reverse engineering while the
product is the documentation of programs necessary o
exploit the program better. The salient point 1o be gained
from the experience are, in general, the model as it
appears after improvements sternming from trinl on the
field and, in particular, the method for integrating staic
and dynamic analyses o improve the process.

The paper describes the application of a process
model to a real situation. The scenario is a set of
programs with the following characteristics:

language: COBOL
operating sysiem: BS2000
total no. of programs: 653

ng. of on-line programs: 348

no, of batch programs: 305

no. of files: 70

no. of data: 5000
no. of Instructions: 900 600

0-8186-5647-6/94 §64.00 © 1984 IEEE

{including comments but not copy books)

These programs constitute o "lrge” software system
as they are integrated by o database and cover various
banking business areas. Their long lifle {(avemnge 12
years, reaching penks of 23 years) was mirrored by their
"oid” structure, so that they werg difficult to maintain
and had inconsistent, invariahly poor documentation.
The system is so diffuse within the user bank that
substituting it would bhave been Improacticable. It was
therefore necessary to rejuvenate the sofiware sysiem
and, as the only reliable component was the source code,
it was judged necessary to start by reverse engineering (o
understand the programs, while acknowledging that
reengineering would then be required.

The paper includes a brief description of the process
model (section 2), the results of ils application {section
33, the modifications made to the process model {section
4y and the final conclusions {(section 5).

2: The reverse engineering process

Our roverse engineering process had 1wo main
ohicctives: (1) 1o increase the case of maintenance of the
software system, and (2) to improve its usability by the
final users and the ease of knowledge iransfer among
different users [51.

The first involved reconstruction of the project design
documentation and restoration of the most degraded
parts while the second required reconstruction of the user
documentation and the doata conceptual model. This
helps users to understond their own information system
better from the point of view of the data processed [4],
{6}

Figure 1 shows the process model, which is briefly
described underneath. Further details may be obtained
from {10].

1. Inventory Software Svstem, The following cross
references are exiracted from the old software system:
call dependence X-ref, copybook X-ref, and file access
K-ref.

3 Data cenceptuai Meds!

Abstract
fiata .

Dead

Flossnsiruct)
Lacinatlevet of Fagnnatiug
§ Data LogealLavel of

Programs

fdata
e al
funetions
5 modat

data gascription

LFRss

refarsnge

Experience

Documentatign

4
Analysi of
~Eristing]
nfermation

T Expecied
functions

Festors

Logical Modsi

rostorad
Togieat
. rodet 7,
Ansiracy Tl
Functians
Codsy

Invantory
Sotwars

System -
Coneeptual modal

Figure 1. The process model

2. Reconstruct Logical Level of Daota, From the data
description, the hierarchical struciure constituting the
fogical data model is reconstrucied. The aliases are
recognizable entities in the application domuin. Figure 2
shows g record declaration, as inpui 1o the phase, and the
refative hicrarchical diagram, as output from the phase.
The arrows represent the hierarchical relationships
between the substructures in the record; clementary data
are not shown, The data are classified as application
domain data, control dada, and structural data.
Application domain data are the attributes of
recognizable entitics in the application domain, For
example, the ficld named MT02-02 representing the
"amount” is also an attribute of MORTGAGE and is
therefore recognizable in the application domain.
Control data have no correspondence with the
application domain but are used to record the occurrence
of an event during the execution of a program, so that
other programs can adapt accordingly; flags validated by
one program and used by others, asynchronously, to
determine their behavior according to the previous
history of the software system, are typical examples of

63

control duta, For example, the field MT02-33 is preset
to indicate the existence of an agreement for iaking out
the mortgage, which must form the basis of the variation
in interest rate to be applied when calculating the
inctalment; it is o typical cxample of control data.
Structural data are data nccessary for managing the
organization of data bases or files. The field MT0I-05 is
a typical example of structural data, because it identifies
the record type inside the MORTGAGE file,

3. Abstract Data, All the data in the application
domain which belong to the logical model and are not
dead are associated with the corresponding meaningful
concept for the application domain [1].

4. Analysis of Existing Information, This activity
involves identifying the cxpected functions in the
progrimn being reversed using two types of information.
The first is static knowledge, i. e. the internal and
externgl documentation of the rules governing the
application domain of the function. The second is
dynamic, derived from the experience of the
programmers and users who interact with the working
PrOgrams.

S1REK-MT,

0z b PICX
02 MPIC i)
22 MAEDEFINES MTSR
D3 MOToRL
24 MTGHOIPIC 99,
G4 MTEH0Z PIS 3.
G4 MTH 303 PIC 99
94 MTOH04 PIC 835},
93 KT 53 PIC 898,
GEMTHGA.
23 MTO6-121: 9581
03 MTEG-2 PG 845),
&3 RTE0-3 PIC 948).
22 FILLER Pl X8}
Bz MTOZ AEDEFHES MTRO-A.
93 MTI2:01P1C X%}
03 MTO2-02 FIC99{B) USAQE SOMP-3.
a3 MTe2-03 PIG BIVes
83 MTE2-04 PIG 859,
43 MTER-05 PIC 809,
24 MT02-051P15 698
f4 MTSE-052 PIG 8{5).
03 MTR2-67 PIC BI8).
93 MTR2-06 PICSS{BIUSAGE COMP-2,
03 BT02:08 FICSIBUSAGE COMP3
03 MTE2 0 PIC S2UI USAGE SOMP-3
93IMTIZ-NFIC S
03 MTo2-8 PIC D
83 MY02-1 PIC 98
53 MTI2: 4 PIC Ki}
EIMTRZ-BPCS
931T02-8 PIT 5.
Q3 MTE2:17 PIS 9.
03 4T02-5 PIC X
03 T2 PIC 65,
93 MTO2-22 PG E
AFRATIZ-20 PICH
aIMTHZO8 FIG S,
SIMTEI-24 PIDY
03IMTOZ-33 PiC 9%
a3 MTeZ-25 FICE
93 MTO2:27 PIC SHTICOMP.3
83 MTE2-23 PFIC SR COMPR,
03 MTo2-29 FIC Se(F)COMP3
a3 MTI2-03 PE 39V 929,
03 MT02-31PIC 59VES.
23 MTaza2
9 MTUZ-AZIFICB3Y O}
55 8ATIZ. 322 PUE BEVEE
a3 MTGZ-23FIC G
a3 MTEZ-24 FIG R
GIMTGZ25 PIG XX
23 FLLER PIC XlBS,
S RITH2-38BA5 PIT 8.
43 MTB2-37BAS FIG 958).

82 MTRI REDEFMES MTCO-R,

SAMTEI-L1PIC 38

83 FULLER REDEFNES MTo3-01,
DI3MTH3-01AA PIC 88,

A5 MTLI-0MM PIC 9D,

A3 MTH3-01G3 PIC9S.
03IMTLI-02 PECSOIBUSASE COMPD
GIMTID-03 PICSIGUSAGE COMP.3,
83 MTE3-04 PICSUHGUSASE COMP-3.
S3IMTO2-03 PICSOIGUSAGE COMP-3.
S3MTDI-06 PIC SR USAGE COMP,
BAMTOI-LY PICS9BIUSAGE COMP.3.
2IMTI-08 P S USAGE GOMP-3
93 MT03-08 PIC BiR}.

TEIMTULE PICSHNUSAGE COMP-A)
S3MTIZ- U PIC S3B USAGE S0MR.]
23 MTo3-R PIC S
23MTH3-1 PIC §9V0S.

43 MTH2-18 PIC agyee

2IMTOI-B PIC ST USAGE COMP-3.

23 MTI3-B PIC 93

GAMTUI T PIC 3} COMP-]

23 KT8 PIC ST SOMP-]

93 FILLER FIC Xi02}

BIMTIR-B PIG ST ISP,

83 MTI3-26 PRESITIOOMP.3

GIMTII-ZIPIGS

GIMINT-22 FIC SHTITOMP D

02 MTD-Z3 PIC $i51

3 MTIZ-0B PO SSY2E38,

PIMTOR-12 PIC 25V I963

$3MTII-24 P X

B3 MTAS- B FIC ST USAGE

23 FILLER PIC K03

£3 MTEI- 25 PII 90}

BEMT04 REBEFHES MTR-5,

BAMTES-D1.
LEMTUA-0HPID 99
T3 MTG4-Q12 PIC 38,
Q4MTo4-0%3 PIC &9,
43 MT04-0% PHC 281
05 MTE4-016 815 83,

03 MTO3-02.
CEMTo4-021PIC B3,
03MTO4-022 PIC 5.
05 MT04-022 PIC G,
9544703024 PS8

23IMT4-02 P ooVes,

53 TR FIC 8{5).

83 RTE-05

[etelr i |

D2 MTGH AEDEFNES MTa

SEMTILDSIPIC SOMIUSAGE COMPG,
95 MT§4-032 PIC 99VE9.
09 MT84:-033 PIC 5851 USAGE COMP .3,
QEMTE4-054 PIC ST USAGSE SOMP-2.

03 MTEL.06 PIC 98],

03 MT4-07 PHZ 99Va%.

83 MT04-08 PIC SR USAGE COMP-3,

a3 MTH4-08 PIC 8i8).

93 MTod-© FIC§9.

QI MTOL-R PIC IR USABE COMP.2.

G2 MTHL NP 538VES,

03 1MT04-8 PIG 5931 COMP-3,

03 MTD4-% PIC §{5)

03 MTO4-B PICS9VENY.

BAMTEEE PICSEY

23 MTGd-17 PICS B COMP-3,

93 MT04-15 PIC AL

03 BTU4-03 P SOVISes.

03 BTO4-0F PG 5IVE5E5.

03 METBA-U PIC $33V 9589,

03 MTe4-03
CEMTEL-O0IIPIC SAEIUSAGE TOMP .
DS MTIE-052 P B3VRS.
DFMTHACEIPIC SHTIUSADE COMP.D
D3RATO4-034 PIC SO USAGE COMP3

23 FLLEAFIC AN

43 FILLER PIZ KL,

DIMTH4-055 PICS

G MTaS-01RCLURE 0 TRES.
O5MTII-DHPIC SSTFICOMP -3
GEMTO3-012 PIISH2305 GOMP.G
FAMTFEO0 PICS5H) GOMS 3,
SEMTLS-0R FIC 335 COMP.a
D5 MTHS-08 Pl 59 COMP-2.
TAMTIEDE FISSIEI COMP 3.

a3 FLLEA PIC X34)

2 TS AEDEFMESR MY

23 MTG5-21OCCURS 23 TRAES.
SEMTUS-0UPIC SHBISOMP -3
04 MT05-0 PIC S8 COMP3,
DEMTNS-00X
Q7 MTOS-00 FIZ S58Vaa%0.
FAMTIG-0M PIO S8 GOMP 3,
LEMTIS- UMW PIC SR COMP-2
93 FILLER PIG X232)

1
12 e 11 5] 14 el 15
MT05013% T s i wtos % wrores [MToin
7
pps en
o [s 13 I 16
ii wraos | % b w0401
|
i
4 1
MTGS Ll end REHCHT % 6
Moz

MToo-R

MT 0503

Y v

17 18

MTz2.32 MTI2-05

Figure 2. Input and output of "Reconstruct Logical Level of Data” phase

64

Testoases

1
GobectTest 1.
Casas on the
Fiald

Compara
Fasukis

Expacisd

results

Roversed Systam

M

Fasulis of tast

Systamio
ba tasted

4

Ve,

Ravarsad
Systam

Figure 3. Equivalence test of the system before and after reverse engineering

5, Reconstmuet Logical Level of Programs. Each
program is associtted with a structure chart in which
cach module corresponds (o a SECTION or an external
subroutine of the program. In this phase, both dead data
and dead instructions are identified. These are data not
used by the program and instructions which cannot be
run, respectively, The former are communicated to the
"Abstract Data” activity while the latier are erased from
the structure chart , which thus constitutes the logical
model of the functions.

6. Restore Logical Model. Restoration involves
introducing changes to improve the structure of the
programs and make them easier to maintain, without
causing repercussions on the data or inferlaces with other
systems. Some examples of modifications are renaming
of variables, making their identifiers more meaninglul;
extracting modules with high internal cohesion from
those with low cohesion and isolating them in the
structure ({71, {8]. [12], [i3]); externalizing modules
which, in the present process, are in line with the main;
localizing variables declared to be global but used
locally in both existing medules and in processes
extracted during restoration. Execution of these activitics
is facilitated by the expected functions derived from the
phase of analysis of existing information. In fact, thanks
{o this knowledge, the operators can exiract the functions

from the modules present in the logical model. This
makes the logical model more readable and its modules
less complex.

7. Ahstract Functions, The functions abstracted
during restoration are documented. The aim of each
function is described in texiual form, The relationships
hetween functions are also documented by means of data
fiow diagrams. The latler, {ogether with the description
of each function, constifute the conceptual model [9].

The reverse engineering process is not symmetrical
because the programs are restored while the data are not,
because any interference with the latter would affect the
procedares and make the whole restoration process very
expensive. In fact, restoration of the programs is
confined o the instructions of each single program, a
much simpler and more economical process.

The reverse engineering process described modilies
code, so that it is necessary to verify that the working
programs are equivalent to those produced by the
process. A test process is used and, as the only relinble
component in the working system is the code in
question, it is only possible to test the equivalence
between the actual and the reversed program. Test cases
obtained during normal working of the actual system are
used. The equivalence test is modeled in Figure 3.

“Heverse-Gparater |

éS“HawrM@p@rﬂa:

Biortfor

iPryskal Level () Conceprual Level () |

Table Il. Measurements in data reverse engineering

3: Operative resulis

The planned process was put in production in the
scenario described earlier and afier sevenieen calendar
months of work on a production line, the first results
werg oblained.

It should be noled that a production line refers o an
organizational unil which has all the resources required
for executing the process avtonomously. Tn this case, the
production line is composed of eight reverse operators
and one reverse engineer. The former exccule the
procedures according to the defined process models
while the latter coordinates activities and takes all the
decisions necessary for solving all indeterminate points
in the execution procedures, The production line shares
an expert in the application domain with other
organizational units in the company,

These [irst operative resulis can be analyzed from the
point of view of both efficiency and efficacy. Although
efficiency was not the main aim of this work, the data on
the activities for reverse engineering of the programs and
of the data are summarized in Tables I and I,
respectively, Twe important considerations can be made.

The productivity of the operators for reverse
engineering the programs is correlated with their
experience in the application domain; this explains the
differences seen in Table 1. In reverse engincering the
data, the difference in productivity has less correlation
with experience because there is very little actomation of

66

the activities and so the man time required is very high
in any case.

The sccond point is that commercially available tools
are ofien inadequate for large projects, For example, the
tool wsed in exiracting the data structure becomes
unacceptably slow when access o previously inserted
imformation is required, if the data are more than a
thousand or if access is to an entity with more than ong
hundred attributes. The tool used for the programs, on
ihe other hand, shows an abrupt drop in performance
{mnswers {0 questions on duta and control flow slow
down} as soon as the threshold of BG00 lines of code is
passed. Clearly, inefficient automatic tools require more
man {ime 10 attain the objectives.

As regards the efficacy of the process, the following
points can be made.

The logical data model is not very useful to the
maintainer because he can read the information he needs
more easily from the record layoui described in code,
This is due io the complicated struciure of the files in the
old system, which is difficalt to clarify and represent. It
is necessary, however, to know the relationships existing
between the files that manage the sysiem; there are many
of these, so maintenance is a high risk procedure. For
example, the relationships between the CUSTOMERS'
INFORMATION file and the MORTGAGE: CLIENT
TAKES OUT MORTGAGE is expressed in the field
MTO2-01 which represents the customer’s number and
univocally identifies in the CUSTOMERS
INFORMATION file ali the information on the above
client.

PmgramNlams Hodule Hame mecabe haktesd Pragramiems Medule Hame mecebe haldead Frogramlarme Moduls Home mucabe habtesd
AAOGRY 7ir Wms VADSOD 5% WTAL4 EROGOL 235 67562
AADCOO 28 4813y VAGOST 0 2088 ERQOCO 2 364
Monowaz 3 §00 MocDoCE 1 "E Maug2olo 4 2330
HEB0R4L 5 el MOg0s0T7 1 =11 KOcD2828 H 3472
Hooowas 20 5463 aocosom w 2508 Moao2028 4 aTs
MO00W0IF 42 8872 #MO0DO0D R0 AB26 Msnoa027 5 2800
4000038 0 4617 KD00C0Z0 4 ns KMO002025 27 4043
.. Maoowa7 B LASSI . Mooooezy B TOE LMemozoaa s oo
K209 BIE 3 2498 Hopopoz2 -3 8O0 5002023 i 12
MEOOW3IE k] 168 Wunao023 k3 1063 1Ba002922 7 843
st RAGED A i by SENTRIE 3 L R, SRR ¥ 1.1: 15T 1 V- JURRITRRRIRENCERIEL .1 -SERINY -1, 3 - KEREISNS Lo JAGODASYY - REE ARRREIEE -1 RO
MO # 3368 wMopoeoas 7 545 120083638 1 16
MyosI2 2 5322 Hogono2é FE) 3gs0n KHooe20w 2 U
Measwst = 3672 Wa080027 £ 357 roaoien 1 78
FGD01030 " 3582 0000028 3 252 Maoo2ew 3 750
MOOoKRS 7 2240 0080028 3 238 MOOo20% 1 744
Ho00we H it Mo00003a 3 ws HMRAOR0H 9 Tigs
Kooom27 1% 2132 HooU0adt & nz HOOQZO T B 1280
B0 IE 1] 4472 #0000032 & wad wond20E ¥ el
[lehigd 3 6% Ho000033 7 52 HOD0EOT # 2233
Masow0ze 3 e MEU00034 23 ®|iE HQGOZaE T 7810
el dehool] & 398 HMO208035 & 458 80502008 § it
MOGa027 -4 Wt HMOGTO93E 2 o REBUOTO0S 0 2092
MO0 2T 5% 5872 MODeGEIT e 32230 HaGazue? g el
MEo0WIe 8 i) EER IR E . % Giad HOUY2605 28 EB7E
MICOWEH k] 3049 MBD2003% 3 2688 H0eoR0ts & 2228
RAOGRIGE w 1080 MEOGA0S0 4 B4 KRODOZ004 24 58
Kosowy € 2123 MEOGRoAY 65 327w K000Z003 B 3734
MusoiLr 4 654 MEo0os3z 58 33419 Koboiosd [240%
MORORE 7E 3ias0 Kue0gsel 55 WEIL WOC0200¢ 1 20
[GLRTER) B 2480
MoBOR T 8 8207
LiRel e ke 3 2280
MogGE N 43 5300
MO2EW W 4z 7486
ROoUK0g 4 489
MaGgn03 Fid BEEE
MOSoweT 3 3ad
M3C0W006 ©w WES
MODLR O3 5 642
MO0 B0 3 kX173
FAGDGW03 3 434
MI00G02] o5
MOSC R0 1 23§

Table . Complexity of some programs and their exiracted modules

During restoration, thanks to BACHMAN's ool [2]
and VIASGOFT's tool [14], and (o the techniques used,
the reverse operator extracts a lot of information which
cannot be expressed in any of the documents produced.
In particular, for many medules in the restored program,
he will know not only their description bui the
algorithms themselves contained in the module, In fact,
referring back in Figure 1, the document including the
description of the behavior of the modules belongs to the
flow named "restored logical modei”, Only a textual, not
a formal, description of the aim of the module is
provided for.

The data in the files formalize many design decisions
taken during the past klife cycle of the system, whose
reasoning has been lost. As they affect the actual
structure of the programs, their inadequate use prevents

-+

the reverse operntor from being able {o extract some
functions implemented by the code, derived from these
decisions which have left no traceable reasoning. For
example, the field MT(2-08, which represents the total
amount the client must pay in instalments to pay off the
mortgage, is calculated from the morigage amount
{(MTO02-02), the total number of instalments (MT02-05)
and the interest rate (MT02-03). The design decision has
decreed that this datum be stored rather than calculated
each time. The main consequence is that many modules
identified during the reverse engineering process have
low cohesion and high complexily and will cbviousty be
difficult to maintain. Table UI shows the complexity of
seis of modules exiracted from some programs, which is,
in some cases, still very high. Performing test cases helps
1o understand very complex modules.

Documentation

Expariance
on the fisld

4
Analysis of
Existing
information

B

Training
Rovarza
Diparatsr

Expactsd
~Functions

Guide lines

6

Rastora

‘Logical

Madel

S g Tast
E : 3 & i . Bases
Expadtad Cainulated rftuai el Sl
functions dats - Abstrac ,__ﬁm\
- s, Data !
™ . . Fasired

iogical
el

{ Analysis(n
Eipanied
Funaticng /

\

. dats
fogical
data
. muodst
Contrat Cancepiual
data Eesncdn)
{lata o Logical
degcristion Raconstruct cress tunctions
Logical Laval rafarence mods] Coda
of Dat
invamary
Seftwars Facanzirugt
fw) 2] System Lagical Lovael of
softwars i Programs
SYSIBm e,

Figure 4. The modified reverse engineering process

4: Modifying the process

After the first experimental period on the ficld, some
opporiune modifications were made to the process model
and to the product.

To increase the reverse operator's efficiency,
depending on prior knowledge of the application
domain, systematic iraining is necessary. It is not
possible to have specialized reverse operators for each
domain because this would make the "system to be
reversed” - “operator (o be used” pairing far too rigid.
We therefore decided to alter the process, as can be
observed in Figure 3, inserting training activities which,
by using the expected functions, explain to the operators
what they should find in the programs and in the data
they process. This activity is carried out by the expert in
the application domain and aims to provide the operator

with guide-lines for performing the operative procedures
detailed in the process. [t is flexible, because the less the
operator’s prior knowledge of the application domain, the
more exhaustive the training will be. It can be repeated
as backup each time greater experience is required in the
reverse operator,

It is not possible to formalize in the process the
mformation that the tools, sven when commercially
known, must be carefully assessed for their efficiency,
not only for their efficacy. Fortunately, in this case, the
most inefficient tool was the one which derived the
structure of the files, so reconstruction of the logical
level of the data was modified (see Figure 2) to produce
the classification of the data as conceptual, control or
structural, and the description of the relationships
between files,

68

QRIGHAL MODULE
PROCEDUAE DIVISION.
20298 TAKE-ACCOUNT SECTION, 20350 PERFORM RBCAIVIARKPY 2HTS LETTURA-ARKCD-SB SECTION
203048 AA 2035 FNOT K0
26309 FFLAGTR -2 CR2OR4 OR 20352 MDVE "TAKE ACCOUNTPT-GAR "TO HOMEBE{ t 48t EXIT.
2030 IOX-ETH0O2 -2 ORI ORAURSGR e 20353 GOEPR,
2031 NEXT SEHTENCE z0es LETTURAARKPT SECTION
2038 ELSE 20%3% PERFORM LETTURA-ARKPT-5B
030 GO PTGAR, 0361 FKHO] EXIT.
20387 GG PT-GAR.
20397 PERFORMLETTURA-ARKLD 20383 SOESCL k12 REBCANMEARKPT SECTION.
03B 1F ROT Ki-0 20584 GAR.
ASgag o MOVE “TAKE ACCOUNT AA-T8 NOMESEE ATl e e e e ST B
20520 GO EP, 20369 FERFORM LETIURA-ARKFG |
20370 #HOT KD 22004 LETTURA-ARKPT-S8 SELCTION
........ 26323 PEAFDEM AISCRVPARKED, v ez o BUE T o MOVE TAXE-ARCOUNT.OAR I TO NOME-SED. . o i ERSEEy i
20324 IFNGT Ko T0ETR GGEP. 22008 EXIT.
203325 MGVE "TAKE -ACCOUNT AA™TO NOME-SEC
20328 GG ER, 20878 PERFOREM ASCRIVIARKFG cun LETTURA-ARKCFO SECTION
10378 I NOT Ko
20332 FERFURM IETTURA-ARKGDSB 20377 MOVE TAKE-ACCOUNT GAR TO NOMESED |2 EXIT.
26323 i Kk 20378 GOER
20334 GO AA. 1550 RISCANVEARKCFG SECTION
26338 GOTOESCL 20337 PEAFDRM LETTURA-ARKGRSE
206338 PT-GAR, 25388 #FKbo R EXY
20337 FADX-EThooz w7 FE3E8 G GAR,
20338 HEXTSENTENCE zoass EBCH wra LETTURA-ARUUFS-58 SECTION
20338 ELSE bkl 13 LT PFRDORAM.
20344 GO GAR. BT EXIT.
26463 LEFTURA-ARKCD-SRCTION
2634 FRAMOHR TETTOHA AEKET 7683 VECITA SECTION.
I03E43 IFROT Ko 260 ERIT.) EP
20348 MOVE "TAKE-ACCOUNT PT-GARSTS HOME S 807 T EXIT PHOGHAM
20327 GOEP. 23N HISTRIVEARKCE SECTICN.
e 3] EXIT.

Figure 5. Original module for dynamic slicing

The formalization of the modules is included in the
struciure of the logical model deliverable, whose
compilation standard changes. To increase the
abstraction of the information on the decisions affecting
the data, it is best that the control and structural data,
first, and the calculated data, successively, be analyzed
by the application domain expert so that he can complete
the set of expected functions, where necessary. Thus, in
the process model, changes have been made to increase
the communication between the datn and the process
reverse engineering (see Figure 4),

Finally, the expericnce with the test cases suggested
using them to perform dynamic slicing of too complex
modules, during the restoration phase. A formal
description of this dynamic slicing can be found in [11],

Given a module M and supposing it contains a set of
functions (Fy.... F): in the set of test cases used fo
verily the functions of M, some subsets of test cases
(Ty.... Ty) must be identified, in which the generic T;
containg the equivalence classes of function F,. Thus the
test cases T; will activate in M all and only the
insgtructions that implement the function F, These
instructions constitute the module M; corresponding to
the function F. Once the modules (M; M)
coresponding 1o (F; Fy) have been extracted, a
complementary module M, to the modules (M} M,}
can be found in M. M, will be the module managing

(Mi...‘,Mn)‘

49

For example, for the module shown in Figure 5, the
data {or which the {est cases have been congtructed are:
IDX-ETI-002 :{1....,.20}

fndex of types of transaction table
FLAGTR-WS :{0,...9}

Work area flag whose value is paired with the index

of types of transaction table.

The combined values of these two variables specify
the exact nature of the transaction the client intends to
make with the bank,

KI-0 :ftrue, false}

Contrel variable which states the result of access 1o
the file. If true, access exists, if false, then access 1o the
file was not possible.

The value of this variable is tested (in the cases in
Figure 6) only on exit from PERFORM, which enables
reading of the files.

Thus the original module was substituted by the
structure shown in Figure 7.

The complexity is modilied as shown in Table IV.
This is formalized in the reverse engineering process
model by modifying the procedure corresponding {o the
activity “reconstruct logical ievel of programs”. In fact
for all modules exceeding a predefined level of
complexity, dynamic slicing will be performed using the
test cases relative to the module in question.

e ALTRCE T CLAS

S ELUVATERE CLASS

P ERIWATYRTE CLAZE

FLAGI R wWEwn 3285 FLALE H-WSIn{2 3 6]

TLAGT WO e {23 41

| I [AT SR S|

Eipe ey [T,

R T

Miimtv e ry e

M50 aFALS | [

K- LFALSE K3 wTHIIE

KD AL Ix:

MO TARE ACCOURT- A TER B T B AVEGE

PAGE B REDVE TN
20305 AR
0318 MIWEZERGIOKEY-CH

MGG LE TARE- AT UNT- N VES TRENT FLR TRCLIG

PROCEDUREDNSION
20335 PT-DAR
03t MINEZEROTOHEY.FT

TAET L AR AT T BORETS

PROCEDUREDNEICHN
S84 CAR
29388 MOVEZERD TOKEY.CFG

26317 FEAFCAMIETTURATAERE
ca31s AFNOT NG

20015 MOVETTAXE ACULUNTAA”
25328 GUER

0344 FLARORMLETTUNA ARRFT
20345 FROTRL G

20385 MOVETTAKE ACTLUNT P T.OAR “ICNCME SEC
25347 GOEP

23EER PEAFDAM
FROT KL
MOVETTARE ACTOUNT AR T TR NOMERTC
7y GDEF

PRAC ARG

T P AR RE R A AR ED

= FERFIR NG IR ARADT
GER .
TAKE ATCOINT GA% 1N

FERrCH R ETRREARRIN 2]
3 FKLE
GOAA

fetigsixtud

LA RS T

BIELETIUNSA A

EELEEN 0l

T3I9UECT ASH
FHGEY

1753 EXT PROGAAM

1731 EOT REIFIAM

T

R BT PROGAAR

AP EMENT

SEEL LU R RN AR R,

PROCECUAZDNE DN

23296 TAKE ACCOU NI SEC TGN
2B30R AR
25369 $F L

23395 QL IRESTE

3235 P71 0AR

37 FGAET R AT
CALL TAKE

Sitae EYT BRINSAR

Figure 6. Results of dynamic slicing

kb0, wiil
wir, weoat
woonto

k-G
v

2

TAKE-ACCOUNT.
AL-DEPOSIT-
SAVINGS

rokeog % %
ek-5d

TAKE - ACCOUNT

k0, wii ;)
wir, weat -0

weonis w

3
TAKE-AGCOUNT-
INVESTMENT-
PORTFOLIG

k-G
m2ans

ki, wiidy,

wir, weat
WRZRI
4
TAKE-ACCOUNT-
SURETIES

Figure 7. Program structure after dynamic slicing

70

improve testing and validation of the functionality and
efficacy of the tools used. Even well known tools which
have been on the market some time may be inadequate
because, for the most pan, they have been used in pilot
projects rather than effective production. Hence, the
reverherations of their actions are still unknown.

71

Program/Module Halstead McCabe References
Original program 3276 12
TAKE-ACCOUNT-MODULE 1512 3 [1} F. Abbattista, F. Lanubile, and G. Visaggio,
TAKE-ACCOUNT-A/C-DEPQSIT- 1920 4 "Recovering conceptual data maodels is human
| SAVINGS-MODULE i e iniensive”, Fifth International Conference on Software
TAKE-ACCOUNT-INVESTMENT- 1873 4 engineering and Knowledge engineering, San Francisco,
PORTFOLIO-MODULE Califomnia. 1993
| TAKESACCOUNT-SURETIES: 1813 3 (2] BACHMAN, Bachman/Analyst Reference Manual,
MODULE Rel 410 -
CIEASe 41w,
. {31 G. Canfora, A. Cimisile, and U, De Carlini, "A logic
Table IV. Module cemp!ex{ty before and atter based approach to reverse engineering tool production”,
extraction Conference on Software Maintenance, Sorrento, Haly,
1991,
5: Conclusions [4] Q. Canfora, A. Cimitile, and M. Munro "RE% reverse
engineering and reuse re-engineering”, Computer
This paper describes the results of experimentation Science Technical Report 832, Univcrfsity of Duhlram,
on the field of a reverse engineering process and the ; Schoal of If_'agmceﬂs:g and}Coz‘;{puzer Sc':%cn;:ie,]"{3}?2‘ ‘
improvements made on the basis of the data obtained, (31 E. J. Chikefsky, and I H. Cross I "Reverse
o . engineering and design recovery: a taxonomy”, [EEE
The feedback gained from the quality of the product Software, January 1990
anq [glie. qu;iilny qf Eijc process "ls”parucularly [6] G. Como, F. Lanubile, and G. Visaggio, "Design
enhgucmn%, nothis case, the usability of the recovery of a data-strong application”, 3rd International
docomentation to understand the programs beter Conference on Software engineering and Knowledge
suggested some improvements fo the process. This engineering, Minois,USA, 1991,
feedback enabled closer connection 1o be made in the {7] F. Cutillo, F. Lanubile, and G. Visaggio, "Extracting
process model between the static and the dynamic application domain functions from old code: a real
information which can be extracted from the application experience”, Znd Werkshop on Program
domain and the user context of programs. Comprehension, Capri, Italy, 1993,
In addition, a synergetic analysis in the process of [8] F.Cutillo, P. Fiore, and G, Visaggio, “Identification and
learning about the programs was defined. The programs extraction of domain independent components in large
. 5 ol 2 el psp g -
to be documenied were so complex that dynamic programs”, Working Conference on Reverse
analysis alone would have been inadequate: in fact, in 9 g”gg’“f;”g’233‘5:]02:]1993'd G. Vieazgio. “Usi
the original programs, each test case would have [} F. Cutillo, F. Lanubile. and G, Visaggio, "Using
. . . program slicing for software comprehension”, IEEE
activated so many instructions that a great deal of man . i .
. . Workshop Netes on Software Comprehension, Orlando,
time would have been required to understand them. Flosida 1692
Instead, wsing prior static ana!yms-, Ehe.pmgmms were [10] FORMATICA, "Definilion of the production linc.
decomposed and classified essentially into two types: reverse engineering: process model”, fut, doc. no. 69.
modules whose aim and behavior are clear, and modules September 1992
whose aim is clear but behavior is not. The latter, more [11] R. Gopal, "Dynamic program slicing based on
complex modules, can be understood better after dependence relationships”, Conference on Software
dynamic analysis with the test cases used fo verify the Maintenance, Sorrento, taly, 1991,
results of the reverse engineering process. {12} F. Lanubile, and G.Visaggio, "Function recovery based
Unfortunately, the modified process has been on program slicing", Conference on Saftware
operative for too short a time for data to be available (o M"""L”_‘“"“’; Mm“eaf’qﬂ?i’eﬁ Canada, 1993. '
assess its quality after the modifications, (i3] .I;If We!sz- Program Sl;(ggglb lﬁiEsza?;f;C:'ﬂ'!S on
Finally, the experience highlighted t(he need to gjfware Lngineering, vol.ok-1t, n™, July -
Y P Enis [14] VIASOFT, VIA/Renaissance User Manual, VIA/ Insight

User Manual, VIAISmartDoc User Manual,

Dynamic Code Cognition Behaviors For
Large Scale Code

AL von Mayrhauser

Dept. of Computer Scisnce
Colorado State University
Fort Collins, CO 80523

Abstract

This papers describes code cognitien bohaviors when
mainlenance engineers try to understand lurge-scale
code. 11 reporis on low level and higher lovel uggregale
comprehension processes, hypolheses, and siralegies.
fesulls are based on the integrated meta-model of code
cognition and use prelecel analysts of code cognilion
§C5510M8,

1 Introduction

Fxisting program understanding models agree that
comprehension procceds elther lep-down, botlom-up,
or some combination of these two. Our observa-
tiens [11] indicate that program understanding in-
volves both lop-down and bottom up activities and
lod to the formulation of a model that integrates oxe
siing models as components. This integrated code
comprehension meta-model consisls of {1} Pregram
wedel, {2 Top-down model, (3} Situation wnodel,
and {4.) a Knowledge base,

The hasis for the top-down {also known as Domamn
moded) m;z;gmmvm is Soloway amﬁ Ehrlich’s 7] top-
down modelwhile Pm%mz;gisu s {4! program and situa-
tion imodels are reflected in the f)mgmm and situation
model romponents of the meta-meodel, Tl three
sodel components reflect mental representations and
§§;<‘ strategies used to construct them. They repre-

it views of the code at various levels of abstraction,
"E‘E'w knowledge component s necessary for success-
fully building the other three models. Thus the com-
plete meta-model describes program, situation, and
top-down model building together with the appropri-
ate knowledge for consiruction of a mental model of
the code,

Bach model component (as well as the meta-model)
bulds up knowledge using what is already known
about the domain, the architecture or environment,
and the code. Each model mmponnn reprosents both
the internal representation of the code (or shori-term
memory) and a strategy to build this internal repre-
gentation. The knowledge base furnishes related but
previously acquired information. During understand-
ing, new information is chunked and stored into the
knowledge base {er long-ferm memeory) Tor future use.

The Top Down model is typically active if the code
or type of code is familiar. The top-down represanta«
{ion consists of knowledge about the application do-

PR

(-8186-5647-6/84 504.00 £ 1854 IEED

A M. Vans

Dept. of Computer Science
Colorado State Universiby
Fort Collins, CO 80323

main. When code is completely new to the program-
mer, Pennington found that the first mental repre-
sentation programmoers baild 5 2 program mode! con-
sisting of a control flow

abstraction of the program
[4]. Onee the program model representation is con-
structed, n stlualion model 15 developed. This rep-

resentalion, also built from the boftom up, uses the
program medel to create o data-flow /functional ab-
straction.

The knowledge base, also known as long-term mem-
ory, 5 usually organized into schemas {or plans)
Schemas are knowledge structures with two parts:
stol-types (or templates) and slot fillers. Slot-types de-
scribe generie objects while slot fillers are customiza-
tions that it a partienlar feature. Data structures like
listy or trees arve examples of slot-types and specific
program {ragments are examples of slot-fillers. These
struetures are linked by either a Kind-of or an Is-A re-
lationship. Schemas are grouped into partitions specif-
ically relatec d to the comprehension processes. For ex-
ample, knowledge of algorithms is used by the program
model burlding process.

A key feature of the integrated meta-model [11] 15

that any of the three model components may become
ackive at any time during the com me?!mwaz; process.
Structures built by any of the three model compo-
nents are accessible by any other; however, Vigure 1
shows that each model component has its own pre-
ferred types of knowledge. [11] contain thorough dis-
cussions of the integrated meta-model and its compo-
nent models,

The integrated code cognilion model includes
knowledge and information. Previously, we described
informaiion necds of maintenance engineers as they
understand large scale code and how tools and main-
tenance environments could support resclving these
information needs [11],

Code undersianding, however, is dynamic. We need
to explore furiher what aspects of dynamic behavier
exist and whether we can describe such behavior with
common cognition processes. Preliminary resulls were
reported in [10}. Section 2 describes the objectives of
this study. The first step to describe cognition dy-
namics i3 by exploring how mainienance programmers
switch between components of the meta-model. Next,
we investigate whether low level processes exisl and
whethier they aggregate into higher level processes. We

Documents

Top-—-Dawn

nderstanding

Schema (Plan)
Current Mental
Representation
of Program
]

Pocuments
LB Code . -

l Documenits I
ot Code

Bameons

T Mateh™,
- L,L\iu s b
H

1. Contral Prifmes

I Plan Knowiedge
1. Algeritline

6. Syntax

2, Control Segtente
3. Data-Eiructittee
4. I¥ata~Fiow (alicea?

Tyl orusy
Srrucfiares

Programmibng Plans

A Biratawic Plane $
7 ¥ Fautic
g £ Testizal Plana % ras From
.l O lmrpiernentation Prograns
‘%? Plans vy Model 9
Y
ot f’é
Tosin Escton o
Blemery %%g?’* Fratcitermer _ . BEarosey
Aiero Strucfures Situertion Lokt -
Btructure Mofoctend Sappings
. Structures
Frograsn Dhomain ELighs
Macrpe. Hanwladga: Ement
Hrrusture A, Tent—Structura Frobism Detmain blappingn
Forvow Lndge

Boacona

%

o
o

EHnowledge
{Raal World Enewledge)

Functional Hnowledygs

Frogram
Modal

Situation
Maodet .

Figure 1: Integrated Code Comprehension Meta-Model

also determine the role of hypotheses and strategies as
part of the meta-model,

Section 3 details the experimental design and anal-
ysis method. We used protocol analysis for cognition
process discovery. Section 4 reports on the results
of the analysis. This includes the nature of dynam-
tcally occurring switches between the components of
the meta-model during undersianding, episode (low
level) processes, and their aggregation to higher level
(session level) processes. Iypotheses and strategies
play a major role in these processes. Section 5 offers
conclusions and further work.

2 Study Objectives

1. The role of Model Components in the Integrated
Meta-Model. Subjects frequently switch between all
model compaonents {i.e. understanding is built at all
levels of abstraction simultaneously) [11]. Is there a
difference in working at levels of abstraction based on
the size of the code under consideration? Answers
to this question affect type of knowledge, cognition
process, and expertise best suited to large scale code
understanding.

2. Episodes. We have seen the types of actions en-
ineers execute while working on maintenance tasks
11]. Are there repeated action sequences (episodes)
representing lowest level strategies? How similar are

they? Which types of episodes occur most freguently?
What information does the engineer need to complete
an episode? Do episodes represent understanding at
only one level of abstraction or do they span all levels?
3. Aggregale Processes, ow are episodes used in
higher level understanding strategies? Are there re-
peated episode sequences (aggregate processes)? How
similar are they? What {riggers the end of one episode
and the beginning of another? Are some of these trig-
gers more commen than others?

4. Sessien-Level Processes. Do aggregate processes
help in defining a maintenance task process (session-
level)? Are there repeated sequences of aggregate pro-
cesses? How do programmers switch from one aggre-
gate process to another? If we find one process for
each type of maintenance task, what are their similar-
1t1es?

5. How are hypotheses used in the understanding pro-
cess?

6. What strategies do maintenance engineers use dur-
ing comprehension? How do they relate to hypotlhesis
generation, processes, and meta-model construction?

3 Experiments

3.1 Experimental Design
The purpose of our study was to find a code compre-
hension process model as part of the Integrated Com-

prehension Meta-model, We also wanted a high-level
preliminary validation through observation. Each ob-
servation involved a programming session. Parbicl-
pants were asked to think aloud while working on un-
derstanding code, We audio and video taped this as
a thinking aloud report. Sessions were typically two
hours long. Table 1 defines three major variables for
our study. The columns represent exrperiise, the rows
represeat the amount of accumulated knowledge sub-
jects had acquired prior to the start of each observa-
tion. The fype of maintenance {askis listed as an entry
in the matriz, Dach square represents specific ohger-
vations that are characterized by the row, column, and
mainienance task. Abbreviations, for example €2, are
used in the rest of this paper to entify individual

subjects. As the matrix shows {(Table 1) these eleven
Heperiises Linnguage
cosmlnted Longuage Domain & Dpmain
mnowledged Fzpart Expert Erperd
Maver Beon <2
Before Linderstand
Bug
Filn C3:Fix =1:-Frogram:
Srructure Heported Genural
Call Graph Bug Understand
EM2:Add
Funstion
Heguirement L G2 Under-
& Design Reported stand one
Documents Bug Madule
Worked some Li:Leverage C4:Track
with code, Smal} Dawn Bug
style familinr Program
Prior code ATIZ A AL Fon
enfmncement, Funation, Program
debugging, Prototype Roross
adaptations Assess Platforms
‘»‘i;f} il Mth BT Add
Function-
niity

All Mainte-

Table 1. Programming Sessions -
sante Tasks

subjecis represent good coverage 1o terins of a varying
degres of knowledge about the task and expertise. All
tasks represented actual work assignments,
3.2 Protocol Analysis

P’rotocol analysis proceeded in three steps (see Ta-
ble 2}, The following describe the criteria used to clas-
sify statements, identify information needs, and ana-
lvze protocols for discovery of processes.

Enumeralion Segmentation Frocess
Discovery !

Litlerance 1. Abstraction 1. Episode

1 fevel fevel processes

Artion 2. Acilon typss | 2 Aggregale

3. Information
Meeds

level proresses
3. Session
level processes

Table 2: Protocol Analysis Steps
1. The first analysis on the protocols involved enu-
meraiton of aclion iypes as they relate to the in-
tegrated cognition model of {11]. Action types
classify programrmer activities during a specific

-3

o

maintenance task. Examples of action {ypes are
“generating hypotheses about program behavior”
or “mental simulation of program statement exe-
cution”. We began with a list of expected actions
[9] and scarched for them in the transcripts of the
protocols. We also analyzed for possible new ac-
tion types. Table 3 contains example protocols to
show action type classification.

2. The next step in the analysis combines segmen-
lation of the protocols and identification of infor-
mation and knowledge items. Segmentation clas-
sifies action types info those involving top-down,
situation, or program model and can be thought
of in terms of difierent levels of abstraction in Lhe
mental model. fuformafion Needs are informa-
tion and knowledge items thal support successful
completion of maintenance Lasks.

3. We discovered dynamic code understanding pro-
cesses by classilying and apalyzing szsﬁgff‘-
Episodes are single instances of a sequence of ac-
tion types. An episode starts with a gsal and
embodies the actions to ascomplish thai goal
For example, determining the fanction of a spe-
cific procedure or routine may entall a sequenee
of steps that include reading comments, follow-
ing control flow, and generaling questions when a
concept is not understood. Processes are defined
at three different levels; episodic, aggregate, and
sesston levels, Episodes containing commmon ac-
tion types with similar goals are defined as a sin-
ale episodic process. Likewise, common sequences
of episodic processes are defined as a single ag-
gregate level process. Finally, the session lovel
process is established by a sequence of similar ag-
gregate level processes,

A process is a sequence of action types, episodes,
or aggregates whose purpose is to satisly a spe-
cific goal. Specifically, sach episode 15 determined
by discovering the goal and cataloging all subse-
quent action types until reaching closure on the
goal dus to goal satisfaction or goal abandonment.
Once episodes are identified, we analyve each, ab-
stract oul commonalities, and designate the re
sulting sequence an episodie process. An aggre-
gale level process emerges from similar episodic
processes. Similarly, sequences of aggregale pro-
cesses nre analyzed for commonalities and ab-
stracted into higher-level processes. Ounce again,
common sequences of aggregate level procosses
produce a single session level process represent-
ing a two hour programming session. Section four
llusirates these processes using state diagrams.

4 TResults

in this seclion we present the components that con-
stitute the dynamic behaviors we wdentified duning
the programming sessions: 1) switches beiween meta-
model elements, 2) processes, 3) hypotheses genera-
tion and confirmation, and 4) strategies. We focus
on one subject’s dynamic behaviors to iHustrate the
resilis,

i1 _Analysis Type | Tag | Action Type

| Erample Frotacol T

Action-Type Sys8
Classification

Generate Hypothesis
{Program Maodel}

“.and my assumption 15 that nil with a little n'and nil with a big N
are equivalent at the moment.”

Sys7 | Chunk & Store
knowledge
(Program Maodel)

“So clearly what this does is just fip a logical flag”

. Lable 3: Example Protocol Analysis — Action Types...

Our example subject (G2) was in the process of un-
derstanding one module in a system for which he re-
cently took over responsibility. The program consisis
of non-standard PASCAL of approximately 90,000
lines of code. During the programming session he was
inferested in theroughly examining the main proce-
dure which controlled a majority of the system. The
engineer was an application expert (six years profes-
sional experience). e was very familiar with thres
different versions of Pascal as well as MS-DOS assem-
bly language.

The subject preferred to work with a hard copy of
the code and used a computer for tasks like searching
for variable use/definitions and for writing mail gues-
tions to other experts. He annotated the hard copy
with information which ke frequently referred to dur-
ing the session. He was very systematic, following the
code, line by line and attempting to understand ev-
erything before going on to the next line. At the end
of the two hours he had successfully understood the
main procedure with very few unanswered questions.

4.1 Switches

A switeh is a change of focus from one model of
comprehension to another. For example, if an engineer
is currently focusing on building a program model of
the code and reads a comment that refers to a higher
fevel concept, a switch to the situation model may
occur causing the new information Lo be incorporated
into the current situation model.

Table 4 surnmarizes the total number of references
to meta-model components and frequency of switches
between them for G2. There are a significant num-
ber of references to the program model and there are
more switches between Program (Prg.) and Situation
(Sit.} models than between Program and Situation
or Program and Top-down (T-D) models. This is ex-
pected since the subject was building his mental model
from the bottom-up. When he worked at the situation
model level, he tended to switch back to the program
model. When he worked at the program model level,
he spent large amounts of time before moving on to the
top-down or situation model. This accounts for the
significant number of references to the program model
as compared to the number of references at other lev.
els. Tinally, there are significantly more switches be-
tween the top-down and program model than between
the program and situation models because our subject
was unfamiliar with the X-25 protocol and spent most
of his time trying to connect chunks of program level
staternents to higher level functional descriptions, re-
lating to this type of protocol.

There are significantly more references to the pro-
gram maodel than to either the situation or top-down
models. Since our subject was studying a single mod-
ule of an application and lacked some domain knowl
edge, he concentrated mostly on the program rnodel.

Number of Alodel Suatches
References T EETH ryg.
Madel | Modal | Model | Model
56 1.0 N/A 6 24
34 Sit. T N/A 27
201 Pre. 23 I3 NA

Table 4: References & Switches Between Models

4.2 Processes

Processes are dynamic code understanding activi-
ties consisting of Episodes, Aggregate Processes, and
Sesston Level Processes as discussed in subsection 3.9
Here we llustrate the types of processes discovered in
G2’s program understanding protocol.

4.2.1 Episodes

Episodes are sequences of action types carried out to
accomplish a goal. Episodes containing common ac-
tions with similar goals emerge as the lowest level pro-
cesses. To illustrate, in our example protocol, episodic
process 1 - Read Block in Sequence starts with the
overall goal of understanding a specific black of code,
e.g. “I'm going to read the description and see if it
gives me some good clues as to what's going on.” Some
of the observed actions that support the original goal
are: generating hypotheses while reading comments,
chunking information, making note of interesting as-
pects, and postponing investigation of them.

Table 5 lists seven episodic pracesses and how often
they occurred in the transcript. The subject spent the
majority of his time reading the code, determining the
behavior of a variable, and incorporating this knowl-
edge into his mental model of the program module.
The engineer applied a systematic sirategy of reading
each line of code in approximate sequence. Figure 2
presents this pracess in graph form as a state machine.
Arcs indicate action types while states represent level
of understanding. Processes PI and P3 were the most
frequent. These two processes are preferred during
detailed understanding of one module. Based on Ta-
ble 5, we expect to find other processes, such as P2,
more frequently referenced when understanding larger
code segments.

Individual episodes can vary greatly, because their
goals are very different. An episode may use the same
action types as another but occur in a different order.

Pl (Read Block)

"Detarmina ™ .
Hey Aspocis
and Prioritize

™, Cionsralo
Itypothoeeis

Note
Interesiing
Irontiflar CGenernte

Hypoathenia

Thunk
3

Srpre

Seart Cenfinm
LA AT | y kypothasis

Chuslkle

Biere, Chunk

£ Stare

Chnnk &
Bira

Hrd-ni-Blosk

Pigure 2: Episcdic Process -~ Head Block

Diuring our analysis we were able Lo associate infor-
u::mn:a needs (and their frequenc ws) with drtaa:m Lypes
vd thus with episodic processes. T tbm 5 shows
ormation needs for procsss PL {or subject G2 The
three most frequently needed information types for Pi
directly relate to the activities shown in the state Jdi-
agram. g, determining the end-ol-block condition
requires code block boundary information.

Interestingly, we could notl find processes that o
curred on o single level of abstraciion and therefore
classifled as purely top-down, situation, or program
mode] processes. Many episodes contained actions
that were associated with all three integrated modsl
components. This supnorts the idea that program-
iers switch belween model components (levels of ab-
straction).

1 Episodic Procsas Name 1 Cods | Number i
Hend Blosk in Sequence Pl 7
Integrate Not Understood P2 4
Determine variable Del/Use P3 7
Incorporate Acguired B)
Program Knowledge
Identify Block Boundaries Pa 2
Hesolve Deferred Questions 1§ a2
Linderstand a Procedurs Call Fi 1

Table 5. Episodic Process Frequency Count)

4.2.2 Aggregate Processes

Three aggregate processes were discovered in G2's pro-
tocel and we illustrate one below in the form of a state
diagram. Table 7 shows that aggregate processes con-
sist of episodic processes.

78

Table 8 shows frequencies of aggregate level pro-
cesses. At the aggregale level, processes PA PB, and
PC begin to look very similar. One conjecture is that
these aggregate processes represent instances of a sim-
ilar higher level strategy.

} Epesodic
| Process |

Infermatson Needs i Nurmlber ”

Code Block Boundares 4
PL: Data Type definitions & 3
Head Jpeation of identifiers
Block Call Graph Display i
History of past modificabions i
i)ﬁ!.ﬂ siruciure dfﬂ{””“ﬂﬂs 3
tied to domain concepts
Loontion of galied proceduress i
Histary of browsed locations 1
Benrons tied o sitonlion 1
model or program model
{Feacription of system calls 1
Location of deciments Tor 1
program & damain 1

Table &: Information MNeeds for Process P1

Triggers cause state changes befween processes.
They can be code induced {e.g, end of code block) or
an action type {e.g chunk and store knowledge). Ta-
ble § lists the triggers found in the example proiocol
and their frequencies for Process PC and the total for
all the aggregate processes. Beacons and end-of-block
iriggers were the most frequent triggers. Again, this
rould be a by-product of the systematic strategy used
hy this Qilhibci g, a jump out of episodic process
P {Read Block in hm;wwc} into process PT {{Under-
stand ;o(edurfﬂ Call) is caused when G2 encounters
an unrecognized gfnrz edure call {a beacon). He decides
to undﬂfﬁstdns% whatl the procedure does. Afler investi-
pating it he reaches its end {End-of-block} which trig-
gers the end of P7 and resumption of P where he last
left off

I Episedic Procoas T FA T FE T PO
X X X
nine Va ,c/ Jae X X x
Pdincorporats Acqwrad Program .
Knowledge
¥ ldentily Biock Boundaries X
P5:Hesolve Deferred LQuestions X
PT:inderstand a Procodure Call X

Table 7: Aggregate Processes ~ Episodic Com-
position

4.2.3 Session Level Processes

The state dlagram in Pigure 4 was derived in the same
way as the aggregate-level processes by tracking the
sequences of aggrogate-level processes. This diagram
represents a general understanding maintenance task.
At the highest level, only “End-of-block” and “Chunk
& Store” cause swiiches from one aggregate-level pro-
cess to the next.

The session-level process {for Understanding a sin-
gle module) shows thal all the aggregate-level pro-

Proceas PC — Read,Understand,Inveatigate
Variables, Resolve Deferred
Quesntions

End-of-Block

Beazon Henzan,

FProcess ABC
TUnderstand One Module

Ernd-of-Block
Chunk & Store

End-of.Blsock
Ghupk & Store

B / e

Chunk & Store
End-of Hlock
Syl

End-of-loclyf

End-ef-Biock

End.ol-Block
Chunk & Stare

Chunk £ Store
End-of-flock

End-of-Bleck
} Chunk & Btore

End-of-Bloek
Chunk & Store

Figure 3: Process PC - Aggregate-Level

cesses represent investigation towards building chunks
[4, 6]. Thus, at the session-level the purpose of each
aggregate process 15 to understand a block of code (us-
ing different detail steps and information) and then to
chunk and store the learned information.

Aggregate Process Name I Code T Number [

Read, Integrate, Investigate vanables A 4
Read, Incorporate soquired program

knowledge, Investigate variables, PB 3
ldentify Block Boundaries

Read, Understand, Investigate

variables, Resolve deferred questions PC 3

Table 8: Aggregate Process Frequency Count

” i Frequencres i
FProcess Trigger { PO T AIl Aggregate Procs j|
Heacon T 14
Chunk & Store Knowledge 2 8
End-cfi-Block 7 20
End-of-Stack 0 2
Understanding strategy 2 7

determined (Sysl@)

Table 3: Process Trigger Frequencies

4.3 Hypotheses

Hypotheses are important drivers of cognition.
They help to define the direction of further investi-
gation. Generating hypotheses about code and inves-
tigating whether they hold or must be rejected is an

79

Figure 4: Process ABC - Session Level

important facet of code understanding. In our exam-
ple protocol the programmer generated 63 hypotheses.
Only 11 of these were confirmed. The programming
session generated 13 top-down model hypotheses, 10
situation model hypotheses, and 40 program-model
hypotheses. Again, this is expected since subject G2
spent the majority of his time building the program-
model.

Hypotheses are related to model switching since
they often drive a switch to another component model.
Table 10 contains the total number of switches caused
by a hypothesis related to a different comprehension
model component. The row indicates the starting
model and the column represents the ending model.
The labels T-I represent the top-down model, 5.
the situation model, and Prg. the program model.

Number of To Model
References From T-D St FPrg.
Enhancement Model | Model | Model | Model
B TD ['N/A 1o 3
[Sit. 2 N/A i
5 Pra. | & g N/A

Table 10: Hypotheses Switching Behavior ~ By
Meta-model Component

A majority of the switches occurred from either the
top-down or situation model into the program model.
Again, this is expected when focusing mainly on pro-
gram model building. Table 11 contains type of hy-
potheses by meta-model component. The first column
indicates the model component, the second column

Meta-dodel
Companent |

Hypethests Type & Frequency

1 Top-Bown Domain routine functionahity

Diomnin vanable functionality

Hased on Hule of Discourse

Type of [JO Tacility

Unelagsified

Program Variable Bunchion 1

4] o} 4] d b 12T

Mudel Houtine {unction

Houtine call function

%
%3

Varinble structure

e

Where routing ealled Trom fiype of routine

atatemient axecution order

b

Varlable default velue

Existence of construct

['wo vamable saguivalent

S_\;’IIT}&X neaning

Existence of routine call

Lacation of vartable definition

Two routines are signinr

Fanction of code black

Unclassified

3 ST U R SO WS N SR s P

Suaiien Vamable function

P

Mode] Function execulion order

RS

Houtine-cnll funciion

o]

Trelnssied

Table 11:"Hypotheses — Types by Meta-Model
Component

contains the hypothesis type. For example, Top-Down
model hypothieses include hypotheses aboul the func-

tionality of a routine at the domain level, The most
frequent types of hypotheses generated by (32 concern
variable or routine functionality. Hypotheses aboul
variable function for the program wodel were the most
frequent {42% of program model h}poihems, 1T% of
total hypotheses, all models). For example, during
the programming session, G2 came across a variable
called TMODE which he did not understand. He
created several unresolved questions and hypotheses,
The following excerpt from the protocol lusirates an
unconfismed hypothesis about TMODE:

So, whal we wont Lo do here is put in o hitlle comment fhal
says, “Hypolheses T-MODE i3 o variable used fo couse
vilpul Lo be echoed on screen elther to STANDARD.QUT
or STANDARD-ERROR.”

Al the program mode] level we find hypotheses re-
lated io micro-steucture [4] and to macro-shructure
4], Micro-structure hypotheses are concerned with
a single statement or variable definition. The higher
level macro-structure hypotheses are concerned with
chunks of statements, e.g. routine {control-flow) or
variable {data-flow) behavior. Subjecl G2 primarily
generated micro-structure hypotheses.

4.4 Strategies

A strategy is defined as the high-level or overall ap-
proach to comprehension. It is a style or method of
understanding. A strategy can affect processes al the
episode level, determining the sequence of actions to
take. G2 used a syslematic sirategy [2, 31 in which
he read the code almost line by line. If he had in-
stead used an opporfunistic sirategy [2, 3] in which
only code thought relevant is looked at, the sequence

of actions mighi be very different. This in turn affects
the cognition processes at higher levels,

Cross-referencing [5] is a strategy that builds links
between the program model and the situation model.
For example, if a chunk of code is suddenly recognized
as a search routine, a cross-reference from the program
model (lines of code in the chunk) to the situation
maodel {search routineg) is established,

More than one strategy may be used during pro-
gram comprehension. Overall, G2 applied a sys-
tematic approach during the two hour session. G2
switched fre{;iwmiy between program and situation
models and between program and top-down models
{see table 4), A close look at the transeripl reveals
that switches belween program and situation or pro-
gram and top-down models established links between
the two models. However, there are also a considerable
number of switches between situation and program
and betwesn top-down and program maodels. These
switehes were not intended to establish a link belween
meodels, instead they were a return to a previous po-
sition in the program model, 38% of the hypotheses
caused a switch {o a different model compm ent while
the remaining 42% were returns to the model under
construction prior o switching.

5 Conclusion

Program uridersianding is a key factor in software
maintenance and evolution. This paper reporied on
an experiment with industrial programmers to dis-
cover the dynamic comprehension processes and the
supporting information that programmers use when
trying to understand production code. There are
four major components of dynamic code cognition:
switches belween meta-model components, processes,
hypotheses, and strategies. A protocol from one snb-

ieet provided examples of these components and we

have shown some interactions between them.
While our sample was small, this exploratory ex-
poriment showed a variety of interesting resulis

Programmers use a multi-level approach o un-
derstanding, swiiching between program, situa-
tion, and domain {top-down) models. The focus
of meta-model component construction iz influ-
enced by the size of the code to be understoond.

s Mainlenance programming activities can be de-
scribed by a distinct small sel of cognition pro-
cesses, These can be aggregated into higher level
Drocesses,

o Several types of hypotheses are genemted during
code understanding. There is also a link between
hypotheses and switching behavior, l.e. hypoihe-
ses can cause switches between meta-model com-
ponenis,

o Strategies are important elemenis of cogni-
tion. We saw evidence of two, systematic
and program-model to situation model cross-
referencing, throughout the entire session.

However, this analysis only scratches the surface
of dynamic program cognition, There are still many

unanswered questions which require additional re-
search. In particular:

e We hypothesize that switches represent one of the
stralegies maintenance engineers use during un-
derstanding activities. If the size of the compo-
nent is small enough to understand at a low level

of-detail -then-it-makes-sense-to-spend-most-of-the—mme

time in the program model. [2] showed that code

References
[1] Edward M. Gellenbeck and Curtis R. Cook, An In-

vestigation of Procedure and Variable Names as
Beacons during Program Comprehension, Tech
Report 91-60-2, Oregon State University, 1991.

Jurgen Koenemann and Scott P. Robertson, Expert

‘Problem Solving Strategies for Program Com-
prehension, In: CHI'®, March 1991, pp. 125-130.

changes.are.more.successful.ifthe.enginear.takes.

a systematic approach and understands every hine
of code, On the ather hand, if the component size
is more on the order of 85,000 to 90,000 lines of
code (as witly a few of our subjects) then under-
standing must necessarily occur at a higher level
of abstraction. At the highest level of abstrac.
tton is domain knowledze. One wdeally would like
to understand at this level if the component io
understand 15 larpe.

Our example demonstrates that strategies affect
the dynamic cognition process and switching be-
havior between model components. If an oppor-
tunistic approach was used instead of the sys-
tematic approach we saw, the sequence of ac
tions comprising the episodes might be very dif-
ferent. This may result in very different aggregate
level processes which may in turn define different
seaston-level processes.

We reported on process discovery for one tran-
scripl. We expect thal with more experimentis,
additional episodes will be identified.

It is unclear how hypothesis generation is affected
by choice of strategy. It may be that hypothesis
generation may affect choice of strategy. What is
clear is the link between hypotheses and switching
behavior, t.e. hypotheses cause switches between
meta-model components. Whether this behavior
ts driven by a sirategy or drives a sirategy needs
further investigation.

We hypothesize that the cross-referencing strat-
egy applies between all meta-model components
and that both component size and style play a
part in determining use of a particular cross-
referencing strategy. If the code to be understood
is an entire system, we would expect a cross-
referencing strategy between the situation and
top-down models. On the other hand, if the com-
ponent is a small module, then a cross-referencing
strategy between the program and situation mod-
els would be more appropriate. Switching behav-
ior between meta-model components is a good in-
dicator of the type of preferred cross-referencing
strategy.

[t}

David C. Littman, Jeannine Pinte, Stanley Letovsky,
and Eiliot Soloway, Mental Models and Software
Maintenance, In: Empirical Studies of Programmers,
Eds. Soloway and Iyengar, {©1886, Ablex Publishing
Cerporation, pp. 80 - 88,

Nancy Pennington, Stimulus Structures and Men-
tal Representations in Expert Comprehension
of Computer Programs, In: Cognitive Psychology,
19(1987), pp.295-341,

Nancy Pennington, Comprehension Strategies in
Programming, In: Empirical Studies of Program-
mers:Second Workshop, Eds. Olson, Sheppard, and
Soloway, ©1987, Ablex Publishing Corporation, pp.
100 - 112,

Ben Shneiderman, Software Psychology, Human
Factors in Computer and Information Systems,
in: Chapter 3, ©1986, Winthrop Publishers, Inc., pp.
39-62,

Elliot Saloway and Kate Ehrlich, Empirical Studies
of Programming Knowledge, In: TEEE Transac-
tions on Software Engineering, September 1984, Vol
SE-10, No. 5, pp. 595-609.

Elliot Scloway, Beth Adelson, and Kate Ehrlich,
Knowledge and Processes in the Comprehen-
sion of Computer Programs, In: The Nature of Fz-
pertise , Eds. M. Chi, R. Glaser, and M.Farr, ($1988,
AlLawrence Erlbaum Associates, Publishers, pp. 128-
152,

Iris Vessey, Expertise in debugging cemputer
programs:A process analysis, In: International
Journal of Man-Machine Studies, (1985)23, pp.459-
494,

{10] A. von Mayrhanser and A. Vans, Comprehension Pro-

cesses During Large Scale Mainienance, In: Proceed-
ings of the 16th International Conference on Software
Engineering, Sorrento, Italy, May 1994, pp. 39-48.

[11] A.von Mayrhauser and A. Vans, From Program Com-

prehension to Tool Requirements for an Indusirial En-
vironment, In: Proceedings of the 2nd Workshop on

Program Comprehension, Capri, Italy, pp. 78 -86, July
1993,

Acknowledgements

This research was partially supported by the
Hewlett-Packard Co. Inec,

81

Abstraction Mechanisms for Pictorial Slicing

Daniel Jackson and Eugene J. Rollins
School of Computer Science
Carnegie Mellon University

Abstract

Big programs tend 1o have big slices, so reverse engi-
neering toals based on shicing must apply additional ab-
stractions to make shces intelligble, We have buile o
oot that displays slices as diagrams, By confining the
slice 1o the statements of a single procedure, by eliding
all primitive statements, and by merging different calls
of the same procedure, we eliminate local information
that is easily seen in the code without the help of rools.
And by labelling edges with the variables responsible
for flows berween procedure calls, global information
about called procedures is represented locally. The re-
sulting diagram gives a compact but rich summary of
the role of called procedures in the slice,

Keywords

Reverse engineering, program comprehension, pro-
gram slicing, program dependence graph, dataflow dia-
gram, interprocedural analysis, modudarity, abstraction.

1 Introduction

Understanding a program means at least knowing how
variables at critical points in the program acquire their
values. Tt is nor surprising, then, that slicing—a me-
chanical analysis that marks all the statements thar
might influence the vahue of a variable ar a given point
in the program text [Wei84)—is widely viewed as a
promising basis for reverse engineering tools.

In practice, though, slicing is not as useful as ons
Address: School of Compurer Science, Carnegie Mellon University,
§000 Forbes Ave., Pittsburgh, PA 15213, Phone: (412) 268-5143.
Fax: (412) 268-3576. This research was sponsored in part by a
Research Initiation Award from the Natiopal Science Foundation
{NSF), under grant CCR.9308724, by a grant from the TRW
Corporation, and by the Wright Laboratory, Azronautical Systems
Center, Air Forge Materiel Command, USAF, and the Advanced
Research Projects Agency {ARPA), under grant F33615-93-1-1330.

0.8186-5647-6/94 304.00 © 1994 [EEE

might imagine. A slice is itself a program, afrer all, and,
uniess dramatically smaller than the original program,
s unlikely 10 be much easier 1o understand
Unfortunately, big programs tend 1o have big slices, so
some further form of abstraction is essential.

We have developed a tool called Chopshop that
slices C programs. In addition o highlighting the code
10 show traditional slices, it generates diagrams that ii-
lustrate how called procedures might affect the chosen
variable. The abstractions use to form these diagrams
were motivated by our intuitions of how programmers
understand code, and their appropriateness has vet to
be determined. Our prelimary experiments are encour-
aging, however; in examining a Unix wility we have
discovered features of the code by looking ar these dia-
grams in minutes that we had overlopked in several
hours of code reading,

The diagram is 3 directed graph with labelled arcs.
The nodes represens program statements and the arcs
dataflow dependences berween them. The labels on the
arcs indicate which variables are responsible for the
dataflow. This diagram is derived from a representasion
similar 1o the program dependence graph [FOWE7T],
but its spirit is closer to the dataflow diagram wsed (al-
beit with a variety of differing, informal interpreta-
tions) in a number of development methods [DeM73].
Indeed, our work may be viewed as an atrempt 1o
bridge the gap berween representations that can be gen-
erated easily from code and architeciural descriprions
that appeal to developers.

A number of abstractions are applied in the creation
of the diagram. Most vital is the modular treatment of
procedures, Standard interprocedural slicing [HRB90]
pays no respect to procedure call boundaries; a slice on
a variable that appears in some procedure p typically
includes statements occurring both in procedures that
call p and in procedures called by p. This approach was
designed for applications that use slicing internally (for
pruning regression test suites, e.g., or integrating differ-
ent versions of a program); for reverse engineering,
more structure is called for, Programmers tend to con-

fine their analysis of a program to one procedure at a
time, so it seems desirable that a reverse engineering
tool should be capable of this too. A Chopshop user
first selects a procedure; any subsequent slices treart this
procedure as the entire program. Since the resulting
slices mark relevant variables at the entry to this proce-
dure and at the return of called procedures, the pro-
grammer can easily follow the slice into a calling or
_called procedure by slicing again on these variables ,

 maining sec

Merely confining the slice to a single pmcedure does

.not,.of course, solyve the problem. Such a shice is rarely..

pose semantic relationships between components cho-
sen by the user. The idea of folding different calls of the
same procedure comes from the star diagram of
[BGY94], which uses an analysis a bit like slicing to pre-
sent candidate statements for encapsulation in an oper-
ation of an abstract type.

The next section gives an example of Chopshop’s
output and compares ét to a traditionai slice. The re-

madel, the slice compuzatmn and the abstraction mech~=

Anisms

comprehensible; some summary of the role of called
procedures is needed to explain why each call was in-
cluded in the slice. The diagram shows what cannot
easily be expressed rextually: which statements affect
which, and how they do so (that is, which variables car-
ry the dataflow). '

The abstraction of procedure calls summarizes glob-

al mformanon 5o that it may be presented locally. The
remaining abstractions eliminate local information that
can easily be gleaned by reading the code (of the proce-
dure being sliced, not the called procedures). Control
dependences are eliminated first. They are usually evi-
dent from the syntactic nesting of the code, and in-
crease the size of the diagram enormously because of
their transitive effects. Second, calls of the same proce-
dure at different sites are folded into a single node.
Third, primitive statements (excluding the statement at
the slicing point itself) are elided. Suppose, for exam-

pie, that procedure f writes x and that, following the
assignment y = x, procedure g reads y. The diagram
would omit the assignment, but wonld connect node p
to node g with an arc labelied ¥/x to indicate that the
reading of y by g depends on the writing of x by p. All
of these abstractions may be turned off by the user.

Presenting slices in this pictorial form appears to be
novel. Most slicers, such as Andersen’s Cohol/SRE
INEK94], are purely textual. A slicer being built at
Microsoft Research uses an intermediate representation
{the value dependence graph) thar would allow similar
kinds of abstraction [Ern94], and its developers have
considered laying unlabelled arrows over text; so far,
though, only text highlighting is used.

Many reverse engineering tools generate diagrams,
but these tend to be derived from shallow semantic
analyses. Refine/Cobol’s set-use analysis [M+94], for
example, can produce a diagram superficially similar to
ours, but derived from a traditional cross-reference list-
ing: an arc is shown connecting two procedures if there
is a global variable written by one that is read by the
other, whether or not a dataflow path is present. Rigi
[M +592] lets the user impose structure on a program by
applying various syntactic aggregation mechanisms to
call-graphs; Chopshop, in contrast, is designed to ex-

83

2 An Example

One of the proceduzt,s from the more utility of
Berkeley Unix 5.22 is shown, without emendation, in
Figure 1%, This proceéurc, sereen, controls the basic cy-
cle of more: displaying lines and prompting the user for
input. From reading the code, we can guess what some
of the called procedures do. Presumably getline reads a
line from the file and prbuf displays it; the prompting
of the user perhaps happens in command. But discover-
ing the details is not easy. How does the line read by
getline get passed to prbuf? Which file is being read?
Indeed, is it even the same file for all executions of get-
line?

This procedure is hard ro understand for many rea-
sons, but two stand out. First, global variables are used
pervasively; screen reads or writes more than 20, of
which several appear only in procedures it calls. The
variable line, for example, 1s a pointer to the string that
is passed from getline to prbuf, but it appears nowhere
in the call to getline. Second, the called procedures are
big, and since their functionality is often as obscure as
screen’s, attemnpting to understand screen by examining
their code raises more questions than it answers,
Getline, for example, is 109 lines long; prbufis 38 lines
and command a debilitazing 235.

Let’s now consider slicing the screen procedure. We
nozice that the variable diines appears only once, abour
10 lines from the bottom, so we slice on it to see where,
its value comes from. The resulting slice is shown un-'
derlined. Unfortunately, this does not help much: it is
too large to assimilate and it conveys no explanation of
why those statements were chosen. Following the slice
into called procedures just makes marters worse.

Chopshop generates, in addition, the diagram of
Figure 2. Each node represents a procedure call appear-
“Copyright © 1989 Regents of the University of Califirnia, All rights reserved, Redismribstion 26d e i
source and Winary forms ave permitted provided that the abiove copyright sotice and this paragragh ars depli-
cated i 2lf such farms and that 2ny documentation, sbvertiting marerials, and ocher materialy related W mch
dizrribution and uer acknowledge thar the sofrware was develuped by the University of California, Betkeley.
The name af the University may nut be ued to endoie o pramote products derived from this snfrware with-
wul specific prior written permiszien, This saftware is provided “as is™ and withaot any express o implied

warsantics, inclisfing, without limitation, the implicd warramtics of merchantihility and frness for 2 particslae
purdtie,

screen {f, num_lines)

register FILE *f;

register im0 num_lines;
register int ¢}
register int nchars;

int lengeh; {* length of current hine */
SAtiC =13 {* length of previous line *f
for {nH]
while ines = 0 & ¢ { :
if S ~ Slene = EQOF)
i
if {cireai)
clreos();
reruen;
}
i {ssp_opt && fensth == 0 Be& prey lep ==)
continusg;
v lep = 1 :
v {bad so bl Semen & & SSenter == 0 & prompiien = O)
rrase “’11;

/% maust clear before drawing line since tabs on some rerminals
* do not erase whar they b pver,
*}
if {clrenh
cleareo! £,
prbuf {Ling, length);
i (pghars = promptlend
srase facharsy, 7 erase () sers promptien 1o G 77
slse promotlen = &
#* s thus needed?
*if {ehreat)
* cleareolt); /% must clear again in case we wrapped *
i
i {nchars < Mcol §] told_opn
provE(*in”, 1y /* will turn off UL if necessary */
if {pchars = = STOR
break;
| D limeses
b
o {pstate) {
tpurs{iexie, 1, pusch);
pstare = {;

}
{void) fllushistdout};
il = Gergdfl == E0F)
:

if {olreolt

clreos {3

rernin,

i

if {Pause &8¢ clrzol)
cireos {3

Ungete {c, 1

{voud) senimp (restore);

Panse = 4 starmup = 03

f daem lines = command (fchar $INULL. D) =50
return;

i fhard & promptlen >

craae (B

i {noseroll & & num bines == dlines

+f igleeol)

homel);

else
. doglear ;
S’i!’fﬂf!_}(a!’t,iine = {urrline;
screen start.chrerr = Frell (),
}
H

Figure 1: Code of a procedure taken from Unix more, with slice on
dlines {10 lines from the bottom) shown underlined.

Dwig

131 [dockeari)

H: [getdine}(y)

Cuﬂélinc i filz_pot promptien

Canline { file_pos promptien
>

107: fcommandj{} ‘. 1970107

} prosnpiien

dlines

123 |%26] = {[num_jines} »= 2:2!’33:53}]

119 {erase () . promgiien

U110 = Cyrrline Mool demb erassin f fle_pos Fold_up
Do @7 = Clear Curdline Sener Sexit cimel pontexs aji

® neg dum o3t crasein errona (Sile_pos
file_pos/T hard lastmg lasiond no_intty noseroll oity promplien screen_start shelip soglich

1380107 = Curriine § file_pos file, ponl prom
107007 = Curtline dlines exvrors £ 3 _pos file_peaft Instarg laziemd promptien shelip

84

Figure 2: Slice diagram corresponding to textual stice of Figure

ing in screen that might be relevant to the shice criteri-
on. Mulriple call sites of the same procedure are folded
together; erase, for instance, appears 3 times in the ex-
tual slice but only once in the diagram. No primitive
statements are shown, except for the stazement in
which dlines itself appears. The arcs denote dasaflow
dependences; although control dependences within
called procedures are accounted for, control depen-
dences in screen jtself are omitted. Fach label on an are
indicates a variable defined by the procedure ar the
arc’s source that is used by the procedure at the are’s
target. Only variables relevant to the slice are shown,
s, for example, there is no mention of stdowt on the
arc joining doclear to command even though doclear
defines stdout and command uses it. When two vari-
ables appear in the form y/x as a singie label, x is de-
fined by the arc’s source, y is used by the arc’s rarger,
and there are some elided primitive statements that
cause the use of y to depend on the definition of x. A la-
bel list too long for its arc is given beneath the diagram,
with a name giving the end poinis of the are.
Examining the diagram reveals much more informa-
nion than the textual slice abour the interactions be-
rween the called procedures. We discover that diines is
set in conmmand (since the arc from command carries
dlines as a label). The initial value of dlines on entry 1o
screen is relevant too (because of the label on arc
0t0107). The file pointer f (and the variable file pos,

| promipien

t hard hardtabs pass_cd prompiien sion_op

Size of screen procedure 74 lines

Sum of sizes of called procedures| 1184 lines
Length of slice on dlines 21 lines
Size of screen’s PDG 138 nodes
Slice diagram, no abstraction 63 nodes

67 dataflow arcs
274 control arcs

15 nodes, 35 arcs
% nodes, 19 arcs

“...with control deps rémoved ™"
...and with primitives elided

...and with calls folded 6 nodes, 15 arcs

Tahle 1:Effect of abstraction on slice of screen procedure

which turns out to be a copy of it} is relevant, and, sur-
prisingly, modified in both command and gerline. Most
puzzling is the influence of promptlen, which is respon-
sible for bringing in the procedures erase and doclear.

The variable dlines appears to hold the number of
lines to be printed on the screen in the next cycle. To
understand how it might be affected by promptlen, the
length of the last prompt displayed by command, we
applied Chopshop to the bodies of getline and com-
mand, We discovered that, as a fresh line from the file is
written over the prompt, when a tab is encountered,
and the prompt has not been entirely overwritten, the
characters to the tab mark are erased. This seems to af-
fect the length of the line written, and thus (since long
lines are folded) the value of diimes. It is tempting o re-
gard the dependence as spurious, but this cannot be jus-
tified without a detailed verification of getline.
Frequently, obscure dependences that the programmer
believes 1o be absent are exactly the ones that signal the
presence of real bugs.

To iliustrate the effects of Chopshop’s abstractions,
Table 1 shows how each in turn reduces the size of the
diagram. The remarkable shrinkage caused by eliminat-
ing control dependences might not be typical. It arises
here because of conditional exits from the loop that
bring in many of the global variables that have no
dataflow links to dlines.

3 The Dependence Model

Chopshop’s underlying model is similar to the program
dependence graph (PDG) [FOWS87] but accommodates
interprocedural dependences more naturally. The stan-
dard way to extend a graphical program representation
(whether of dependences, control flow, etc.) to account
for called procedures is to form a single supergraph for
the entire program by joining the graphs of the individ-
ual procedures at their call sites. Extending the PDG in
this way [HRB90] introduces a host of complications,
not only in the construction process but also in the

85

Figure 3: Summary dependences of calfed procedure. Sticing on the
definition of k (1] foliows through to the dependence edge incidant
on the use of ¢ (3}, while slicing on the definition of ¢ (2} follows
through on both edges (3 and 4),

graph itself. Each call site becomes a complex web of
linkage nodes and mock assignments (to model the
passing of parameters) that is not conducive to a2 modu-
lar analysis, |

Our approach is simpler. A procedure call is mod-
elled as a single node, as if it were a primitive state-
ment. The effects of its internal dependences at the call
site are represented by a def-use relation berween the
result and argument variables of the call. For example,
the call

k= sum(})
to the procedure

int sum {int i) {

int t;
t=c;
c=¢+i

return () }

would be summarized by the def-use relation

{te, 1), (¢, 0, (k, 0}

indicating that the definition of the global £ depends on
the use of the argument j and the use of ¢ {that is, its old
vatue), and that the definition of k depends only on the
use of ¢, The local variable ¢ is invisible to callers, so it
does not appear.

It may be helpful to think of this relation as a set of
edges inside the procedure call node. A slice on ¢ after
the call, for example, is found by following the two in-
ternal edges from ¢ ar the bottom to j and ¢ at the top;
the edges incident on the uses of these two variables are
then followed to their definitions at preceding nodes,
and so on. Note that a slice on & would traverse only a
single internal edge to the use of ¢, and from there to its
definitions, so that the edge bringing the definition of
to the call would be followed in the first case but not
the second. This scenario is illustrated in Figure 3.

k=sumi}

"/
.
i
Aty ™
exit j

Figure 4: A dependence graph.
The du relation is shown by the dotied edges;
the solid edgss belong to ud lwhan they link program variablas),
and od fwhen thay link an execution ¢ 1o a temporary T

For uniformity, all nodes are treated in the same
way, whether procedure calls or primitive statements.
Since the caller of a procedure cannot observe any dif-
ference between control and dataflow dependences in-
side the call, there is no need to distinguish them in the
internal edges. Between statements, however, the two
kinds of dependence must be separated.

All dependences relate the use of a variable at one
point to a defimtion at another. We call these points
“sites™ as they do not always correspond to program
statements. Nesting of expressions causes a single
spurce statement to be translazed inve several nodes
connected by temporary variables.

Cur model thus consists of three binary relations,
ud, du and ¢d, over variablefsite pairs (or “instances™).
The dataflow dependence relation ud relates a use of a
variable at one site to a definition at another; it con-

85

tains the pair {{(x, £),{x, /}} if there is a use of x ac size
that has a reaching definition at site /.

_The control dependence relation cd relates the exe-
cution of one site to the evaluation of an expression at
another; it contains the pair {{g, 1),{7r, /}} when execu-
tion of site ¢, modelled by the dummy variable &, de-
pends on the expression ar site f, where 7 is a tempo-
rary variable holding the result of the expression.

The summary relation dr {which we referred 1o
above as the “internal edges™) relates the definition of a
variable at a size to a use at the same site; it contains {{x,
i34y, 1)) when the effect of site { is to make x afterwards
depends on y hefore. For every variable x modified at
site i the pair {{x, i),{z,) 15 included too, to show that
the definition of x depends on the execution of the site.
If a variable x is modified bur is not dependent on any
use, the pair {{x, ,(y, 7}) is inserted to show a depen-

dence onsome constant y.

Formally, then, we have;

Var = ProgramVariables U {y, &, 7}
Instance = Var X Site
du, ud, cd: Instance < Instance

Figure 4 illustrates these relations for this procedure,

“which calls sumito add the nuimbers from 110 100 the

global ¢

total) {
j=1;
while < 1) {
k= sum (j);
j=i+ Lk
There are two special sites for every procedure: an en-
try and an exit. All variables are defined at the entry
and used art the exit. The instances are drawn, as in
Figure 3, as ports of the nodes, although this time the
special variables are shown too. To see how control de-
pendences work, follow the path back from j at the ex-
“it through j = j + 1; note how the definition of j de-
pends on whether the increment is executed (g}, which
depends on the outcome of the loop test (1), which in
wirn depends on the value of j before the test.
{Incidentally, the graph is not complete. One arc is
missing: it proved to be beyond the authors’ drawing
abilities and 15 left as an exercise for the reader.)
Constructing the dependence relations is straightfor-
ward; the only subtleties arise in obtaining du from the
bodies of called procedures, and handling recursion.
The details, along with a more substantial justification
of the model, may be found in our technical report
[JR94a] and a paper to appear soon [JR94b].

4 Constructing Slice Diagrams

Rather than giving explicit worklist algorithms for con-
structing siices, we shall define slices as algebraic ex-
pressions in terms of the dependence relations. We find
these much easier to understand and manipulate. As
specifications, the expressions allow a variety of imple-
mentations, but the current version of Chopshop actu-
ally implerments them directly. Altering the slicing algo-
rithm or the abstraction mechanisms thus involves
changes to only a few lines of code.

We use six relational operators. Union, composition,
transitive closure and projection of a set are standard:

pug={la,b)llabepviabeqg}
peqg={la,byl3zeT. @, 2)Ep Az, b)Eq}

87

pop) U (p opopu

Tupu
= a€s. (a byep}

p ES
plSi={613
The domain restriction of a relation p to a set § is the

relation containing all pairs in p whose first element is
in §:

Sap={{a,byeplaes}

Similarly, the range restriction of-p 105 contains pairs
whose second elements are in §:

pbS={(s,b)EplbeSH

The slice criterion is a set of variables Vand asite 7 at
which they are used, that is, a set of instances

C=Vx{i}

The reaching definitions thar affect these uses directly
are given by the projection of C under the ud relation.
The uses affecting these definitions are found by pro-
jecting this ser under the relation dr. This process is re-
peated to find all uses that affect C. The set of relevant
ases is thus the projection of € under the rransivve clo-
sure of ud e du:

relUses = {nd o du)™ [C]

The basic diagram is now obtained by restricting the #d
relation to these uses:

nd’ = rellJses < ud

Now we apply two abstractions. Nodes corresponding
to different calls of the same procedure are merged;
this is easy and not worth formalizing. To elide primi-
tive statements, we start by collecting togerher the in-
stances

drop: P Instance

associated with the nodes 1o be dropped, namely all the
non-calls except the site of the slice criterion and the
entry and exit, and the instances associated with nodes
to be kept (all the rest):

keep: P Instance

The elision happens in two stages. First we add teansi-
tive edges that replace dependences brought about by
paths passing through dropped nodes:

ud” =ud' U (ud' o (drop < du o ud’)*)

Second, we restrict the diagram so that only nodes with
instances in keep remain, giving

ud"” = keep < ud’ v keep

This relation, 1d’™ is the final, abstracred slice diagram.
A pair ((x, £),{y, 7)) in this relation connects a use of a
variable x at site i to a definition of a variable y at site j.

Only one edge is drawn between / and j, irrespective of
how many pairs connect them. If x and y are the same
variable, v say, the edge is labelled vy if x and ¥ differ,
the edge is labelled x/y to show that the use of x is in-
directly due to the definition of y.

We have illustrated only a limited form of slicing.
Most variants of slicing (such as slicing forwards in-

~ stead of backwards, or slicing on a definition instead of

a use) are easily expressed in our model [JR94a,b].
Chopshop implements a variant we call (prediciably)
“chopping”, whose criterion is two sets of instances,
source and sink; the chop shows how the definitions in
source affect the uses in sink,

5 The Chopshop Tool

Chopshop is implemented in Standard ML. [t runs as a
subprocess under emacs 19 (a new version thar sup-
ports colour highlighting). The diagram is written to a
file as an adjacency list, which is then converted to post-
script by AT&T’s dot program, and finally displayed by
the ghostview previewer.

Selecting a procedure of interest initiates the analysis
of the code. The def-use abstractions of procedures are
cached, so they need be calculated only once. The tool
also maintains a variety of closure relations, so that the
chopping operations can be performed in linear time.

The performance of the current version is acceptable
only for small programs. It takes about 15 minutes to
analyze the entire more program (approximarely 2000
lines), and about ten seconds 1o perform each chop. We
are working on a number of improvements. By hard-
wiring the analysis {in contrast to direct implementa-
tion of the relational expressions), we expect to in-
crease its speed dramatically. The next version will
store the def-use abstractions of procedures in a library
whose entries can be read and written by the user; this
will allow Chopshop to handle calls to procedures with
no code, either because they are low-level, or because
they have yet to be written. It will also include an alias
analysis 10 account for dependences caused by indirect
accesses.

88

References

{B(:54]

(DeM78)

[Ern%4]

[FOWS7)

[HRBIO]

[JR94a]

[JRI4b]

(M+52]

[M+94]

INEK941

{WeiB4}

R.W. Bowdidge and W.G. Griswold. Astomared
support for encapsulating abstract dan types.
Proc. ACM Sigsoft '94 Symp. on Fowditions of
Software Engineering. New Orleans, La.,
Decemnber 1994.

Tom DeMarco. Structured Analysis azid System
Specification. Yourdon Press, New Yorl, 1978,
Michael D. Ernst. Practical fine-grained static
slicing of optimized code. Technical report MSR-
TR-94-14, Microsoft Research, Redmond, Wa.,
July 1994,

Jeanne Ferrante, Karl], Omenstemn and Joe D
Warren. The program dependence graph and its
use in optimization. ACM Thans. on Programming
Languages and Systems, $(3), July 1987, pp.
319-349.

Susan Horwitz, Thomas Reps and David Binkley
Interprocedural slicing using dependence graphs.
ACM Trans. on Programming Langreges and
Systems, 12{1), January 1950, pp. 26-50.

Daniel Jackson and Eugene J. Rollins. Chopping:
a generalization of slicing. Technical report
CMU-CS-94-169, School of Computer Science,
Carnegie Mellon University, Pitsburgh, Pa., July
1994,

Danie! Jackson and Eugene [Roliins. A new ab-
straction of the program dependence graph for
reverse enginecring, Proc. ACM Sigsoft "94 Symp.
on Foundations of Software Engincering. New
Orleans, La., December 1994,

H.A. Muller, S.R. Tilley, M.A. Orgun, B.D.
Corrie, N.H. Madhavii. A reverse engneering
environment based on spatial and visual sofrware
interconncction models. Proc, Sth ACM SIG-
SOFT Symposium on Software Development
Environmenis, 1992,

Lawrence Markosian, Philip Newcomb, Russell
Brand, Scorr Burson and Ted Kirzmiller. Using an
enabling technology to reengineer legacy sys-
tems. Communications of the ACM, 37{8), May
1994, pp. 38-71.

Jim Q. Ning, Andre Engberts and Wojrek
Kozaczynski. Auzomazed suppor: for legaey code
understanding. Communications of the ACM,
37(3), May 1994, pp. 5057,

Mark Weiser. Program slicing. [EEE Faws. on
Software Engineering, SE-10(4), july 1984, pp.
352-357.

Understanding Code Containing Preprocessor Constructs

Yanos [5. Livadas and David T. Small

Clomputer-and Information-Sciences -Department- -

_University of lorida
Gaiesville, FL U611

Abstract

Understanding, debugging, and malaming sofl-
ware 18 o« costly and difficull task. The difficullics
are cracerbaled i programs wrillen to take advantage
af preprocessing facililies. This paper cxamines prob-
fens nssociated with source code conlatning preproces-
sor copstructs—i.c., included files, conditional compi-
lation, and macros. We define the useful mappings
from lokens in the preprocessor's oulpul lo the source
Jile(s), and propese that by capturing these corvespon-
dences an internal program vepreseniation can he butll
whieh will allow for the use of maintenance techniques
including program slicing, ripple analysts, and die-
ing. The method presented is generic; lo tlluslrate thal
the technigue ts feasible, we discuss ANST C prepro-
cessor constructs—n parlicular, macro subsiifution—
and explain the modus developed to handle them
Chnxse —an mlegraled mainlepunee cnvtronimend for
ANST L programs.

1 Introduction

Software maintenance is an expensive, demanding,
and ongoing process. Lientz and Swanson [1} repaort
that large organizations typically devete 505 of their
total programming effort to maintenance. Oue US
Airforce system is estimaled to have cost $30 per
instruction o develop and $4,000 per instruction to
maintain over its lifetime.[2] These figures are perhaps
exceptional; none the less, maintenance costs seem to
be between two and four times higher than develop-
ment costs for large, embedded systems. Our indus-
trial afliliates in privale communications estimate 60%
of their maintainer’s time is spent fooking at code.

[Recent research has focused on techniques to assist
in program maintenace; among them are shicing, die-
ing, and ripple analysis, which will be discussed later
in this paper.

Programs that lake advantage of preprocessing fa-
cilities incur an additional maintenance burden. Typ-
ically, the maintainer interacts with the source code;
lowever, the compiled program is based on Lhe pre-
processed code. ‘Thus preprocessor commands can
be a two-edged sword: they can increase code read-
ability and programmer productivity while simultane-
ously obfuscating the program’s mechanics and, con-
sequently, maintainability.

We therefore aim to eliminate the penalties imposed
by the use of preprocessor constructs, and thus reduce
maintenance costs. This can be accomplished with an

0-8186-5647-6/94 $04.00 © 1994 IEEE

89

integrated environment that provides an assortment
of Lools “aware” of the correspondence between lhe
preprocessed and source code.
1.1 Gumsu- An Integrated Software
Maintenance Environment

GHINSU is an integraled saftware maintenance envi-
ropment which facilitates code understanding, testing,
debugging and program reenginecring. It supports

both static and dynamic slicizg, ripple analysis and
other program analysis functions on ANSI compliant
C source code. C programs typically take advantage of
the language’s preprocessing mechanism; thus, a pre-
processor 15 required for GHINSU to handle the gamut
of valid ANSE C code.

1. total_loleiest;
danhle 3
doubrbi Elnel_pescentage;

2,
im
|11 1.8:
11
e b
|l$ f1Rdl _paroentans v ralas
Ifre IR I TSy ST
Hit tatal trileoradl »» at
1%
ts 3
2o 1
H
e7 sy
gl TEal PaEcantige = 1.0
4 1

Figure 1: The GHINSU Environment

The highlighted code represents a program slice calculated
retative to the variable balance on line 22.

One of GHINSU's key design goals is not only to aid
program understanding, but do so in a user {riendly
fashion. GHINSU provides several easily apprehended
graphical user interfaces to the information contained
in an internal program representation. These include
neatly formatted graphs depicting dependencies, flow,

and control, and most Unportanily, a view of the
original source code with “interesting” portions uglv
lighted. An example is shown in figure 1.

2 Slicing, Dicing, and Ripple Analysis
Several p@\x-:-}]ful soffware maintenance technigues
have been developed in the last decade; these in-
clude slicing, dicing, and ripple analy They use
a common ffmpi ~based internal program representa-
Adon, which will be discussed 1u the next seciion,
Prograw slicing is a uselul tool for the maintenance
programumer. let /7 be a program, p be a point in P,
and It v be a vartable in P that is either defined or

used at po A sielie sfice of P orelative to the sleing
eridevien {p,ed s defined as the set of ol stalements
and predicates of P oihat meght alfect the value of the

variable ¢ al point po This definition 15 |
than the one given in 3] but, it is sufficient
example of 2 program elice was shown in figure 1. Pro-
sramn shices can be used ina variely of ways to ald in
eversl \ui!u are engineering activities such as the ones
ii at are brielly discussed below.

Lar ;}M%e':a‘si studies have show that pi{%“isill HIICES Use
shees when debugging. Assume that during festing
we discover that the “value ol & certaln varinble, o,
Is incorrectly computed at some stalement, 1, of our
program. By obtaining a slice of v al », we may ex-
tract a signtficantly smaller piece of code to exam-
ine, and thus allowing us 1o more readily locate the
bug. In addition, shcmf can aide i program under-
standing by fiuum; :osing o program into meaningfuol
smaller somponents. Moreover, Horwitz 5] hias used

the concepts of slicing in miwf;fnu £ Progratn variants
and Badger [6] has demonstrated how slicing can be
used for automatic parallelization. Furthermore, slic

ing assists with code vesuability, 1 a farge program
computes the value of a variable, v, and the code as.
soviated with that computation is needed in another
oprnn, one may slice on the ¢ and use the extracied
ogram in the application at hand. Also, a number
3 metrics based on prograog slicing have beon pro-
rosed "f%} which include coverage, component averlap,
notional clustering, parallelism, and tighiness.
/}s!:iuj, a tool based on slicing, cau be used to aid
i debugging by automatically Zomtm“ cortaiin errors
[7]. Diciug 15 a powerfnl heuristic w bich can further
reduce the amount of code on which the programimer
mast concentrate. If, 1n addition to generating a slice
of an incorrectly computed varialile al a particular
statement, and there exists another ’\'uszziaw that s
computed coreectly, then the dicing heuristic may be
cmployved; the hnj, i likely to be associated with the
statements in the slice o the incorrectly compuied
variable minus the statements associated with the slics
on the correctly computed vartable. Dicing can tiwr@
fore be used iteratively to locate a program bug [7].
Ancther analysis tool called the ripple ﬂ?lﬁfj.,(? cpn
be thought of as a “forward” slicer. 1t finds all state-
ments that are dependent upon a given statement,
This tool can be used to visualize the statements that
will be affected by a change made at any given state-
ment. Additionally, ripple analysls may help the main-
talner estimate the time and resources needed to effect

3l

59

a program modification based on the size and/or con-
figuration of the resultant ripple.

3 The Internal Program Represellta—
tion -

I {8, 8. 10) we deseribe-an internal program repre-
sentation which s a parse tree Iy f?.i] system depen-
dence graph (SDGY—an extension of the statement
Lased 5DG proposed in] Informally, the 3D is
alabeled, divected, multigraph whers each vertex pep-
ents a program construct—e.z., declarations,
ament statements, control predicates, and tokens.
silges are fabeled to distinguish which of the several
kinds of dependencies belween connected vertices is
represented, Sinee slicing, dicing, and ripple analy-
sig can be reduced to a graph H..‘:a(.‘ha!)iiity problem,
the SDG s a suitable internal program representation
for an integrated mainienance environment based on
those tools,

18-

4ranennd
Fiow SUUE—
sl e

Figure 2. A Systemn Depandence Graph

A program slice s most easily understood when the
malntainer is presented with a view of the source eade
where those tokens which correspond to the vertices
identified by the slicing algorithm have been high-
lighted. Therefore, a met thod is needed to cuphure the
relationship between vertices in the SDG and tokens
i the source code. In programs that do not use pre-
processor construcls, this is a simple one-to-one cor-
respondence. The situation 15 more complex for pro-
grams that utilize a preprocessor, since the SDG 15 no
longer derived directly From the source code, but from
the preprocessed code,

4 'Typical Preprocessor Features and

Associated Problems
Preprocessors usually feature mechanisms to in-
clude #iles, conditionally include a block of code, and
perform macro subsiitutions. File nelusion is the
ability to insert files into the corrent souree file, and
return the whole as a single file. Conditional code

inclusion——more commonly referred-to- as-condifronal -

compilation—only adds a block of code to the pre-

~processed file. i cortahiestipulations are el Macins ...

allow the programmer to associnie a pame with ap
arbitrary replacement valne; the replacement value 13
substituted in place of ithe name in the output file,
where ever Lhe name is encounterad.
{he ability o include files is a powerlul feature,
Boatbows the programmer to break code down into
sinalier, more manngeable units, Typically, function-
ally or logically related code s grouped into separale
filea, Bul, i can be difficuls for the maintainer to
determine in which of the included files a particular
sistruct was defined, This problem is only exacer-
bated by nested clude files

Conditional compilation permits a single source {ile
o zenerate different programs, This is ugeful when a
program is largeled to multiple platforms cr, for ex-
ample, to inchude debugging code ouly in test versions.
Complex conditional compilation biocks can be dilhi-
cult to understand. Because the conditional expres-
sion only directs code nclusion, and does not ilsell
appear in the preprocessed file) errors in the condi-
tonal expressions may be hard to detech,

Macros are tremendously flexible constructs which
are often used as shorthand for the idioms appearing
in a program. Unfortunately, errors which arise as the
sonsequence of a macre substitution can be diflicult
ter trace. Debugging can be complicated for several
reAsOE:

s since macros are generally simple, there 1s a ten-
deney 1o trust m thetr correctuess, when in facl
there may be an error m the mucro definition,

e the macte was designed for one context and has
reen misapplied to another,

e Lhie macro may not be readily identifiable as such,
and

e the substitution value is not the one expected,
because the macro has been redefined.

We have wdentified five distinet mappiags from io-
kens in the preprocessed file to tokens in the original
code. a-maps are the usual case, and oceur where o
macro expansions are involved; they are simple one-
to-one mappings fron tokens in the preprocessed file
to tokens the raw source code. All macros with a re-
placement value lave at least three mappings: each
token in the macro expansion has a J-mapping to {he
macro occurrence, & y-mapping to the macro defini-
tion statement, and &-mapping to a token in the del
inftion’s replacement token sequence.! In addition,

TWe mention S-maps for completeness, but do not utilize
them in our research,

parameterized mactos have a e-map lor each oceur-
rence of a Loken derived from a supplied argument te
the appropriate token in the argument list. Figure 3
illustrates ihe different mappings between a fragment
of C eode and ils preprocessed equivalent,

LR@efines, QNE . LA L
#dafine DOUBLE (X} (2% (X))

int = = DOUBLE (oNE+b{7}

[EXSagTR Rl aligle]

#deEine ONE
#daefine DOUBLE (X)

p
2+ (X})}

HdmEina ONE
#definae DOUBILE ()

H-mapping

H#deafine ONE

1
#Hdefine DOUBLE{X)} (2> (X))

int & = DOUALE({ @:

ine a = ¢3*({2

£ APRIngG

Figure 3: Mappings from Prepracessor Qutput
to Source Code

It is important to observe that F, v, 4, and ¢ maps
can uest and span multiple files. Since we are map-
pin(f from the preprocessor’s output to a source file,
note that macros with nall expansion values have no
nmppmg,b. Likewise, parameterized macros that do
not use a parameter will not have a mapping for the
supplied, but unused arpument.

5 Macro Preprocessing

‘Phe mappings identified in the previous section are
applicable to'souree code wrifta
utilizes preprocessor consiructs. We ah(,ad} Thad a
working tool, Grinsy, for programs writtep 1n ANSI
C; thus 1t was natural to use it as a testbed on which
to develop rontines to capture the token correspon-
denees, Thus we restrict the remainder of our discus-
sion to the ANSI O preprocessor,

ANSL C s endowed with a rich preprocessing facil-
ity, Tracking n-myq 1;);:151% for included files and condi
tionally mmgnivi code s a trivial task” and will not
be discussed here. Macro substitutions can be guite
commplex and will be examined shorily)\iixiahh(im
Ghinsu and the approach taken Lo capture the vaticus
mappings will be discussed.

5.1 Ambiguities Inherent in C Macros

C macros have few rules governing their beliavior—
a complete deseription ean be found in [117—and can
serve ahnmz any purpose the programmer desives
The only constant feature is thai a macro has name,
which raust be a valid € identifier. Optionally, it can
ave o replacement token sequence, which is expanded
and substituted in place of the macro name during
preprocessing, A macre may also parameter Hsi—
which may be empty ing of comimna separated
identifiers, 1f a parameter ideniifier appears 1o ihe
replacerment miicn sequence, then the corresponding
argument supplied when the macre 15 used, will be
expanded and substituted for ihat parameter,

A easual glance at the use of o maero might lead
one to mudnciv that it is an instance of a variab e, n
constant, or a function call-appearances can be exe
tremely deceptive. Often macros do serve as pseudo-
constants:

#define PI
#define GPP

3.14
"Ghinsu preprocessor™

Prequently they act as mnemonics for a sequence of

m;zm,mai} used expressions or statements:

#define COST (unit_price * number_units)

#define HEWLINE (columm = 0, line++}
#define BEGIN state = 1 + 2 *
#define ABS(X) (({X)<0)7(-%):{%X})
#define INITIAL O

subtotal += COST;
location = NEWLINE;
BEGIN{ INITIAL);

Many preprocessors insert #line directives in thejr outpit,
which are used by the O compiler to embed debugging data
within an executable program; we have adopted an analogous
approach,

en in any lauguage that”

Cused to change The appenrance of the €

92

ABS(at++);

In the examples, COST and FEWLINE are belaving like
inline functions, even though they appear o be usrc}
as variables, Iven more deceptive is the parameterless
macro BEGIH followed by uimt appears to be a param-
eter list—BEGIN is acling neither as a function nor a
variable, The use of ABS() may look like a Mnction
call, but 1t has a side effect a true funciion call would
not liave: a++ Is evalual ed twice, Macros can even be
Canguage:

#define BEGIN {
#define EED T

These are just a few examples to illusirate the rich
range of macro applications in
5.2 LPP- The (Guinsy Preprocessor

The capability to highlight relevant code implios
that the SDO must associate ifs vertices with phw
ieal locations in the source code. Farlier versions of
Guinst did not do any preprocessing; thus the task
of mapping SDG vertices 1o tokens was trivial each

¥

BD0 vertex mapped divectly 1o nosingle location in
nosingle file. However, without a preprocessor. (-
IN5U was unable Lo accepl real world programs-—i.o.,

those with #include-ed fles, macros, and conditional
compitation directives. Support for file inclusion and
conditional compilation fa:ml ! be tmplemented easily;
the difficulty iif‘b HL IAcro Ml])afliuhmls

Were we o generalize minoros as pseudo-identifiers
and pseudo-funciions —as in {12} we would be un-
able to account for many of their uses.” Having elim-
iated that approach, we are Taced with the labori-
ous process of relating each token produced by the
preprocessor 1o appropriate points in the sonrce code.
As mentioned previeusly, an ordinary O preprocessor
would lose the o, 3, 5, and (w;ia'u;pinss- information;
this fact s the motivation behind the development of

ourown preprocessor, GPP, the Guinse preproces
5.2.1 GPP's OQutput Conventions

The information GPT captures is best explained with
an example. Several references will be made o ihe
following code fragment which we will calf main.c:

T1] #define ONE 1

[2] #define CPLUSONE { ¢ + ONE)
[3] #define DPLUS{X) { 4 # X)
{41
[8] £ = DPLUS{ DPLUS { CPLUSONE }):

by a normal preprocessor Lo:

1))

It would be expanded
= {d+ (d4+ {c¢c+
LqPP output, shown in figure 4, retains the a, 7,
7, and e-mappings, and is consequently verbose. All
of this information is required to make a slice high-
tight the germane macro #define statements. Figure

F Additionally, support for the # {s! ringHfication) and ## (con-
catenation} operators would probably be inpossible.

5 shows a program stice computed using methods de-
scribed later in this paper to relain information Lypi-
cally lost during preprocessing.

The Results of Running GPP on main.c

macro namas
= p—— Seivadinfie .
- definad art lor
UNRG o7 L
used af coObTT
#L 3 ety e st o
.. [e e
#P DPLUS "main.c® 2 4 7 4 12 4 33
#o
(d +
#P DPLUS "main.c™ 2 4 14 4 15 4 31
#0
{da +
#M CPLUSONE "main.c™ 1 4 22
#0
{c +
#M ONE ®"main.c" 0 -1 -1
#0
1
#w -
%0 GPP Formatting Codes

} #F changeio file
#wW #L skipto line
#0 #M macro - no paramalers
3 #P macro, paramelterized
#0 [following token(s} are not visibia In the source fife

.ﬁ‘g #T followlng token /s visible in the source fiie
*#W end of macro expansion
) #5 special bullt-In macro
#W
i
Figure 4 An annotated example of GPP's output

i
BRI

S v The delbaillen sl LET 143
S M ik ke

P TR it
[EPReY ST}
CR--= =

=
£

o imted]

2 S

Figure 5: Gunsy Slice on Program Containing
Preprocessor Canstructs

The large window multi-paneled window shows the result
of a slice on the variable £ on line 32. Clicking on the use of
macro DPLUS on that same line pops up two more windows.
The medium sized window at the lower left is a text browser
which shows the file in which the macro was defined scrolled
such that the #define line is automatically at the top. This
provides the maintainer not only the definition location but

“qformattonsrequired - torgeneratesits -teplacementyogoo st

93

the context as well. At the lower center a smali window
identifies the macro selected and displays its expansion value,
This allows the programmer ta verify that the macro was
expanded to the expected value.

5.3 Algorithms and Data Structures
5.3.1. Macro Definition

A dictionary associates the macro’s name with the

pRTT (pratetype Replacement Token Table), the pa-
rameter count, and the file name and line number
where the mocro was #define-ed. The pRTT con-
tains, for eacl teken in the replacement sequence, the
literal token, the parameter number to which it corre-
sponds (iF any), and a token type code. The later is
derived from the Loken type returned by the lexer, and
serves to identily these tokens which are potentially
significant in the expansion process. These relation-
ships are illustrated in figare 6, and an example based
on main. ¢ is given in figure 7.

Dictionary Macro pRTT
name mach dofined_in_fila|sToken!| pium | Type
defined_at_line
paramater_count
PRTT

Figure 6: (GPIP's Macro Definition Representation

e i [Te] o]
CPLUSONT L Q
DPLUS -]
-—]
main.c it G| Late Paran
1 ¢ Q| Tdancifiar
> * 3 OTRER
- Oux | ¢ | tdencifier
) 0 {nighc_Pazren
main.c (¢ | Laft_FParan
3 d 0 | Tdantifier
1 + @ CTHER
*-—— x 1] 1dentifier
H 0 jRight Paran

Figure 7- Representation of Macros Defined in main.c

‘The definition process is straight forward: param-
eters, if any, are extracted from the parameter list,
and the remainder of the logical line—excepting com-
ments, which are discarded--is converted to Lokens
which are added to the pRTT. The process is cutlined
in the following pseudo-code.?

1For clarity’s sake, error checking and recovery are not ac-
counted for in the algorithms described in this paper; both are
an integral part of the GPP implementation.

define{ macro_name)

i

i
marre = allocate_macro;
macro—»defined in file = file_name;
macro--»defined on line = line_number;

if { LEET
{

PAREN b

{ ioken type = get_token{)
while { 1 RIGHT _PAREN ==
Aotoken type.= get_token{)) }
{

if { token type == [DENTIFIER ;
add_to_parametor lst{ ioken I

ey« >parameter_count @ parnmeter st _size{l:
while {1 EGL == (token_lype =
i
add do_pRTT{ token,
matches parameter numberd token)
token_typs)

zet_token())}

i

add o dictionary{ macro_name, macrn J:

5.3.2 Macro Expansion and Substitution

Whenever a macro s used, its expassion value must
be caleulated and substituted for the miacro and its pa-
rasnelers, 1 any, Macro expansion and substitution is
more complex than the definition process. As shown
i the code fragment main. ¢, macros can have other
mincros emnbedded both in thelr replacement token se-
guence and in a supplied argument hst, GPP tracks
every macro encountered during an expansion with a
node struciure.

The stazes in pansion of DPLUS{ DPLUS(
CPLUSOHE }) wou mwwd as shown in figure §. AL
ter the expansion is 'wm;nﬂif: d, the resuliant struciure
is traversed to extract the marro’s substitution value,
Pseudo-code detailing ihe steps involved in expansion
and substituiion are given below.

The routine substivutel) is called when o macro
is encountered in the source file, [t crestes n macro
node, builds an ATT {Argument Token Table) from
the supplied argiments i any, and constructs a BT
(HP dacement Token "iu.b_ie} from the protetype con-

z“i in the macro definition structure. The iables
are lnked to the macre node, Then the macro is re-
duced, that is, all of the tokens 1o the RTT with re-
placement values are recursively expanded. Pinally,
the subsiitution structure is traversed and the substi-
tution value is extracted.

the «
id

ety

T prnn
i 1

: pvrr—
T ;
o ;

i

TR

]
a

ot
v

P ’ T
et - -
T e N

M oo m{,ﬁm Thoes] T

TRLVTLmE ;—-§ TRLFRLaE
. ™ 1
4 i
; [§
3 T
i
s DR [
ke s st e Fuagta o st Toke Febe
VU -SSR
[

Figure 8: Stages in the expansion of
DPLUS(DPLUS(CPLUSONE))

subsiiiute! macro_pame

{

nnde = allocate_macro nedef);
if { HAS PARAMETERS! maoro_nams))
{

node-2 AT =
token =
opening_paren_of _argument_Jorf macro_name,
snm‘c‘.efws:z}dﬁ };
do
i
i (DELIMITING _COMMA_OR_PAREN(token))

CATT marked_as_delimiter{token);

ndddd o
else
add _to ATT(token s
.

while { ICLOBING_PAHEN{ ioken++4) K
}

else
it
t Jr— 5
pode—2ATT = nil;
i
I

node~>HTT = build HTT{ token);
reduce_macrs{ node)3
emit_table{ node);

}

A macro node is processed by reducemacro(). For
every unused tolken in the RTT, Rest check i ihe token

ks

has been expanded. Il not, expand it. Then if the
token has a replacement valuc—that is, 1L 15 a macro
or a parameter—reduce it

reduce_macro{ nede }

{

fs::i (each WWRED(token } i pode~>[TT }

i { IEXPANDE s}l olen])
Lexpand{ token ¥

i (HAS,_BEPLACEMENT VALUL(token } |}

{
if { PARAMETER{ twhen } }
raduce_parameter] foken }
else
rochiee mnored tekennnde |

Parameter tokens are slightly miore comph-
eated Lo process, as gg oseen Iy the code for
reduce parameter (). If the parameter 13 Lo be re-
placed with a stringificd representation of ihe argu-
ment, then huild the string. Otherwise, for all unused
tokens in the c‘oz'r'e;@;mndiug argument contained in the
ATT, expand unexpanded Lokens, aud reduce any to-
kens that are macros.
veduce parameter parameter

i

if (CONVERT_TO_STRING{ parameter })
£
3

far { each token jn the supplied argument }

i EMBEDED _ARGUMENT(token) }
append_ta_buffer! get_embeded_arg{ token } 1
elae
append 1o buifer{ token)

3

H
buffer_fo_o_stringlh
soplace_porameter token with e strinal

1
alse
1

for { cach WSED{ token) in supplicd argument |}
r

1
i { IEXPANDED{ token) }
expand{ token):

£ HAS_REPLACEMENT _VALUE] twhen § }
reduce_macre! tokenpods)
i
set_replacement_value_ol argument };

o
1 i

The reutine expand() is straight forward. If the
tolen is a parameter, then reduce it. If the token
is a macro, then lauild a macro node, and associated
tables, for it. Finally, mark the token as expanded.

expand{ token)
{
if { PARAMETER{ token } }
{

reduce_parameter(token i

95

'
else if { DEFINED{ teken))

{
node = aliocate_macro_nodel};
node~>ATT = builld ATT(token, ivken host_table };
wode—>HTT = build HTT{ token §;
set_replacement_value to{ node);

}

Tinarkas_expanded{ {oken)

A AT panshe-builteoneolthresswayssofronsthoa.
argiment supphied Lo the outermost macro {from to-
kens exiracted divectly from the source file}, from an
argument entheded in the replacement talen seguence,
or from a combination tokens in the RTT and ATT.
Tlie later eaze oeours when & parameler s used s part
af an embeded macro’s argument. For example:

#define INNER(X) (XD
#define DUTER{Y} INMNER({ 2 + Y)

a = OUTER(2);

The ATT construcied for IHHER would contain 3 and
4 liotly extracied front OUTER s UL, as well as 2, ex-
tracted {rom QUTER's AT, The function build ATT(}
handles the fater two eases; the lirst case is performed
Ly substitute().

budd ATT(macro_rae, host_table }
!
I {OHAS PARAMETERS) macro_name })
CATT = allocate ATT();
token =

apeuing paren_of_argument_for{ macro_name,

do

opy_ta AT token 3

mark_as_uscd{ token i

wlhile { MCLOSING_PAREN(tokend s) |
}
alse
{
ATT = nile
}
H
5.4 Storing Maps on Guinst’s SDG

Figure 9 GGHInNsU's Architecture

As show in the conceplual overview of GHINSU's ar-
chitecture, figure 9, the GHINSY core tokenizer reads
the preprocessor’s s output. When the start of a macro

is encountered, the tokenizer begins to build a linked
hierarchical representation called the macre highliyhi-
tng structure, which retains the mapping information
needed by the highlighting routines. [t consists of
identification, instance, and parenthesis nodes. Macro
rdentification nodes store the name and definition’s
loeation—file name and starting loe number. There
need only be one identification node for each macro
used, regardless of how many Hi’l}f‘; s H;f“ iia{})im 1
tion it contains is constant. Ho

macro mslence node for eacls ocourrence a}i A macto.
It stores the position where the mnero s used, a link
Lo an wdentiBeation node, and, i the macro use s em-
bedded inside another macro, a pointer 1o that other
macre's instance node. H the macro 5 parameter
et i%sf‘i, a link is made o a purcnihesis localion node
which stores the position of the arguruent hist's de-
11;;11{12“» parentliesls. An exmmple. again f.! rawn {rorm
main. o, illustrating the structure

i

‘Hh for DPLUS(
DPLUS{ CPLUSONE } Y is given an ligure . As cach
token resulting from 0 macro expansion 1s processed,
Pled 1o the SDG with a link 1o the app i
ate point in the macro hig? Bghting structure, T
shown i figure 11

CO000080003 12231003 32223222223333333333
01234567B901234567830123456789012345678Y

#dafine ONE 1
#define CPLUSONE { ¢ + ONE)
#defins DPLUS{X) { d + X)

o Ll bk 35

£ = pPLus{ DPLUS { CPLUSONE } 1;

ONE CPLUBONE
main.o main, o main.c
0 i 2

Figure 10: The Macro Highlighting Structure
Relating Preprocessar Qutput to the Source Code

This method has several advantages. It saves mem-
ory, as mapping (nlormation is not duplicated at each

SDG vertex. The highlighting routine 1s relatively
sunple; it has only to follow the peinter to the maero

highlighting siructure to determine the source code
that needs to be marked. Had we tried tracking this
data with a macro vertex added to the SDG, not only

the internal program representation but the highlight-
g routine would be more complex.

BPLUS

GHE CELUSONE
main.o main.g main.o
i P

Figure 110 Links from 5DG Vertices
to a Macro Highlighting Structure

6 Conclusions
GPP produces n i
nily uses. Our luture
w display of i?;““i' g
fiam‘“ roting,
tonally excluded Lud: el %;ie a‘“ia_
‘7‘{5* liave vet io determipe an

play an expanded macro with

in the current slice Lighlighted.

Programs written using preprocessor constructs
have an additional layer of abstraction which can in-
crease thewr difficulty to maintain, I this paper five
mappings from the preprocessed code 1o the so e
were Jdentificd. To lustrate the problem, ANSI ¢
macros were discussed and details of the solution we
developed for GHINSU were given.

GPP s an example of a customized preprocessor
which retains mappings typically lost, Capluring the
correspoudeince i?z*mu’za tokens in the preprocessed
and source files permits the use of powerful mainte-
nance tools like siiéting! dicing, and ripple analysis,

o
bie

ihose i.-._,kvnn m;atmf;ai

Acknowledgements

This research was supported, in part, by the
Florida/Purdue Seftware Engineering Research Cen-
ter funded by the National Science Foundation, the
Center’s 15 industrial affiliates, and the Florida High

~Technology and-lndustry -Council; as -well- as an-en-
hancernent grant from BNR (Bell Northern Research}.

References
[1] B. Lientz and E. Swanson, Soflware Mainfenance
Managemen!. Reading, MA. Addison-Wesley,

LER0.

B. Boehm, “The high cost of soltware,” in Practe-
cal Strategies for Developing Large Software Sys-
fems (I Horowilz, ed.), Reading, MA.: Addison-
Wesley, 1975,

(4 M. Weiser, “Programmers use slices when debug-
ging,” Communications ACM, vel. 25, July 18982,

[4] 5. Horwitz, T. Reps, and D. Binkley, “luferpro-
cedural slicing using dependence graphs,” ACH
Transactions on Fregramming Languages and
Syslems, vol, 12, January 1894,

(5} 5. Horwilz, J. Prins, and T, Reps, “lntegrat-
ing non-interfering versions of programs,” m 15k
ACM Sympostwm on Proveiples of Programmang
Leanguages, (New York), ACM Press, 1488,

.. Badger and M. Weiser, “Minimizing commu-
nications for synchronizing parallel dataflow pro-
grams,” in Procecdings of the 1988 International
Conference en Parallel Processing, (University
Park, PAL), Penn State University Press, August
FORR,

oy
o

97

7

J. Lyle and M. Weiser, “Automatic program
bug location by program slicing,” in Znd Inter-
nalional Conference on Compulers and Applica-
tions, 1987.

P, E. Livadas and 5. Croli, “A new. algorithm for
the calculation of transitive dependences,” Jour-

nal of Software Mamntenance, (accepted),

P E. Livadas and 5. Croll, “Systern dependence
graphs based on parse trees and their use in soft-
ware maintenance,” Jowrnal of Information Sce-
ences, vol. 70, February 1994,

S. Croll, “Towards an internal program represen-
tation: The ghinsu care,” Master’s thesis, Uni-
versity of Florida, 1994,

B, W, Kernighan and D. M. Ritcue, The O Pro-
grammung Language. Prentice Hall, second ed.,
14988,

M. Platoff, M. Wagner, and J. Camaratia, “An
integrated program presentation and toolkit for
the maintenance of ¢ programs,” in Froceedings
af Conference on Software Mamlenance, 1991,

Parallelizing Sequential Programs by Algorithm-level Transformations

S. Bhansali J.R. Hagemeister
C.S. Raghavendra H. Sivaraman

School of Electrical Engineering and Computer Science
- -Washington State University
Pullman, WA 99164-2752

Abstract

We nddress a significant problent in parallel processing
research, namely, how to port existing sequential
programs te run efficiensiv on poarailel machines {the
“dusty deck” problem), Conventional domain-independent
feclidgues are inadequare for solving this problen because
they miss significant opportunivies of parallelism, We
present experimental evidence to support our claim,
analyze why current techniques are inadequate, and propose
a knowledge-based reverse engineering approach for
attacking this problem,

1 Introduction

Paralle] processing is increasingly being used for
computationally intensive scientific and indusirial
applications, such as computational fluid dynamics,
molecufar physics and blochemistey research, modeling of
environmental effects, graphics and image processing,
computer vision, computer aided design and
manutacturing. A variety of parallel machines are
commercially available ke the Intel Paragon, UM-5,
KSR, and IBM's 8P1 1o name a few, With the increased
computing power of paraliel machines, it is now feasible
to use these them for larger and more complex
applications. In fuct, there is now a revolution in the
scientific computing that is using massively paraliel
compliters as a new experimental tool to discover new
phenomena {the Federal Government's HPCC initiative),

The main goal of parallel processing research is io achieve
efficient and scalable implementations for problems of
interest on a parailel machine. One avenue of research is 1o
design new and efficient parallel programs for a given
paralle] architecture. However, for many important
applications, efficient sequential programs already exist.
For example, there are many sequential seientific programs
which stedy natural processes through detailed computer
modeling, Most of these programs are written in
FORTRAN and have been in use for many years. Thus,
another appreoach in paratlel programming research is to
devise techniques for transforming sequential programs for
efficient execution on parallel machines.

0-8186-5647-6/94 504.00 © 1954 IEEE

Our work is based on this second approach of transforming
sequential programs to parallel, Automatic transformation
of sequential programs to execuze on o paratlel machines
has been the dream of investigators for several decades
{("the dusty deck problem”}. It s now generally believed
that completely automatic identification of all the inherent
parallelism in a gequential program iy infeasible. In the
past three decades, there has been extensive work on
paralielizing tools which aid users in transforming a
seguential program to execute on a given parallel machine.
These tools analyze sequential programs for parallelism
{profiting), analyze critical code sections, and help users
port existing sequential programs to a paralle] platform.
Such tools can be extremely valuable in reducing the
porting effort and achieving reasonable levels of
performance with paratlel programs.

Current technigues of parallelization, employed by the
above tools, are based on a syntactic analysis of the source
program. These methods work in two phases. In the {irst
phase, based on a syntactic analysis, the source program is
transformed to a semantically equivalen seriad program.
The purpose of this transformation is 10 expose the
inherent parallelism in the source program. In the second
phase this transformed program is rewritien so that those
sections of the program that can be executed in paraliel are
marked using parallel constructs like do-all, and do-aeross.
The transformations that are used during the first phase
determine the efficiency of the paralielization. Therefore
efficient parallelization requires aggressive transformation.

Our approach uses a novel technigue, inspired by research
in knowledge-based reverse engineering, to permit
significantly more aggressive transformations than
possible with existing techniques. The approach is based
on recognizing algorithm-level concepts in a sequential
program and replacing them by more efficient parallel
programs. At present, we are in an early stage of our
research and do not have an implemented system. The
objectives of this paper are (1) to demonstrate that most of
the current tools for parallelizing sequential programs are
inadequate, {2) motivate the need for algorithmic level
concept recognition for achieving greater parallelism, and
(3) to propose a framework for building a knowledge-based

160

parallelizing tool that can assist users to efficiently port
their sequential programs to paralie] platforms.

We begin by describing the current state of the art in
paraliclizing tools and describe the performance of a
representative ool and why its performance is inadequate.
We analyze the reasons for the poor performance of current

~tools,-discuss -some- related -work in knowledge-based .

reverse engineering, and propose knowledge-based program

s transformation-as-a.promising-approach forattacking the. ...

problem, We present an overview of a system that we are
building and outline our tdeas for future work,

2.0 Parallelization based
analysis.

on syntactic

Some of the well-known transformations provided by
existing parallelizing tools are the following [6, 10}

Leap fusion: This technigue merges adjacent loops in a
program provided both the loops terate between identical
loop boundaries, have the same level of nesting, and the
statements in the 1two loops are data independent. This
transformation helps reduce startup costs for the two loops
that have been merged into a single loop.

Loop sphirting: This technique splits a loop into two
distinct loops. The purpose of this transformation is to
eliminate the dats dependencies belween the stafements in
successive iterations. The result of this transformation 1§
two loops both of which can then be parallelized.

Loop interchanging: 1o certain nested toops the order of
nesting of the ioop indices may obstruct parnlielization.

Loop interchanging corrects this by changing the level of

nesting of the indices,

Elimingiing scalar variabies: in certain loops the
programmer may have used a scalar variable as a
remporary location. This variable obstructs parallelization
of the loop, It may turn out that by stretching the scalar
variable into an array the artificial data dependence can be
eliminated. The resuliant loop can then be parallelized.

Cyele Shrinkingi11]: Consider a loop as shown in the
example below:

do i=4, n
af{il = Bli-3) + ali) g1
bi{i} = ali-4) + E(i} 82

Ini this leop statement St is data dependent on statement
§2. Statement 52 is also data dependent on statement S1.
So this loop locks inherently sequential. But if we look
closely at the subscript expressions of the array references
on the 'rths' of statements S1 and S2 we find that at least
three successive iterations of this loop can execute in

1331

parallel in every step. Cycle shrinking transforms this
loop as shown below so that this parallelism can be
exploited.

do 4= 4, n, 3
do 1= 4§, d+2
af{i} = bi{i-3) + afi) 51
S bi{iy = ali-4} + Fl1}y ... 8Z. .

“The-inner-loop-can now-be paralielized - ILis important 80

note that a synchronization point needs to be mserted at
the end of the inner loop. So all the processors need to
synchronize hetween every two iterations of the outer
loop.

There are several other similar techniques cog foop-
wnrolling almost of all these technigues analyrze sections
of a source code that involve an Herative construct and
attempl to iransform the code into a form that eliminates

data dependence between successive iterations of the loop.

Our empirical experience suggests that these techaigues
fail to identify many significant opportunities of
parallelism in sequential code that people write, or have
written. To validate our hypothesis, we conducted some
experiments based on both benchmark programs and real
application code developed by researchers i different
domains.

3.0 Empirical Evaluation of Parallelizing
Tools.

There exist several tools markeled by commerciat vendors
and a few research prototypes that can assist users in
parailelizing their code. For example, KSR-T has a tool
called KAP which atempts to "tile” parallel regions in
various ways based on a series of switch settings to the
wol, Parasoft Corp. offers an astomatic translation tool
calied ASPAR as part of their EXPRESS envirenment;
part of the FORGE tool set is the MIMDizer, an
interactive tool that assists users in the creation,
maintenance and modification of computer programs for
distributed memory parallel machines. Among research
prototypes many universities have tools such as the
Parafrase-Zirom the University of Hlinois, Urbana.

Most of the research prototypes are not available or are not
robust enough to be evaluated, and we do not have the
resources to acquire and evaluate many different
commercial toels, Therefore, our experiments are based on
three representative tools provided by leading vendors and
research developers of paratlelizing tools. We believe that
these tools are a fair indicator of the current state of the art
in automatically parallelizing sequential code.

The tools that we evaluated and report on here are KAP,
Forge90, and Parafrase-2. To evaluate the wols we chose

eight sample programs consisting of both benchmark
programs and real applications:

= embarfembarrassingly parallel code distributed with
the NASA paralle! benchmark suite,

= cpmf solves a unstructured sparse matrix using the

conjugate gradient method from the NASA parallel

tenchmark suite. :

o appbif solver for Tive coupled, pariial differential

equations from the NASA paralle] benchmark suite.

= mgrid f a simple multigrid solver in computing a

three dimensional potential field from 1he
NASA parallel benchmark suite.
= buk f bucket sert demonsirations from the

NASA parallel benchmark suite,

= LWSLF molecular dynamics shimulation of flexible
waler molecules from the Perfect Club benchmarks.

= draSf, oo solids modeling simuolation program used at
Washington State University,

= monte_carlof A monte carlo simulation of elastic
acoustic scattering used at Washingion State
University,

We used each of the tools 1o process the eight source
programs, Our results are based on using each of the 1ools
with defaglt settings as described in the user’s manuals
provided. We did not experiment with different switch
settings or directives in order to optimize performance,
The number and complexity of settings reguires a fair
degree of sophistication on the part of a user and our
interest is in evaluating the tool for a novice or
intermittent user (who is often u scientist or engineer and
nat a professional programmer).

The results of our experiments are summarized in Table 1,

The second column indicates the lines of code in each
program. The next three columns are the results for each
toot tested. Within each of these three columns we show
the number of times that the tool transformed a segment
of the code for parallel computation and the number of
those transformations that would be counter productive to
increasing the execution speed. The last two columns give
a quaniitative evaluation of the tools by indicating the
iotal number of loops that the 100l had {0 consider and an

estimaie of the number of opportunities with the code to

increase performarnce throtigh "distribuiion of Toop

execution. {The numbers by themselves do not give a true
picture because the performance depends not so much on
the number of constructs that are paraliclized a5 on the
specific constructs being paratlelized. } It can be seen that
these tools select a limited number of loaps to distribute
and many of these selections, although syntactically
correct, are poor cholces for increasing performance. In
other words, they attempt o paralielize code segments
which would be better left o execute in a sequential
manner. For example, both KAP and Purafrase disiributed
a loop which had only 4 iterations to initinlize a four
element array to zero. In such a case the communication
overhead of paratlelization can exceed the reduction in
processing time resulting in a negative speedup!

Although it is not apparent from the table, we discovered
that these tools miss many opportunitics 1o parallelize
cade which are embarrassingly parallel. Tools such as
KAP are designed to depend on the ability of a
programmer 6 wentify inherent parallelism within the
source and mark it with directives and assertions which
give it guidance. Parafrase, o research tool, tries to
distribute every loop possible without consideration of
processor number. Forgeb(also only distributes loops
and does not always make the best cholees for distribution.
Our study suggests that considerable user effort is needed
o obtain more effivient transformations of seguential
programs.

Kap Forge 90 Paraphrase

Program | LOC | Loops Inapprop | Loops Inapprop | Loops Inapprop | Num. of | Parallel

Distrib. Distrib. | Distrib. Distrib. | Distrib. Distrib. | DOloops | opport.
embarf 265 5 5 2] i i 0 1
cgmf 862 5 4 7 {3 10 0 51 20
abbbif | 4437 4 4 6 { 138 66 391 52
mgrichf 676 9 6 3 0 33 18 45 18
buk.f 312 2 2 1 0] ¥ 17 4
LWSLY | 1430 6 | 2 0 1l 8 183 13
drnd.f 830 0 0 9 0 15 9 49 13
monte.f | 1893 3 0 24 7 16 i2 57 27

Table 1. Performance of three tools on eight sample programs

The reason these tools fail to optimally or effectively
transform sequeniial code to parallel code is because their
anatysis of the source code is at a fairly low level of
abstraction - called language concepts in [91. They do not
analyze the semantics of a program in terms of more
abstract demain-specific concepts - which is essential in
order to perfonn more puwcrful opnmxm{mns

=Examples

To take a closer look at the kind of parallelizations that
KAP {and other similar tools) is unable to recognize,
consider the code in Figure 1 which is part of the
Motecular Dynamics Simulation of the Perfecr club
benchimarks. The transformed code produced by KAP is
shown in Figure 2.

st AR R R R AR RS ESE RS ELEEESES A EEESERERERESEEEEEERS]

SUBROUFTINE KINETI {VAR, NMOL, SUM, FMAS, OMAS)

hdw W FE R AR B Er E A A A AR A I AR RN TR D R R b A Tk k b ko ok k AR

[
OV THIS ROUTINE BEVALUATES KINETIC ENERGY
C
IMPLICIT DOUBLE PRECISICN{A-H, -2}
DIMENSICON VAR({L), SUM(1)
C
JIwl
Do 100 E=L1,3
8=0.000

DO 110 J=1,1MOL
=5+ (VAR (31) *VAR(IT) +

- VAR(JT+2) *VAR(JI42)) *HMAS

- WVAR(JTL) *VAR(IT1) *OMAS
110 3723043

BUM{K} =8
100 CONTINUE

BETURN

EHD

!

Figure 1. Section of code from the Molecular Dynamics
Simulation program in the Perfect_club benchmark,

In this example, the loop DG 110 J=1,NMOL controls a
global combine over the data array VAR into the single
element 8. The data structure is indexed by the variable 1J
which is also modified within the loop. KAP did perform
the sealar optimization of removing the variable JJ and it's
assoctated assignment statement. However, it did not
exploit the parallelism within the global combine
operation being implemented in the second DO loop.
Based on a purely syntactic analysis, KAP finds that there
is a data dependency within this loop structure and
concludes that the loop cannot be parallelized. However,
an experienced programmer would notice that the order of
the summation is not important and can be computed in
parallel. A programmer could exploit the parallelism by
using a "paralle] region” construct illustrated in Figure 3.
This code will spread the work to a group of processors
and then combine the final resuls,

40 Aigon{hm ievel transformatmn’ An

C***-i(**i**&t**t******************’**********’*‘k**

SUBROUTINE KINETI (VAR, MNMOL, SUM, HMAS, OMAS)

C'********‘J\‘*************************************

o
Co.... THIS ROUTINE EVALUATES KINETIO ENERGY
c

IMPLICIT DOUBLEFRECISION (A-H,0-2)

DIMENSION VAR{L), QU?i(l‘l

o TNTEGER TT1.~T13 -

[
CHRER®+ ORIGTIALLYLOOF {100 e oo

0O 3 K=1,3

g = 0.50

C'RSR' ORIGINALLYLOOP (110

R

8= 8+ (VAR{RD

3 L¥ K1) *3+0%3~-2}

X * VAR {(MEHOLA (K-1) *3+0%3-2)
X + VAR (IRIOL* (E-1] *34+3% 31}
X * VAHOBIOLF{K-1)*3+I*3)) * HMAS
% + VAR OL* (R-13 *3+0%3-15
A *OVARINMOLY {K-1) 340 3-11 % OMAS
Z CONTEINUIE

SUMIKF = &
3 CONTINUE

RETURN
ENT

Figure 2. Section of the code from the Molecular
Dynamics Simulation program in the Perfect_club
benchmark after modification from KAP.

st A RSN ER A SRR LSRR RS EEEREEEREE SR EEERESEEEE LN

SUBROUTINE KINETT (VAR, NMOL, SUM, HMAS, CMAS)

C****'ic*i’*****'s'\'\k*w****-k‘le@*z*****t*****k****v***’k

o
| S THIS ROUTINE EVALUATES KINETIC ENERGZY
e
IMPLICIT DOUBLEPRECISION (A-H,0-Z)
DIMERSION VAR(Ll}, SUM{l}, S{numberprocs)
INTEGER 111, IIZ2, mpmum
1)
CYESR* ORIGINALLYLOOP (100
D2 3 K=1,3
5= (.00

CFisrt parallel region (numthreadssmumberprocs,
private=J, myrum)
ORIGINATIYIOOR { 110)
mynwm = Ipr mid()
Lo 2 J=1, 40T,
1 (mod 67, numprocs)
S (mymum} =85 {myrum}
+ (VAR {MNMOL* (K-1) *3+J*3-2}
* VAR{I\MC}L*(" 1) *3+T*3-2)
AR (NMOL™* (K- 1)*3+J*3)
AR (NMOL* (K~1}7*3+7%3)) * HMAS
AR (
AR (

CHESRE*

. eg. mynum}

% 4

NI’OL*(K 1} *3+J%3-1)
MMOL* (K~-1}*3+3*3~1}) * OMAS
2 CONTINUE

+
*

Vopd P o X

Crkzr* end parallel region
for 31 J=1, numbsrprocs
SUMIK) = SUM{X) + a{J)
3 COMTINGE
RETLRN
END

Figure 3, Parallel reglon pseudo code for the Molecular
Dynamics Simulation program. The italicized parts are
statements inserted manually by a programmer.

A global combine is a very commoen operation in
scientific code and is often a sub-part of higher tevel
operation or algorithm. I s o generalization of the more
commmonly used global sum operation shown below:

Figure 4. Global sum eperation

From this example we can identify two principle attributes
ol a global combine operation. First, the operation is
contained within a loop and works over an indexed data
structure {array). Secondly, and more specific, the body
consists of a summation of all the data from the array. It
shoutd be noted that the combine operation within the
loop body can be one or o combination of muny differen
operations which combine the data in the structure inte s
single element.

We can generalize the various global operations and
represent them as an abstract pattern as shown below,

Ona-to-ons-function{8L)

Figure 5. Abstract patiern for the global combine
pperation.

Here, symbols preceded by a ? refer to & varinble and
symbols preceded by o @ refer to a function or operation.
@f{7i) denotes a function on 7i. W[@e,@en,... @e,l
denstes an n-dimensional array indexed by expressions
&gy, @es,. Ee,y.

The syntax of specifying an abstract pattern has been
adapted from [9] and is:

Pattern-name(args).
<patiern>»

where
<conditionsz>

A section of code C is said to be an instance of the above
pattern i there exists a substituwtion o© such that
<pattern>g = (and <conditions>a is wue. Thus,
according to Figure 3, the combine operation, 80P, in
the global-combine pattern must be an associative
operator, @f0and @ g must be some linear functions of
Yindex!. and @fo must be a one-to-one function, The fast
condition ts needed to ensure that the computation of cach
compenent of the array dafad is independent and hence
can be done in parallel. (Note that this my be oo sirict m
some cases since 1t is based on the assumption that
READ-READ conflicts inhibit pamaliclization),

The simple global sum example can be seen to be an
instance of global operation since it maiches with the
following substitution:

7= 1, 7Zcombined = SUM. Hdata = X,
Tindex =1, Zabel = 10, @op =+,
@h=id @f=id Gge=id

where id is the sdentity function. Note that in the current
form the global combine pattern would still not recognize
the code in Pigure 1 as o global operation, We need to
generalize the patiern to be able to recognize such
imstunces.

TCOMBINED

ehl $Ti§;?5m::(‘? DATA[@ [.(2index)]))

Tty

Here STUPLE s a special constructor that returns 2
i

tuple of size size. The components of the tuple are
indexed with 7i. In the global combine example,

ity

STL:’PLE would match
i

{ VAR{JJ) ,VAR(JJ} , VAR{JJ+2} , VAR {JJI+2) 7,
VAR{JI+1) , VAR{JJI+11})

19index can be bound to the same identifier as 7

104

Program | embarf | cgmf | appbtf | mgridf | bukf | LWSLE | dm3f | monef
Global I 8 29 2] 15 3 22
Combines

. ... Lable 2, Number of global combine computations.in sample.programs ...

number of patterns are used extensively in scientific
computation, we counted the number of tmes the global
combine operation occurred in the eight example problems
in Table 1. The results are shown in Table 2 below. It can
be seen that 89 different instances of the same abstraction
were found in just eight observed programs! Our
observations are corraborated by others who found that
global accumuiations appeard in nearly every code that
they examined and were responsible for preventing most
impaortant loop nests from being parallelized [4]

The pattern matching can be done by using a standard
unification algorithm together with some reformulation
rules that rewrite the abstract syntax tree produced by the
parser. A somewhat related approach to pattern matching
has been used by researchers in other domains, e.g. [3].
The conditions can be checked by calling a set of service
routines from a library. This is similar to the approach
adopted in [9]. However, for the scientific computation
domain the nature of the constraints to be checked are
different and we will need to provide a different set of
service routines,

Besides global comibine, we have identified several other
absiract concepts that occur frequently in scientific
computation and are not optimized for paralielism by
conventional tools, Some examples of these concepts are:

* Relaxarion. This is a computation process used o
determine the value of a data point based on neighbors
within some bounding region. For example the drn5f
code performs a relaxation operation on the position
atoms in a lattice based on the attractive and repulsive
forces of other atoms near it

» Marrix operations. These are any of the numerous
numerical methods that operate on matrices and have
been implement in code such as Gaussian Elimination
and Matrix inversion. There exist Hbraries of very
efficient implementation of these algorithms for
parallel architectures and if one is able to recognize
these concepts in sequential code, one could transform
them to efficient implementations using these
libraries.

* Multigrid operations. These involve the use of a
neighbor to calculate a new value for a data point.
Noise reduction in image processing is an example of

ook 0 0Bl preliminary.evidence. for.our belief that.a small. o

105

its values differs from its neighbors by some pre-
defined amount.}

= Daia Dependency Data structiure Expansion. This isa
program fragment that has a mohiply or singly nested
ioop which contains a variable that is a scalur along
ane or more Joop dimensions. The presence of such a
scalar introduces o data dependence that obstructs
paralielization. In certain programs it may be
possibie, on the basis of a semantic analyses, 1o
expand this variable so that it is not a scalar along
any dimension. The program fragment can then be
parallelized.

= Scarter: In a parallel machine, one processor has an
array of data which should be distributed 1o other
processors uniformly. It is the exact opposite of a
global cotnbine operation.

= Histogram. Histogram calculation is a frequently used
operation in scientific computing, which can be
implemented using efficient parallel algorithms on
different architectures.

s Approximations: Quasi-Newton method and other
techniques are used in finding approximate solutions
through iterations for many problems. Such
techniques are commorly used in scientific programs
tor finding fairly accurate focal solution for
unconstrained optimization problems.

» Differential Equations. Solution of differential and
partiai differential equations that have efficient parallel
alzorithms.

5.0 A Knowledge-based approach

It is generally believed that when parallelizing techniques
are vsed on a sequential algorithm, the resultant code is
usually not as efficient as a parallel algorithm. However,
as the previous example shows, using a functional level
understanding of programs one can translate a sequential
program into equivalent programs with algorithms that
will lend themselves to a higher degree of parallelism. The
gobal combine that was demonstrated is implemented on
some systems. We believe that there are several common
operations, concepts, and data organizations within the

a:multigrid:operation.. (A pixelds:considerednoisy il

Target Test
Replacement Code | Cases

Library of

A SR R RS RETSTTRaY

g L \ Adbstract
Sequentia .
i 113 Parser Syniax
code ;
Tree

Pattern
Matcher |

Fatiern
Library

Paralie]
Code

Code
Transformer

USER
Matched
Patlerns

Figure 6. Architecture of a knowledge-based parallelizing tool

domain of scientific computation programs that can be
reeognized by performing o deeper analysis of the source
code, and once recognized, tansformed into a form that is
more appropriate for the targe! environment, We now
describe the architecture of a proposed system io
implement our approach,

5.1 Overview of proposed environment

An architeciural overview of our system is shown Figure
o, Initially we will focus on creating o ¥brary of putierns
i identity commonly ocourring parallelizable construets.
These patterns wouid be indexed on subdomains within the
broad domain of scientific computation. Qur inital efforts
would be restricted solely to sequential programs writlen
i FORTBEAN. The code wansformation would be
accomplished in two stages, Tn the first stage the parsing
and pagiorn marching systean would be used to {irst creale
an abstract syntax tree for the source code which will then
be matched againgt palterns in the pattern library, The
matehed patterns are potential candidaes for parallelization
ard would be passed to the second stage,

The second phase utilizes a second [brary of replacement
code, indexed by target architecture, for replacing matched
palterns by efficient paraliel code, We subscribe to the
widely heid belief that it is infeasible to identify all
inherent paralielism in a sequential code completely
agtomatically, The system’'s role is to identify potential
regions in the code to be paralielized and suggest possible
replacements for the code; the user will be responsible for
making the final decision. Finally, the transformed code

106

will be verified for correctness using a user-furnished suite
of test cases. 6.0 Reluted Work

Curpent approaches to antomatically transform sequeniial
code into parallel code have been already described in
Section 2. Herg we deseribe some of the relevant work in
the knowledpe-based software engineering and Ariificial
Inseligence lerature.

Our approach has been inspired by work in knowledge-
based program understanding and reverse engineering | a
relatively young ares of research 11, 5, 8,9, 131 The goal
of this research is to obiain o functional level
understanding of a program by analyzing the source code.
Our approach is most closely related 1o the work of
Kozaczynski ¢f al. [9land Wills[13}, Both these approaches
utilize a library of absiract concept representations, and
program understanding proceeds by searching for the
occurrence of these concepts in the source code. The
abstract concepts are called plans and have been influenced
by the Plan Calculus in the Programmer's Appreniice
project [12]. However, the two systems differ considerably
in the details of the plan representations and the plan
matching algorithin, Wills uses a directed, acyclic graph
represeniation for representing plans and uses flow-graph
parsing to recognize plans. Kozaczynski er al. represent
plans as an abstract pattern and seem to use standard
unification and limited constraint checking 1o recognize
instances of those patterns in the source code,

Both of these systems exemplify a bottom-up approach w
program understanding by starting at the source code and

trying to recognize increasingly abstract concepts. An
alternative approach, exemplified by the work of Johnson
and Soloway [8] and Allemang [1], is to proceed top-
down. In this approach a functional goal is assumed (in
practice it is supplied by a user) and the task is to explain
how the implemented program achieves or fails to achieve
the functional goal. In our current work we are adopting a

" bottom-up approach since we are dealing with large
_programs with complex functional goals, which cannot be

Specilied easily by an‘end-user. More Tmportantly, s
necessary (o understand a complete program in order to
paratfelize it {although this is troe for small programs and
subroutines); in most cases, it is enough to identify sub-
parts of & program. Thus, a top-down approach for this
task would be an "over-kill” requiring o significant amount
of domain knowledge without offering any increased
opportunities for parallelism,

While work on program understanding is limited to plan
recognition, the goal in reverse engineering 1s to use that
understonding to medify the program for a variety of
reason {e.g. performance enhancement, restructuring to
improve code modularity or comprehension). The use of
program transformational technigues to perform this task
has been ntilized by others e.g. [2, 5]. However, as far as
we know, program transformation techniques have not
heen utilized fo awtomatically restructure sequential
programs into paratlel programs.

7. Conclusion

The difficulty of porting sequential programs 1o parallel
environments, in a manner such that they will perform
efficiently, is a siznificant impediment to the use of high
performance parallel computing by the scientific
community. The solution of this problem is paramount to
the use of high performance parallel computing by
researchers and engineers.

OGur solution represents a novel approach to this "dusty
deck” problem facing computer users. The approach is
based on using domain-specific knowledge about program
fragments 10 identify parallelism within sequential source
code. This would complement the domain-independent
techniques on which the parallel programming community
has been focusing for the past three decades. The
feasibility of our approach has been demonstrated in
reverse engineering and program understanding work.
However, as far as we know, the application of these
techniques to the "dusty deck” problem is quite novel.

Qur future plans include an in-depth evaluation of other
paratlelizing tools and identification of commonly
occurring patterns in scientific code. Once we have a
prototype system we will evaluate its performance on
several benchmarks as well as real applications developed
by users in the scientific community. We believe that our
work has the potential for significantly advancing the state

107

-Ohio State University. ...

of the art in parallelizing tools. In the long ran, this could
help enhance the usage of paraliel computing and in turn
the prodectivity of the scientific community.

References

(1] Allemang, D., Understanding programs as devices, 1990,

[21 Arange, G., e al, TMM: software mainlenance by

T trassformation A EEE Software . 1986: 3002730 s s

{31 Bhansali, 8. and G.A. Kramer. Planning from first
principles for geometric constraint satisfaction. in
Proceedings of AAAID4. 1994, Seattle, WA,

4] Blume, W, and R EBigenmann, Performance analvsis of
parallelizing compilers on the Perfect Benclimark Programs.
TEEE Transsctions on Parallel and Distributed Systems, 1992
36y, p 064363

£51 Bush, E. The awromaiic restructuring of COBOL. in IEEE
Conference on Sofbware Maintenance. 1985,

i6] Caliahan, D.. A global approach to detection of
paralielism. 1987, Dept. of Computer Science, Rice
University.

{7} Etter, DM, FORTRAN-77 with Numerical Methods for
Engincers and Scientists. 1990, Redwood City,CA:
Benjamin/Cummings Publishing Company.

[8} Johnson, W.L. and E. Soloway, PROUST: knowledge-
based program understanding, IEEE Transactions on Soltware
Engincering, 1983, 11

[91 Kozaczynski, W., J. Ning, and A. Engberls, Program
Concepl Recognition dnd Transformarion. TEEE Transactions
on Software Engineering, 1992, 18{12): p. 1065-1074.

[10] Moldovan, D1, Parallel Processing from applications to
systems. 1993, San Mateo, CA: Morgan Kaufmann.

1111 Polychronopoutos, C.D., Compiler optimizations for
enhancing parallelism and their impace on architecture
design. JEEE Transactions on Computers, [988. 37(8): p.
991-1004.

112} Rich, C. A formal representation of plans in the
programmer's apprentice. in Proceedings af the 7ih
Iiternational Joint Conference on Artificial fnrelligence.
[981.

f13] Wills, LM, Awtomared Program Recognition: A
Feasibility Demonstration. Artificial Intelligence, 1990, 45:
p. 113-171.

Towards Automated Code Parallelization through Program
Comprehension

B. Di Martino

G. lannello

Dipartimento di Informatica e Sistemistica
Universita di Napoli
v. Claudio, 21 ~ 80125 Napoli, ltaly

Abstract

Crurvenily evadlable parallelizing tools are bigsed in
favor af a particular paraliel execution model for gen-
eraling the owlpul parallel program. This abwously
Lmils the generality of ihese tools, since programs
may be parallelized aecording o differend programuming
paradigms. In this paper we propese a novel approach
to automaled code parallelizafion fhai iries lo over-
come these Hmulations. This approach consists in rec-
ognizing first the paradigm thal is besl suiled to o
given program to be parallelized, and ihen applying
paradigm-specific fransformation to generale {he fing!
parallel code. We avgue that the recognition phase
can be fully aulomatized using technigues developed in
the framework of anfomated program understonding
With the help of 0 cose study, we discuss how this new
approack could be implemented and propose the basie
siryclure of o paradigm-oriented parallelizer,

1 Introduction

5o far, the focus of research on parallelization of
sequential cods by {somi) automalic tools has been
on computational science and virtually all available
tools are oriented to FORTRAN as a2 source lan-
guage. The main goal of these tools is to make
explicit the parallelism inherent io iterative control
structures, through a sophisticated data-flow and de-
penclence analysis [10, 12].

Currently available tools are all biased to a par-
ticular parallel execution model referred to in the it-
erature as the SPMD {single program multiple data)
model [6], allowing parallel code to be generated rela-
tively stply. On the other hand, several authors have
recently argued that parallel programs can be classi-
fled according to their algorithmuc skeleton 4] or pro-
gramming paradigm [3], Le. to the way processes mak-
ing up the parallel program are created, synchronize
and communicate, abstracting from the details of their
sequential code. According io this view, the SPMD
model can be viewed as a [amily of paradigms, all
characterized by common synchronization and com-
munication patterns.

Unfortunately, the use of a fixed iarget paradigm,
even one very flexible and quite general like the
SPMD model, prevents from choosing the paralicliza-
Lion strategy that is best suited to the characteristic

0-8186-5847-8/94 $04.00 © 1984 [EEE

igg

of the algorithm to be parallelized.

The main reason currently available parallelizess
zannot chooss among different parallelization strate-
gies is that they perform a purely structural analysis of
the sequential code, Conversely, knowledge nbout the
most eonvenient parallelization strategy for a specific
class of algorithims could be applied only if paralielizers
were able to “recognize”, at a proper absiraciion lavel,
whal the sequential code does. In other words the pro-
gram should be analyzed for discovering abstract con-
cepts and assinging them to their realizations within
the program itself. This problem has been referred to
in the literature as the coneepl assigning probiem [2].

While the concept assigning problem does not scem
to be completely antomatable in s general form, 1t
could be fully automated if the recognition focused
chigfly on programming-oriented concepts, such as
searches, soris, structure transformabions, nnmerical
integration, ctc. For instance, in [8, 9], program un-
derstanding is viewed as a parsing process that looks
for specific signatures repressnting concepts in the tar-
gel program. The recognizer program uses a Anite sal
of patiern templates (called clichés in {8]) that identify
the concept signatures in o parsing process in which
the less abstract concepts are recognizoed frst, and
then they become fentures of larger-grained composite
concepls.

These results appear to be especially interesting
with respeet to parallelization sines the abstract con-
cepts that should be recognized in order to apply f
fective parallelization stralegies can be classified as
programming-oriented and are of the same kind as
those recognized by the tool deseribed in [9].

In this paper, we develop these idens and propoese
a parallelization procedure based on automaled pro-
gram understanding that can overcome limitations of
existing parallelizers. After a brief introduction tocur
reatly available parallelizers, we outline the main Hm-
itations of their structural approach and conirast it
with a parallelization process based on a multitude of
parallel programming paradigms. We then propose,
with the help of a case study, a parallelization pro-
cedure that first tries to recognize those algorithmic
properties of the sequential program concerning paral-
ielization, then chooses the best suited parallelization
strategy (the paredigm), and eveninally generates the

output parallel program starting from the input (se-
quential) code, from a skeleton code associated with
the chosen paradigm, and from other output informa-
tion produced during the recognition phase. Finally,
the basic architecture of a tool implementing this par-
allelization procedure is presented and available tech-
niques for its realization are discussed.

2 Tools for automated parallelization

e Pilelivers are Usuallv Hade v By A Front bad

that is substantially independent of the target paral-
lel architecture, and a back end that is architecture-
dependent and perform actual code generation [12].

The front end translates the program text in an
internal representation suitable for program manipu-
lation and performs code normalization.

The main goal of the back end is the generation of
a parallel version of the program. This process relies
on a catalog of transformations and en a strategy lor
their application which takes into account the results
produced by the front end. Thess transformations can
be classified according to the nature of the code they
can be applied to.

The strategy controlling the application of these
transformations obviously depends also on the archi-
tectural characteristics of the target machine and on
the cost of its basic operations.

Since parallelization is so dependent on the tar-
get architecture, in our discussion we focus on dis-
tributed memory computers. These machines, also re-
ferred to 2s multicomputers in the literature {1}, con-
sist essentially of a number of autonomous processing
units {nodes), each with a private local memory, con-
nected by a messape-passing network. The intrinsic
scalability of this organization and its very favorable
cost/performance ratio with respect to other alierna-
tives make multicomputers the best candidate for fu-
ture high performance machines and motivate the in-
creasing attention which is heing paid to improve their
usability.

Transformations for DO loops are by far the most
suited for parallelization jn a distributed memory
framework. When only parallelization of DO loops
is performed, code generation is greatly simplified if
a Single Program Multiple Data (SPMD) execution
model is chosen for the output (parallel) program. Ac-
cording to the SPMD model [6], a parallel program
consists of a number of processes started together and
running in parallel. All processes execute the same
sequential code that is divided into sections. Al pro-
cesses synchronize between subsequent sections. Pro-
vided that loop iterations are not constrained to be
executed serially, in the SPMD framework paralleliza-
tion of DO loops is easily performed by executing the
loop in a parallel section and by distributing loop it-
erations among the processes.

Since in parallel sections loop iterations assigned
to different processors operate on different data (typi-
cally elements of arrays), in a multicomputer environ-
ment a further data distribution problem arises from
loop iteration distribution. Actually, data distribu-
tion and loop iteration distribution are tightly related

109

problems and the sclution for one of them implic-
itly induces a solution for the other [12]. Unfortu-
nately, available parallelizers cannot solve the problem
in the general case and user intervention is generally
requested to perform either data distribution or loop
iteration distribution.

From this brief overview on parallelization tools, it

‘8 ‘apparent’ that they “Basically ‘perform a“strictural

analysis of the program to identify which loops can be

wdistributed -among thesprocessors=and which eatifiot o

Since the final program is conforming to the SPMD
model, the code produced consists of a single sequen-
tial program obtained by applying to the original pro-
gram text local transformations such as: insertion of
synchronization points between sections, conditional
execution of code corresponding to serial sections, loop
tiling to insert intra-loop communications, ete. Con-
sequently, the parallelization process can be applied
only to those computations for which an efficient data
paraliel version can be written. It is worih noting
that not only automatic parallelization of algorithms
that do not fit the data parallel pattern, but also the
application to irregular data parallel computations of
sophisticated parallelization strategies that would ex-
hibit better performance than SPMD is prevented [7].

These considerations lead to the conclusion that we
should de away with the constraint represented by the
SPMD, as the only model output program have to
conform to, if we want to improve the performance of
parallefization tools. The first step in this direction
would be to determine alternative execution models
toe SPMID that could be integrated in an automatic
parallel code generator.

In ocur apinion, such alternatives do exist and they
have been pointed out in the recent literature on paral-
iel programming techniques, though in contexts other
than automatic parallelization. In fact, more than
a decade in parallel program development has shown
that the “paraliel structure” of mast programs can be
classified according to a limited number of patterns,
that can be viewed as representative of the basic ways
to organize a parallel computation. This idea has been
explicitly expressed in the context of parallel program-
ming methodologies [3, 4] and parallel programming
languages [5].

Even though the notion of “parallel structure™ of a
program has not been well formalized yet, it can be
informally defined as the way processes forming the
parallel program ere created, synchronize and cornmu-
nicate, abstracting from the details of their sequential
part. Following [3], we will refer to this notion of par-
allel structure of ‘a program with the term Parallel
Programming Paradigm, or more briefly Programming
Paradigm (PP).

From this informal definition it is apparent that
a PP is just a template, parametrically defined with
respect to the actual number of processes instanti-
ated, the number of similar interactions between them
during the computation, the length of messages ex-
changed, etc. In this respect, the SPMD model can
be considered as a PP, or, more specifically, as a fam-
ily of PPs, since synchronization and communication
patterns of SPMD programs may slightly differ within

the constraind that all processes must parlicipale to
these evenis.

The availability of different PPs can be used to ex-
tend the capabilities of automatic parallelization tools.
The idea is that parallelizers should be able to recog-
nize which paradigm (or paradigms) are best suited
for parallelization of a given sequential algorithm and
to apply paradigm-oriented transformations to derive
the final parallel program. Assuming that a catalog
of PPs is available, to make effective the paradigm-
oriented approach to parallelization jusl cullined, we
hiave to solve essentially fwo problems: (a) how the
best TT is selected and (b) how transformations are
selected and applied to generate paralle! code. We be-
“lieve that the solution to these problems involves some
kind of program comprehension, possibly integrated
with traditional parallelization techmgques based on
structural analysis. In particular, automated program
anderstanding techolques developed for maintaining
sequential code appear o be especially suited for this
k. In the following sections, through the presenta-
ticn of cose studies, we will lurther develop these ileas
and we will informally propose n paradignioriented
parallelization procedure amenable Lo boing fully -
tegrated in an antomatic tool.

3 Parallelization using paradigms

in 1his section we discuss the parallehzation pro-

cess for two case studies thai does not fit the SPMD
iriodel of paralie]l execution, in order io belier un-
derstand how this process can be awtomated. We
Liave chosen two programs that have the same basic
struciure, bui difier 1n minor aspects thatl ore other
wize relevant with respect to parallelization, We made
his choice both to stress the recognition capabilitics
that a paradigm-orienied parallelizer should possess
and to analyze how different parallel programs can
be derived starking from structurally similar sequen-
t1al code. Dloth programs have been coded by students
with moderate programming experience, without hav-
ing in mind any concerns aboul paralielizalion.
The first program, coded in Pascal, implements the
iterative version of the quicksort algorithm and in-
cludes the inpntiing of the list to be soried and ihe
outpuiting of the sorted list. Figure 1ashows the com-
plete program, with subprograms entively macro ex-
panded by hand. The second program, coded in €,
implements binary branch-and-bound search, and in-
cludes inputing of initial data and outpulting of the
final result. Figure 1b shows the complete program,
that did not contain subprograms,

Sven though the two programs perform completely
different {unctions, they both share a iterative divide-
and-conquer resolulion strategy corresponding to the
traversal of a binary tree, Each node of the tree cor-
responds {0 a sublist 1o be sorted in the first program,
and to a search subspace in the second program. Both
programs share the basic control and data structures
that are outlined in the two figures by means of anno-
tations en the right of the code. More specifically, the
tree traversal is performed by executing a loop that,
at each iteration, processes a data structure represent-
ing the current problem and derives two subproblems

116

from it. One subproblem become the current problem,
while the other is pushed onto a data structure imple-
menting a stack. Alternatively, if the current problem
satisfies a given condition, some processing is possi-
bly dome and a mew current problem is popped out
from the stack. The loop terminates when the stack
is emply. Note that the way the stack and the prob-
lems are represented in the twe programs are quite
different.

Once an experl programmer has recognized the
aigorithmic structure just described, he can select
among bwo paralle! paradigms to perform the tree
sraversal in parallel.

A first PP, that we call free compuiation, consists of
a set of processes conuected by communication chan-
nels according to o binary tree structure, Bach process
receives a problem to be solved, tests for a condition
and then either splits the problem into two subprob-
tems that are sent to two child processes, or does some
processing and returns o result to its parent. When a
process sends over fwo subproblems, 1t remains wait-
ing for a reply from each child, then combines thess
replics and sends back the new result. In praciice a
number of questions {how deep must be the iree of
processes, if processes have Lo be created dynamically
or the entire tree must be instantiated statically, etc)
have to be answered before a working program can be
generated, However, they do not depend on the par-
ticular nature of the computation to be parallelized,
but rather they are part of the PP and can be solved
onee and for all in the context of the paradigm itsell
Figure 2 informally lustrates the paradigm through a

o
graph specilying how processes communicate (fig. 2a)
and n pseudocode deseribing the behavior of the com-
ponent processes {fig. 2b).

The second PP, that 1s usually referred to as a pro-
cesser furim, consists of a coordinaior process and a set
of werker processes that s as slaves of the coordina-
tor. In a processor {arm, the coordinator decompose
the work to be done in subproblems and assigns a dif
ferent subproblem fo each worker. Upon receipt of a
subproblem, sach worker solves it and returng o result
to the coordinator. Agaln some details have to be de-
fined before the PP can become a working program,
and stightly different organizations can be selected for
the processor farm {Tor tnstance workers may or may
not be allowed to commuinicate each other). However,
even in this case, these issues do pertain to the PP del-
initlon and can be entirely deali with in the paradigm
context. The processor {arm paradigm is lustrated
in figure 3.

(ioing back 1o the two programs to be parallelized,
in principle both the iree computation paradigm and
the processor farm paradigm {and perhaps others)
might be chosen for the parallelizalion. In practice,
however, an experienced programier would choose
the former PP for gquicksort and the latter PP for
branch-and-bound.

This because the split phase in the guicksori is the
costliest part of the algorithm and it would be bet-
ter to perform it in parallel as much as possible. In
this respect, the tree computalion is apparently more
convenient. Moreover, unless a worst-case list is given

Proqran Quichsers:
CONST timit =58
YRR perala =
it ™

Key s

: remad
astrame §

rots

sringiibis
RECDRD
intagers
phrolai U
pexviag
fntagar:
LXGy

CLmEinRE

VAR £, :
18,43,500 ¢
la2z, pigas
Y

© IRZRGE] M-
PR ‘ A‘j"- pngaT
toaTTHY S, L IEmITELE oI Satar

notempry t
&
Tog : Paod of Hatk

Tlag +
"

D —

RE
mode, tevp ¢ TAckpeintary
BEGIR fsf muin progzami
writwi’inseriscl muswers dsti w pasac:tl: Teadisin M.
HIBi.Xeyings
Rin4L]. Key:=lBOGt,
writein{'insariss| mstypcels pove cogrome wRbs’ i
Fub idiiel re w20
Wit Blpgfy o0
BRGIN
ramcinikep; readininanai; jeedlnisursamaly resdlinivstsls
[t
ap =ikl e
Laft iol;
ATyt
isdtias St S
WHILE pry
BISIN - il
WHILE firighe-Safriv=d; B0
aERis
dimlafty
fimrights
Eindifefoj.Xay; AR:a¥{zafel: flag:strad:
WHILE fiag DO
BEGIN
WELLE X € RUf5.hwy D2 fimi-32
IF yewl TREN
£51E
BI5Twithy
RS ELSE
BEGIN
RECTimRifis Limiel:
WEILE HIL].ky < K DO ii=lely
IF jewt THZR
BEGIA
ATdEreRRs
Exy
ELSE BICIW
RijireR{ifs Fi=i~ly
BTy
EHD;
RY; v
IF fhgight-3idwii-Jafti} THEN
BELIR
LE LG0T DS
LEE I TY & 2

WIS THEC I gy
e T i i peopde

FORKHE URHE Mk s siniEy
o™ in not TSt protvem

flagr=talons s prtien

Lim3i Flmgiwlalse;

hetet L TigRT e atiiid Tinlheadisalacs)
Fetda eES S "B SRS ot TH KT basds s
L re{lazinl
Eign Set ‘rotéeri” i st sutprofien© dzzeay
zvs ¥ L o Beanehel:
gLsE H
REG TN aise
Tawifodelr Fuezls
feT4 . LelY ralafL] |
Ao rignt e=i=i sifar subpratiom i [
nedet,nerT (etop: e T Duph b BULERENEMN " GG Sk iftibrrnchi 3
tap sencday . "
“;*ft =tels 3o ‘prodiers* o 4 subprobiem® LEtneadray
i
[L:H Pl
33 smlefnel; Lrcwlininasdi s
WILE jfeesigne bo fortietiicinpe, 1o

BECIH
d41aj1ty KesRijil.Rey: RE:eR:Ij3is
WRILE LK« R{1i].key} angifira) &
BECIN

RifsetjewRiffly themitaety

F- sohy Jroniem”

END;

Rid{+EiewRRs $§teitsls
ENRy, 3
IF ERp © Ni] THIN eememcemommmoscomommmd
BEGIR

1aft :wtop-. ety

TigRE sAispe, Elgnty

Temp ietopy

Lop tSLopt . AlEtr

di Bprse (Tampl
EHD
ELSE FOTAMPTY [Tl) s i iionmmrrmocanc?

ERG
FOR fti:s] TO n DO
WITR A{idi) Bo
weltwin{kay,” “,rame, "

"MAAT 5 not ampRy

s rp prublem T iom “Hack®

'yeornase,’ 7

{a)

,va

ERD,

Figure 1: Case study programs:

Pingiude Kptdis. nx
Jonfine INCINITC 31339
$eetine B 35
fdaline M iz

malagE
i

EBT Lagy e

v e IM}ING, biMi, ciHi,
L
2 g

char stop, bramen,
EERLHEE

inT La{100T} NI
LEn{108E] fawrm

1rt hapgs

FELE *filw:

fig et of ik

Lnt veodd,

moane, wumg

: Teszijidy
Loriiafy fody Twwy
Eoigeds §eH: jeer
EacurZibite, “A3a “ Eeiliiyiis
torifel; LeM; dver
fecanf {£iie, "h3E ", ini

T ow INFINITE e

weiaire Thesahelyt

i "prTidom T WE pretiee”

WA CHHK W ER Yy

Ixz % ¢
tariie sevt
Fesant:
Bransned;
ifeltavt xled:

sine |
foeiisG, elagrinlngsios) zlemnidilrs
Pritteciiec-llisdblsceint piveaiiavig
H

TR0 L "N 15 amgTy

{. eoTgLa Teg Py vsts”

P“z“m;"h
ifiziczul
loriie, veaddel; N Qe
fer{iny, vomel; j<iac; Jwey
wameea] £35S igiz
tavtieingg be8; tong
pumenta{iFI5IP0 7 A9L103] ¢ @1
fRimumsBity | wasddeliy breaks |

b prucing conazon (wilt frazhoid

¢
1€ pewsadl
b
togtied, anamml; L€M)
AT
Cor(fel, sumsd 38 fre)
Bmeea i1t}
wlaw |
oz (ot sumels felac {54}
sueeaiifiiivesitis
sumswisc{ina-iie=07 a{ii{3scti0],

ieey

i
Aftaumbilil | e wlf Drwaky §

- pripig clngiRT (ol e oS

H
S04 aranng

forpletyielar; (w43 Inihasd) {tinscii]

Tt fleaallnc} ase

- “peobisn® s nol ovig probram®

s "R sdzrolem T onis Shaok®

£ “protiem®
ot “protientt o biter sutprabiem ™

Sel Whreshokd™ e Tos pruning veGe®

& grunieg of “traol prodiam”
TR 1y AT ompxy

agiit=inirwad;ii};

b ‘protéent® from Tslack”

wire stop = iy
I
i

princlitottims Linsle » Wdin=, 2ujy
kS

®

{a) Quick sort; (b) Branch & Bound.

1t1

in input, each split phase generates two subproblems
with nearly the same associated work, leading to a
well balanced tree computation that fit the process
structure of the paradigm.

Loy 2NPR T
4 1 1 \ :
i k] r 1 i 1] i 1 N
yoN. b Yooy YN
,\;;;/:m:z: ; are pind @@rw» M-

b NI —

{a)

pros Lrae nods:
dapth mix = logd [NFRGD)
1f root neds than
dapth = 1
<prelegus?
<inftialize "preslam™ to "inictial problen's
alns
recv depth foom parant
zecy “problen from parsnt
andif
L depth < 4
faplit "g
BPAWR & _BEd
zand depthel to a_son
sand "a subproblen” e o son
zpawn other son

pth max then

aand dept.h&-l— ta athan son
sand “cthex subproblem” ©o othar eon
Tagvw "a subrssult’ from s som
racy “obhwr sthresult® from obhar son
ioln Tzesuln

ESET
<Lres fLraverzals

andlf

3¢ root node Lhan
Tepiloaguey
alsa
#and “geault” Lo parent
mpdi £
sish proc

)

Figure 2: The tree computation paradigm: {a) com-
munication graph; {(b) pseude code of a tres node pro-
Cess.

Conversely, in the branch-and-bound case the split
phase is quite cheap, whereas the subproblems gen-
erated might correspond io very diflerent amount of
work owing to the presence of a pruning strategy to
reduce the search space. This time, the processor farm
paradigm appears to be best suiled, since on one hand
splitting subproblems sequentially does not represent
a significant penally, and, on the other, il is quite easy
to embed a load balance policy in the conrdinator that
can keep workers busy most of the time. Tinally, in
branch-and-bound, pruning is partly performed on the
basis of a global value (the current optimum) that is

112

kept updated and made available to all workers. In
the processor farm paradigm, this can be guaranteed
if the coordinator collects local optima from workers,
and returns them the updated values of the global op-
fimum.

Before closing this section, we briefly discuss how
the two problems are actually parallelized using the
paradigms shown in fig. 2 and 3. In a paradigm-
oriented methodology, parallelizalion corresponds to
fleshing the skeleton of the chosen paradigm with
problem-dependent sequential code. In the two cases
considered, most of this code can be extracted from
the original code shown in figures 1a and 1b, and in-
sarfed inlo the paradigm skeleton.

conrdingiorn

pres coordlnazer:
<prologues
Cipitiallte
<ipltialize
<ipitialiye
Fapeat
<bzdy ol repest>
untll <ztack” 13 smpiy> or dapth of “atack® ew HEROO-]
1f dapth of “snack® 1= O tham
spawn worksr{l]
swnd “prologus glabsl detat te waskar(i]
#end “ihreabold” €o scikerll}
send *problem? Lo worksyil]
for i=2 e MRROC
appen worknril]
aand “prolog globtel dava” to workszii]
aand “thrssheld® <o workeril}
pop “subpsshlen” fres atack
send "eubiprodlas® to werzkaril]
nodfor
Tepnal
zemy loeal bhrsahald fros s workey
if local thrasbald < “threshsld® thaen
Tthresbold® & lagal rhreshold
aand “rbrashald’ 2 =all worksis
wntil wll worksrs ldis
wndif
“epilogyss

and pros

Tehreahody
"problem” Lo CInltisl probiemvs
“araak

proc workez:
reov "prologus glohsl dazs® from coar
raav "ihreshald” from ooy
Fmavw “prebles” from zasr

<initfalize “stacko>
nlter = &
ZAEpmat
Y “hody of repeasil.
{c whan <asz “threshold" iz “twat pruning value~s
do wond "thrsahold o coor»
niterde

1f plrer wultiple af YREYG thean
non bBloaklsg rece “thoeshald* from coor
until < shack” iz aepiys
aand idla Lo coor
and proc

tFigure 3: The processor farm paradigm: {a) commu-
nication graph; {b) psendo code of the coordinator
process; (¢) pseudo code of the worker process.

Almost no change to the skeleton and to the se-
quential code to be inserted is required to generate the
final parallel version of the quicksort algorithm. The
only modifications concern operations such as recv
"problem” from partent, which must be expanded
in several simpler communications to cope with the

niter = 0
repeat
<body of repeat,
when <set "thresheld” to "test pruping valoe"s

nitar=g;
stopwdr
whilelistap)
{

branch=3;

do saend “"threshold to coor>
nitez++

sand {threabold mogru , coor $d);
I

e BE Diter multdple 0F FREQ ERGI] i e e e e

non_blocking recy “thrasheld" from easc
until <"stack” is y> o

(a)

nitartd;

AF QIBLCORSEREQ)) { e
R o Gl AU T S Z T T T diddr Idy7U0T
Lf (val <zu) zu w val;

)

(b)

Figure 4: Skeleton instantiation for the worker process: (a) pseudo code; (b} final code.

structured nature of the problem description.

Similar considerations can be repeated with respect
to the instantiation of the processor farm paradigm
to the branch-and-bound algorithm of figure b, For
instance, in the worker pseudo code, the when clause
specifies that sequential code representing the body of
the cycle must be modified so that a particular action
takes place every time the “threshold” is set to “fest
pruning value”. Figure 4b shows the final generated
code and how it corresponds to the template (fig. 4a)
contained in the paradigm skeleton of figure 3.

4 Paradigm selection through program

comprehension

We examine now in greater detail the paradigm-
oriented parallelization process cutlined above to bet-
ter understand how the PP selection phase could be
performed automatically. We focus our attention here
on the selection phase, postponing the analysis of the
parallel code generation phase to next section.

In the examples presented, a first paradigm selec-
tion was performed after having recognized that both
algorithms follow a particular pattern that is gener-
ally referred to as iterative divide-and-conquer. The
features that identify this algorithmic pattern concern
the way some abstract functions (split problem, push
a subproblem onto stack, pop problem from stack, set
current problem to other subproblem, etc.) are related
and organized into a specific control structure.

Note that with the term “control structure”, we
cannot merely intend a particular composition of el-
ementary constructs such as while, il-then-clse, etc.,
but we have to give this term a more abstract and
general meaning. For instance, every way to assern-
ble the basic abstract functions making up the divide-
and-conquer pattern, that can be proved equivalent
to the one shown in figure 5, gives rise to a concrete
divide-and-conquer algorithm. In other words, on one
hand this notion of control structure should be inde-
pendent fo some extent of the specific control con-
structs chosen to implement it. On the other hand,
this notion cannot be reduced to just structural prop-
erties of control-flow only, but it heavily depends on
the existence of specific relations between the abstract
functions making up the pattern and conditions in the

113

control structure connecting thern.

A similar situation has been encountered when we
had ¢ refine paradigm selection on the basis of the
complexity of the split phase and of the presence of
a pruning condition. In these sttuations too, what we
have to do is to recognize that code implementing spe-
cific functions is present, and this code is characterized
by a particular combination of functions and control.

From these considerations it is apparent that, in the
general case, we have to recognize a mix of abstract
{unctions and control structure in order to know that
a given parallel paradigm can be applied for effective
parallelization. While this kind of abstract structure
cannot be formally defined once and for all, we will
use in the following the term parallelizable alyorith-
mic pailern (PAP) for referring to the set of algorith-
mic properties characterizing a group of concrete al-
gorithms as parallelizable according to some common
parallel paradigm.

Assuming now that a set of PAPs and associated
PPs are given, the automatization of the paradigm
selection phase basically requires:

e choosing a representation for the sequential pro-
gram to be analyzed;

e choosing a representation for the PAPs to be
searched in the input program;

¢ defining an eflective recognition procedure.

Actually, the problem of recognizing algorithmic
patterns is a kind of program recognition, that is the
process of discovering abstract concepts in the input
code and assigning them to their realizations within
the code itself. This problem has been studied, for
instance, in the context of reverse engineering to (par-
tially) autornatize maintenance and reuse of sequen-
tial software [11]. In its general form, the problem
does not seem completely automatable, because recog-
nition of human-oriented concepts embedded into the
code appears to use informal, inherently ambiguous
tokens and relies heavily on a priori knowledge from
the specific problem domain {2].

However, if only programming-oriented concepts,
such as searches, sorts, structure transformations, nu-
merical integration, etc., have to be recognized, a more

winfcialize "atack” to emplys
winitialize "problem® te "i{nitisi problem®>
Tapazt
Af «<"prokbiom®
<split "problemn>
<push "a subprobles” onto "fhack™s
<snt "probkles” to “ather subproblemts
alea
<zolve “problem™>
LEf < stack™ i3 not empty> than
<pop "problem™ from “stack">
andif
andlf
unbil f7stack” Iz esptys

is not "oriviel problas”> then

Figure 5: PAP of iterative divide-and-conguer.

pragmalic, automatable approach may be ndopted.
Yor instance, in [8, 9}, program understanding is

viewed as 2 parsing process that looks lor specific sig-
natures ra,p‘;eaerzt;zag, concepts in the targel program,
The recognizer program uses a finile set of patiern
Lem g‘htes {called clichés in {99) that identify the con-
cept signatures in A parsing [Er{)‘:'f”’s‘b in which the less
absirach concepls are recognized first, and then they
become features of larger-grained composite concepis,

in our opinion, from this previous work on auto-
malbed program understanding, it s quile apparent
that PAPs can in all respecis be considered as opdi-
nary clichés. More specifically they should be viewed
as clichés at a specific abstraction level, that can be as-
socinied to one or more parallelization strategies {ie.
what we called parallel paradigms). Techniques like
these reported in the papers just cited can therefore
be mtegrated into a parallelization tool Lo mplement
the paradigm selection phase.

While details on how this tool could be actysily
arganized will be discussed helow, belore closing this
tion we would point oul o property of the pars.
ing approach (o program recognition thaf i.zzfixs ol
b be very useful for our purposes. Given a program
and a library of elichés ribing functicns and con-
cepts ot several abstraction levels, the parsing process
can find all ocourrences of the clichds 1n the program
and build a hierarchical description of the program in
tarms of the clichés found and the relationships he-
twesn them. The recognizer can therslore produce
a hiernrchical description of the program design with
links from recognized concepts to their actual imple-

mentations within the code.

This kind of cutput can then be used during the
code generation phase to selectively retrieve sequential
code wamuw; and integrate them into the templale
of the selected PP. More importantly, if code segments
Liave to be transformed or partially substituted durmg
the {parallel) code generation phase, thanks to the hi-
erarchical description, code manipulation can be per-
formed in a controlled way af different abstraction lev-
els, and information about the funciions implemented
by any particular piece of code can be easily nccessed.

5 Automated PAPs recognition

code generation

Figure § shows how can be siructured a teol that
automatically perform code parallelization according

and

114

Program text
Structurat
i enalysls
frstar
program
roprasantadon
Cliche | Y PAP g5
Databasel Aeeognizer = Dptabase
hisrarchical splactsd
s PFGGIAM ‘j *"L" paradigm
e, a3 etiption dessription
N
pe w«-ww‘\ Paralle! Code
e B LT e
Databaae
Farsllel code
Figure 6 Parallelizer architecture.
o

to the paradigm-oriented approach outlined in previ-
ous socilons,

The input program is first translated into o suitable
intermediate representation. During tlus preliminary
phase, control flow, data-flow and data-dependence
analysis are performed and a number of normalizing
transformations are applied to the program so that
subsequent steps can be made independent of details
such as the programming language, the specific control
constructs nsed, ete

The nlerme idiv representation is then analyzed
by a PAP recognizer zzaaplunmmug 4 parsing pro-
cess that should not %u?"ﬂsizm tially differ from that
described for instapce in [4], even though structures
other than plans and at teribited fow graphs could be
used 1o represent progeams and ciich{b, respectively,
Thiz is represented in the Hgure by the access to a
cliché database.

There is an importa
the PAP recognizer an

at difference, however, between
and a1 general-purposs recognizer
stch s that prese”;ioré {9] In ocur case, when &

clické representing a }aml!e]izabl{: patiern 1z found,
we can exploit information associated to the corres
sponding paradigm{s} to conirol subsequeni steps of
the recognition process. For insiance, if we are analyz-
g the branch-and-bound program of figure 1b, aller
the iterative divide-and-conquer PAP of figure 5 has
been Identified, we know that two different PPs can be
chosen to perform parallelization. We then {ry to find
out if the spiit phase is cheap or expensive, or if some
pruning condition is contained in the code {or both},
in order to decide which paradigm is best suited for
the concrete program given in input,

To exploil informalion associated to paradigms, a
PP database has been added to the parallelization
tool. Clichés corresponding to PAPs are marked and
linked to the contents of the PP database. The latter
contaius a proper description of paradigms properties
that could turn out to be useful during the recognition
phase. Tor instance, PP descriptions could contain
links to other PPs and to other clichés in the cliché

database representing, respectively, related (e.g. sim-
ilar} PPs and algorithmic properties that might affect
the choice and the application of & paradigm.

It is worth noting that the PP database behaves
like a sort of conirol input with respect to the PAP
recognizer. That reduces the complexity of the pars-
ing process during the search towards identification of

... those clichés that represent.meaningful patterns.with ...

respect to parallelization,

.. ke second phase of the parallelization process to,

be automatized 1s parallel code generation. This is
performed by a code generator that receives in input
a description of the selected paradigm and the hierar-
chical description of the input program.

‘The code generator builds the cutput parallel pro-
gram starting from a parellef skeleton {PS} of the so-
lected paradigm. A parallel skeleton is a geperic im-
plementation of a PP that needs to be instantinied
to a concrete parailel algorithm in order to become
an executable program. Instantiation of PSs consists
of extracting, from the original input, those code seg-
ments corresponding to parts of the skeleton that have
been left generic.

As we have observed in section 3, in some cases
this would require a certain degree of code transfor-
mation to integrate sequential code in a parallel, dis-
tributed memory framework. Once more, it is appar-
ent the importance of exploiting paradigm information
during the recognition process. Indeed, if some skele-
ten requires nontrivial transformations for sequential
code integration, such as that reported in fig. 4, the
corresponding information can be easily added te the
paradigm description stored in the PP database. This
information may help the recognizer to identify just
those particular concepls that are needed to correctly
perform the mentioned transformations.

As we have pointed out al the end of the preceding
section, also the hierarchical description produced by
the recognizer turns out to be particularly useful in
the code generation phase.

6 Concluding remarks

In this paper we have proposed a novel approach
to automated parallelization of sequential code, based
on program comprehension. The approach tries to ay-
tomatize a recently proposed parallelization method-
ology based on programming paradigms for building
a parallel version of & given algorithm. We have dis
cussed how this paradigm-oriented approach could be
automatized and sketched the general structure of a
tool based on these ideas.

While this paper chiefly deals with the paradigm
selection phase, we are engaged in a research effort
not restricted to this issue. In particular, we are
working for characterizing the performance of parallel
paradigms parametrically with respect to the underly-
ing physical machine. This would provide, during the
recognition phase, further criteria for paradigm selec-
tion taking into account performance. We are also
exploring methods for implementing parallel skeletons
with portable communication libraries, in order to
make both the parallelizer and the generated code
largely independent of a particular architecture.

115

Next step in our research will be the implemen-
tation of a working prototype thalt demonstrates the
feasibility of the proposed approach. A first attempt
in this direction has been the implementation in Pro-
log of a partial recognizer targeted to deal with sev-
eral variations of the iterative divide-and-conquer al-
gorithmic pattern. Even though this preliminary tool
lacked -any generality, it-helped us-to clarify the con-
cepts of parallelizable algorithmic pattern and paral-

«-1el paradigm, and provided several insight on the code oo oo
- generation phase.

References
[1] W.C. Athas and C.L. Seitz, “Multicomputers:
Message-Passing Concurrent Computers”™ JEEE
Compuler, 21, pp. 24, Aug, 1688,

T.J. Biggerstaff, “The Concepi Assignment
Problem in Program Understanding”, Procs.

IEEE Working Cenf. on Reverse Engineering,
May 21-23, Baltimore, Maryland, USA, 1093,

P. Brinch Hansen, "Model programs for com-
putational science: a programming methodology
for multicomputers”, Concurrency: Practice and
Ezperience, 5(5), pp. 407423, Aug. 1993,

M.I Cole, Algorithmic Skeletons: Struclured
Management of Parallel Computation, MIT
Press, Cambridge, MA, 1989,

M. Danelutto et al., “High level language con-

structs for massively parallel computing”, in
Computing and Information Secience, IV, Else-
vier, October 1991,

F. Darema et al., “A single-program-multiple-
data computational model
for EPEX/FORTRAN", Parallel Computing, 7,
pp. 11-24, 1088,

G.C. Fox et al., Selving Problems on Concurrent
Processars, Prentice Hall, Englewood Cliffs, NJ,
1988,

M.T. Harandi and J.Q. Ning, “Knowledge-Based
Program Analysis”, IFEFE Software, Jan. 1990.

L.M. Wills, “Automated Program Recognition:
a Feasibility Demonstration™, Ariificial Intell-
gence, 45, 1990,

M.E. Wolf and M.S. Lam, “A Loop Transfor-
mation Theory and an Algorithm to Maximize
Parallelism™, JEEE Trans. on Parallel and dis-
tribuled Systems, 2(4), pp. 452-471, Oct. 1991.

(11] Procs. JEEE second Workshop on Program Com-
prehension, July 8-9, Capri, ltaly, 1993,

[10]

(12] H. Zima and B. Chapman, Supercompilers for
Parallel and Vecior Computers, ACM Press, New
York, NY, 1990.

Issues in Visualization for the Comprehension of Parallel Programs

Edeen Wraemer and John T, Stasko

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280
E-mail: {stasko,eileen}@ce.gatech.edu

Abstract

Faralicl and distibuied compulers are becoming
more widely used. Thus, the comprehension of par
allel programs 15 mcreasingly importan!. Understand-
ing parallel programs s more chollenging than un-
derstending seripl programs becouse of the lssues of
concurrency, scale, commumealions, shared resources,
and shared state, To this article, we argue that the use
of visualizalions and anonalions of programs con be
an mualuable asset lo progrom comprehension. We
present example problems and visualizotions, showing
how graphical displeys can assist program undersiand-
ing. We also deseribe the Avimation Choreographer,
a fool that helps programmers bibler comprehond e
femporal characlorsiies of their programs.

1 Inirodurction

The comprehension of a program or iis design is
an important component of the coding, debugging,
matntaining, testing, and reuse of software, Mainte-
nance, in particular, is an expensive and difficult pro-
cess, This difficulty is exacerbated by the fact that the
mainbainer is generally not the avibor, and that writ-
ten docminentation inay be out of date, incomplete, or
nolexisient.

A munber of models, techniques, program represen-
tations, and Lools have been developed to address the
problems of program comprehension. In the top-down
ar problem-driven model[d], program comprehension
is achieved through the formation, confinnation, re-
jection, and refinement of expeciations of domain con-
cepis. The user may search for confirming beacons [1]
of these expectations. This method is thought to be
common among expert programmers or if the code or

“This rescarch has been supporied in part by a grant from
the National Science Foundation {CCR9121607) and o graduate
fellowship from the Intel Corporation.

0-B186-6647-6/84 $04.00 © 1894 IEEE

118

iype of code Is familiar. In the boliome-up or code-
driven model[23], comprehension is achieved through
the detection of patterns or plans in the program code,
This approach is common when the code is completely
new to the programmer. In practive, comprehension
may proceed top-down, bottom-up or a combinaiion
of the two.

Al tools for program comprehension must perform
three tasks: exdroction or data collection, abstraciion
or analysis, and presentation or display of the result
of the analysis, Varicus tools employ different meth-
ods for extraction, absiraction, and presentation, and
place varying emphasis on the importance of each of
these tasks. The result produced by these tools varies
widely, from written documents, through intermediate
forms passed on to CASE tools or code generators, to
databases that may be browsed or queried, to static
and/or dynamic visualizations of the program. Some
of these tools produce predefined sets of reports or dis-
plays or furnish answers to fixed sets of queries, others
allow the analyst to interactively select the analysis io
be performed or the information to be displayed.

For example, TIBER{described in [22]) and Syu-
chronized Refinement{21] focus on producing im-
proved documentation. Charon[22] produces an inter-
mediate result that can be passed on to a CASE tool,
Ghinsu[15] allows the analyst to interactively explore
the program, select targel statements and variables,
and perform analysis such as slicing, dicing, ripple
analysis, and dependence analysis, DOCKET[1] cre-
ates a systern model that may be interactively queried
or browsed by the analyst.

A number of graphical representations of program
information have been proposed. These graphical rep-
resantations may be used internally fo calculale results
such as program slices or data flow information, or
they may serve as the basis for displays that are pre-
sented to the analyst. See [7], {17], (8], and [9] for a
more detailed discussion of program graph types, Use
of these combined program representations allows a
program comprehension tool o reference a single in-

ternal representation, yel construct a variety of views,
thus allowing the analyst to gain a better understand-
ing of the program.

Systems such as CARE[14], VAPS[4], and
VIFOR/[20] visualize program dependencies, VAPS
displays include a control flow graph, declaration and
nesting trees, and a structure chart. VIFOR uses a

“two-column entity-relationship dispiay. CARE uses
& similar model, but presents a mulii-column, colon-

these issues.

comprehension problem: the comprehension of paral-
lel and distributed programs. We will discuss the role
that visualization can play in facilitating their under-
standing. We will point cut some of the issues that
arise in the comprehension and visualization of paral-
lel programs, and present our approach to addressing

"nade display in addition to the traditional call-graph

display. PUNDITI[I6] combines statically collected se-
mantic information with debugging capabilities, and
provides both graphical and textual displays. Graphi-
cal displays include a dynamiccall graph, an animated
conirol flow graph, and dala structure displays,

Other types of software visualization[26, 19] sys-
tems including BALSA[Z], Zeus[3], and TANGO[24]
focus an algorithm animation; they support the user
in the design of arbitrary visualizations. The graph-
ical displays described in preceding paragraphs, and
those constructed using other visualization tools, can
be much more intuitive and effective than textual rep-
resentations, and thus can aid the analyst in assimi-
lating the information produced by the program com-
prehension tool. These displays are most useful when
they closely match the mental model[18] that the pro-
gratrnmer/analyst forms through the process of pro-
gramn comprehension. The presentation of muliiple
views, and a facility that allows the viewer to hide,
rearrange, or interact with objects in the display, ali
assist the analyst in achieving this match, and thus
facilitate the comprehension of the progran.

Thus, the role of visualization in program compre-
hension is that of facilitator. Visualization can help
the analyst develop infuition about the functioning
of the program under study. This intuition can help
the “top-down” analyst form reasonable expectations
about the program. The underlying program com-
prehension analysis tools can exiract the information
and perform some analysis or abstraction. Visualiza-
tion can then present this information in such a way
that the analyst will easily recognize its importance
with regard to the expectation.

Similarly, visualization can help the “bottom-up”
analyst proceed in an efficient manner. For example,
by viewing an animated call graph of the program un-
der study, the analyst can observe the order and fre-
quency of execulion of the various subroutines, and
use this information to decide the order in which to
study these pieces of code.

In the remainder of this paper, we will focus on
a relatively new and extremely challenging program

117

allel programs

The introduction of parallelism adds an additional
twist to the model of program comprehension. Paral-
lel programs are by nature large and complex. They
cften produce vast quantities of data. Programmers
must understand and analyze large amounts of in-
formation describing complex relationships, including
the states of each process and interactions among pro-
cesses. Interactions include communication, synchro-
nization, access to shared variables, and competition
for shared resources. In addition to the control and
data dependences, and control flow and data flow in-
formation that is essential to the understanding of a
serial program, the user must address the added com-
plexity of concurrency. The analysi now has addi-
tional questions {o answer: Which pieces of code may
execute concurrently? What type of synchronization
must vccur between these concurrent threads or pro-
cesses? Are there any race conditions? Where and
how is data shared? The analyst must decipher not
only the portions of the code directly related to the
purpose of the program, but also must wade through
the code that creates and synchronizes processes, al-
locates tasks, makes intermediate results available to
other processes, serializes access to shared memory,
and determines some type of global state such as a
termination condition.

Furthermore, performance is the primary motivat-
ing factor for the creation of parallel programs. Design
decisions often hinge on obtaining the best possible
performance on a particular architecture, rather than
on producing a straightforward implementation of the
underlying algorithm. Subsequent poris to other ma-
chines and additional “tweaking” {adjustment) can
further obscure the original design.

We believe that visualization can assist the user in
grasping the concurrency of the program, in manag-
ing the large number of objects, in understanding the
interactions, and in analyzing the data describing the
program’s execution. We know that two-dimensional
displays of information, such as bar charts and graphs,

2 Issues in the ccm?réhension of par- -

give viewers insight into the data presented[28, 29].
{iraphical animation can provide additional insight
and allow the viewer to absorl more information by
tapping into our well-developed visnal abilities for de-
tecting patierns, for tracking woving objects, and for
spotiing anomalies in patterns.

Visualization 1s a rich medium for comunicat-
ing information ahout a program and s execution,
That is, it allows program atiributes to be repre-
sented by colors,

shapes, sizes, locations, and mo-

tion, rather than merely as a text label and numer-
ival data, Whens done well, visualization can huprove
understanding, and make obvious details that would
bave been obscure tn a0 purely textual
These

presentation.
“nformation-dense” displays can convey much
more nformation than strictly necessary 1o confirm
or reject a livpobhesis. They can supply these answers
aned provide intuition abont why the hypothesis i false
ur suggest additional refinement Lo the viewer.

Why is visualization superior to text for reprosent-
ing wany aspects of parallel programs? Texvual pre-
sentations are inherently serial. As stated carlier, dis-
plavs are most useful when they closely mateh the
viewer’s mental mode]l of the computalion. A serial,
texiual presentation of program information is diffi-
cutt enough to follow for the programmer who wrole
the code and whe thus should have a fairly well-
putablished mental model of in the

C the concurrency

prograns, and whe has only to map the text back io
this model. The reverse process, required of the ana-
ivat who must comprebend unfamiliar code, the ron-

»f: uction ol a me iimi iam(im &32 Ais concurrent process
eult. An animated, graphical display can more cas
vouvey the concurrency of the program, and ¢
uaturally deal with

ErAING,

nore

a0
the ic*;n;mml issues of paraliel pro-

For exarsple, suppose we are dealing with a pro-

gram confalning barrier synchronizations. The “mas-
ter” process must check in to the barrier before any

mslave” process may ;)r(}('f'={'=d past its “barrier check-
in” statemnent. All “siave” processes must check vut of
the harrier belore ﬂ'ae “master” process may proceed
past its “barrier checkeout”™ statement. o the visual-
ization shown in Pigure 1, & new two row grid is dis-
played each thine a barrier synchrenization s lnveked.
As each participaling process checks in to the barrier,
the apprepriate circle in the top row is filled in, If the
process must wait, its coler fades to indicate that it is
inactive. When the master checks in, the processes are
shiown as active again. Sumilarly, as each participat-
ing process checks out of the barrier, the appropriate

118

circle in the second row is filled in. If the master has
io wailt, it is shown going inactive, When the final
slave process chiecks in, the master process is shown
as active again.

Suppose, in cur example, that the analyst knows
that a barrier synchronization is in use. Do all pro-
cesses partieipate in the barrier? 1 not all, then which
ones? Which processes have to wait? Which processes
keep the others waiting? An analyst might have to
wade through a good deal of text or make a number
of gueries to answer this gquestion. However, a quick
glance at a display such as that shown in Figure 1 can
answer these guestions,

Similarly, an analyst ai*f‘mpiingx 1o understand the
pattern of access Lo a shared variable could easily ob-
serve this from the display o Figure 20 In this dis-
play, the large cirele represents a “mutex” - a critieal
section of code protecied by a mutual exclusion vari-
able. When a process obialns control of the mtex
aariable, its iron{a colored circle} is
the circle.

shown enfering
that are waiting fo gain access
to that mutex are shown walling cutside the cirdle. Is
there contention for this variable?

Processes

That is, are there
many icons waiting around the cirele? How rauch thne
does a process spend inside the mutex relative to the
time it spent waiting? This type of display would be
useful in understanding design decisions such as the
use of a distribuied list rather than o centralized lsi,
The analyst who must port this code to a new archi-
tecture can then make a more Informed decision about
whether to keep the distributed list or go to a central-
zed list in the new architecture,

(3f course, this same information could be provided
without visuaiization by an “ideal” program compre-
hension toel - a tool that could answer guestions lke
“Why is there a barrier synchronization at this point?”
or “1T 1 add a rontine that accesses data structure X, do
I now need to enforee mubual exelusion on X77 Insuch
a world, visualization would uot be necessary. How-
ever, until the time that program comprehension tools
have advanced to this state, visualizalion can serve the
useful purpose of providing a rich medium for convey-
ing information - information regarding data and con-
trol dependences and flow as in $he serial world, and
information regarding concurrency, distributed state,
and shared variables in the parallel world,

Anlmated displays, in particular, are useful {or con-
veying information r{*gﬂ,rdiug concurrency. They em-
ploy the very natural mapping of time to time, rather
%..}mn the less natural time to space mapping, or the
more obscure time to 12-digit timestamp value of a

textual repert. Events that were concurrent in the

program can be shown as concurrent in the display.
In fact, events that might have been concurrent can be
shown concurrently in the display. This leads us to a
discussion of the importance of time and event order
in the visualization of parallel programs.

.3 . Time and event order in the visual-

wocization.of parallel programs

A number of systems providing visualizations of
coneurrent programs have been developed{10]. How-
ever, not all visualizalion systems are designed to
deal with concurrency. Many follow a serial paradigm
in wiich the visualization syslem receives some data
from the executing prograni, animates the display to
represent that event, and then processes another event
(piece of data). Unfortunately, we then lose the con-
currency inherent in the program.

The POLKA[25] animation system that we use to
develop visualizations can support concurrent anima-
tions actions, however. POLKA allows designers to
create graphical objects such as lnes, text, circles,
rectangles, etc., and then make the objects move, re-
size, change color, flash, and so on. A particular object
can be performing many different actions at once, or
multiple objects can be changing at the same time,
thus reflecting the concurrency of a parallel program.
POLIKA is implemenied on top of the X Window Sys-
term and Motif.

Cencurrent programs often consist of logical phases
or rounds. The exccution of these rounds or phases
mizy be skewed 1 time across processors with different
workloads or speeds. If valid timestamps are available,
the user inay wish to view the computation with the
events ordered as they actually oecurred. However,
the calculation of a complete ordering on program
events may nob be possible - clocks may run at dif-
ferent rates, may have insullicient resolution, or may
not be synchronized across processors, Techniques ex-
ist to minimize this problem, but they do not eliminate
it and they often incur substantial overhiead. Synchro-
nization events - message sends and receives, barrier
synchronization, serialized access to shared variables -
can be used to calculate a partial ordering of events.
Within the consiraints of partial ordering, a number
of feasible orderings exist. Visualizations that adhere
to different feasible orderings can give the viewer dif-
ferent perspectives on the computation.

Several authors{27], [13], and {6}, have emphasized
the value of displaying alternate orderings of a pro-
gram’s execution. To truly comprehend a parallel pro-

gram, the analyst must understand what these various
orderings are and how they can affect the program
under study. Of course, the many combinations of
possible event orders makes it unmanageable to gen-
erate and display every feasible ordering. Instead, we
utilize an Animation Choreographer{11] that provides
several useful, canonical orderings, based on the syn-
chronization events produced by the program under

“giidy. i addition; the Choreographer allows the-user

) tﬁ':ipigrgct_%ve[y--;adjust-t:hes& to produce any additional
Cordetings. e

118

POLKA and the Animation Choreographer are
part of the PARADE (PARallel Animation Develop-
ment Environment} system for the visualization of
concurrent programs. A third component is an instru-
mentation or monitoring tool. The use of the instru-
mentation or monitoring tool, which varies between
architectures and languages, helps identify the event
records for a program.

Using POLKA, libraries of visualizations have been
developed - synchronization, history, and callgraph
views for Pihreads programs on the KSR{as shown
in Figures 1 and 2}, 3-D visualizations of communi-
cation on the MasPar, algorithmic and performance
views of branch and bound algorithms in the iPSC
hiypercube, as well as a number of application-specific
visualizations. Using PARADE, programmers may se-
fect visualizations from libraries such as these, or they
may create their own new visualizations.

The Animation Choreographer allows the analyst
to view pragram visualizations under a variety of or-
derings. As an example we will discuss a program
that performs a parallel quicksort on an array of nu-
meric values. The parallel execution follows a fork-join
paradigm, implementing a tree-structured algorithm,
That is, the computation begins with a single proces-
sor that reads in the data values to be sorted, and then
makes a pass over the data in which it delermines a
median value and places all elements with values less
than or equal to the median value on one side of the
array, and all values greater than the median value
on the other side of the array. It then forks off two
child processes and waits for them to finish their work
and join back to it, the parent process. Each of the
child processes does the same thing to its portion of
the array and forks off child processes of its own. This
continues recursively.

The analyst attempting to comprehend the pro-
gram might want to look at some of the same displays
that are helpful with serial programs such as depen-
dence graphs and animated call graphs. In addition,
he might like to see application-specific or domain-

specific (in this case, we'll consider sorting as the do-
main) displays such as those shown in Bgures 3, 4 and
$ through 11.

Figures 3 and 4 are an animated view of the array.
Lach bar represents an element in the array (it conld
also represent a group of elements). The height of the
bar indicates the value of the element, and the horl-
zontal pusition indicates its index iu the array. Color
Is used to show the processor that last touched thet
element, This use of color allows the viewer io easily
detect and follow the artions of a particular PTOCESSGT
across mindtiple displays. AL the siar of
lzalion, the bars are arranged to represent th
nasorted array.

the visgal-
e initial,
As eletents are swapped in the algo-
rithio the bars are shown changing places in the dis.
play. From this display the viewer can observe the or
der in which elements are swapped, and see which pro-
vessors act on each portion of the array, giving clues
Lo the functioning of the underlying algorithm.
Fignres 9 through 11 are animated swap histories of
the parallel quicksort program. Again, horizontal po-
sition is used Lo indicate array index and eolor s used
to indicate the processor performing the swap, Fach
time two elements are swapped, a horizontal line is
drawn between them, in the color assaciated with the
processor that performed the swap,
stay, Thus, i

Fire vuns o ;mmd
i asequence of swaps, the o
recent swap is on top. The trianguiar patierns in the
display indicate thal the algorithm works i Y Conpar
ing the provessor™s first and last elements in s s portion
of the array, and then working in toward the middie
of the subarray. The analyst can also determine Lhe
iinber of processors active al each stage (by count-
in

ey the {Iib

g the number of triangles in a row), and the depth
10 ﬁ:i‘iiff%: the algorithim recurses in
counting the number of triangies In

this execution {by
a cohumn),

The order in which these swap events are dis
played can preatly affect the appearance of the dis
plays and the information that can be gained from
thern. The Animation Choreographer provides four
orderings: Adjusted Timesiamp, Seriol
ized, and Mazimum. Coneurvency, The Choreographer

Timestamp,

reads in event records {in this exaraple, each swap of

array elemenis has an associated event record). It then
displays an execution graph, an acyelic, directed graph
in which the nodes represent the recorded program
events, and the arcs indicate Lhe temporal precedence
relations Letween these events. The events produced
by a particular process or thread are displayed in a
column. Ares E;etwrm these podes indicate the se-
quential relationship between the events of a single
provess. Ares between columns are the resull of YT~

120

chronization events such as forks, joins, or barrier SY D~
chronizations,

Processors {or threads, etc.) are arcanged from left
to right. Vertical position in the graph represents ex-
ecntion thme, with earlier tmes appearing above Jater
tirnes. Shape and color of node objects can be used to
identify different event types. The execution graph
reflecis the program events as they were recorded.
The user can examine the recorded events by serolling
through the graph, and by clicking on nodes of inter-
esth.,

To begin viewing a program trace, the user selects
an ordering. An initinl ordering choice might he 2
timestamp ordering - ihe execution times are used to
order the events for visualization. Figure 8 shows the
choreographer using events from
parallel quicksort and a timestamp ordering. This or-
dering is frequently very useful to & user wishing fo
see the actual order of execution, when such informa-
tion is avaitable. This method relies on the existence
of a global clock with adequate resolution, and will
produce an essentially sequential visualization under
these circumnstances. Poor resclution, or timestamps

appearance of the

that are not valid across pracessors, however, may pro-
duce visualizations thal are misleading or incorrect.

Figire 4 shows the final appearance of the array
view when tin 'f’:é(ii%li;)ii are used to determine the or-
der of events, As you can see, this does not appear to
be a sr}f.sr!.f*d array. 1o faet, there seem fo be “holes”
i the array, An examiuation of event records reveals
that there are duplicate thmestamps - the clock used
was not of adequate resolution. The overlapping event
symbols in the Choreographer display of flgure H oare a
resull of these duplicate timestamps. In 2 timesiamn
ordered visualization, all events with the same times.
Lamp are animated concurrently. In this case, swaps
that occurred sequentially are animated concurrently
becanse they received the same ii{usst:msp. If o given
clement is involved in multiple swaps with the same
timestainp, its final location is not correct, and it iy
seetnt Lo “disappear,” resulting in a misleading visual-
ization. Similarly, figure 9 shows the final appearance
of the swap history view using a timestamp ordering,
There appear to be very few swaps. Agaln, this is
a misleading display resulting from inadequate clock
resolution.

Within titnestamp ordering we have several choices
for scaling. We can use a 1:1 mapping from timestamp
units to animation frames. However, this can result in
an anlmation with long periods of inactivity, punctu-
ated by short bursts of activity too rapid for the viewer
to comnprehend. Another option is to use an 7l majp-

ping from timestamp units to animation frames. This
shortens the spans in which nothing happens, but in-
tensifies the short bursts of activity. A third option is
to use the timestamps to order the events for visualiza-
tion, but to ignore therm In determining the interevent
walting time. This eliminates the long waits, and al

“lows the event-activity to be-visnalized-atw-rate-the -

viewer can understand. However, in this type of scal-

g we lose Tnformation abodt thevelasive tindhig ol

the program events. ideally, it would be desirable for
the mapping from execution time to animation time to
behave ke a “fun-house mirror.” That s, we would
like to compress long infer-event ithmes, and stretch
oui periods of high activity, allowing viewers 1o dis-
crisninate between individual events, but preserving a
perspective on the actual tining of events,

The choreographer display under an edjusied {ines-
famyp ordering, shown in Figure 7, represents a com
promise on these goals. In this ordering the times-
tamps are adjusted just enough so that causal ordering
is mainlained (the displays are “correct”™), but leng in-
terevent times are unaffected, This ordering is uselul
in obtaining a valid visualization without losing the
perspective on the true sporadic nature of the pro-
pram’s execution behavior. The use of this ordering
resubts I a “correct” fnal appearance of the array
display, in which the elements are truly sorled, and &
“correct” swap history view, in which no element is
swipped more than once in any time period.

Figure 6 shows the choreograplier under a serial or-
dering. For a serial ordering, we construct & complete
ordering of evenis consistent with the partial order de-
termined by the dependence relations. This methed
can produce valid, comprehensible visualizations in
the absence of globally synchronized timestamps with
adleguate resolution, such as we have in this exampie.
The array view is again “correct”™. The swap history
view appears as in figure 10, If you look closely you
will see that no two swap lines have the same vertical
position: the visualization has been completely seri-
alized. We have gained a “rorrect” ordering, but we
have lost the concurrency in the display. In addition,
we have eliminated the long interevent times.

Finally, we may wish to use a marimum concur-
rency ordering, as illustrated by the Choreographer
display of Figure 8. (For this particular set of events
and times, the maximum concurrency and adjusted
timestamp orderings are nearly identical - this is not
always the case.} In this ordering, we gather all evenis
that could have occurred together, and animate them
stmultaneously. Essentially, this view shows the max-
imurm concurrency possible given the partial order de-

~gigdalizationywE v fatind this ordering type to be oo

121

fined by the synchronization events. This ordering also
produces a correct array view. The final appearance of
the swap history view is shown in figure 11, it is cor-
rect, but you will notice that unlike the serial ordering
of figure [there are multiple swaps on the same line.
That is, they are visualized here and in the array view
as-concurrent-actions: - We get -correctiess-and con-
currency without the long interevent times. In other

useful for identifving bugs by Hluminating concurrent
situations that were not imagined by the program’s
designer.

These various temporal perspectives can provide
the aser with insight inte the program’s execution,
with each different ordering of the animation shedding
light on a different aspect of the computation. The
Animation Choreograplier allows users {o view pro-
gram animations under the orderings described above,
and to specify varlations on these orderings.

Conclusions

4

Yarallel and distributed prograins present a number
of challenges to program comprehension. The added
complexity introdoced by the multiple threads of con-
trol, the interactions between processes, the peeuliar-
ities of the varlous parallel programming paradigms
and libraries and the tendency to oplimize code for
a particular archiiecture exacerbate the problems of
program comprehension.

Visualization systems allow program atiributes to
Be represented by colors, shapes, sizes, locations, and
motion, rather than merely a text label and numeri-
cal data. When done well, visualization can improve
understanding, and make obvious details that would
have been obscure in a purely textual presentation.
We believe that computer visualization, the graphical
animation of the bebavior and performance of comput-
ers and computer programs, can be an effective tool
for understanding how programs work.

POLKA is an apimation toollil designed to sup-
port coneurrent animations. The Animation Chore-
ographer, which relies on POLKA, allows the viewer
to easily explore the set of alternate feasible orderings.
We believe that this ability to explore the set of pos-
sible event orders is essential to the comprehension of
parallel programs. We do not claim that visualization
will solve all the problems associated with the com-
plexity of paralle] programs. However, we do believe
that visualization provides a rich means of communi-
cating that can lead to better understanding of how
large systems work.

e e | e |elefelolo]e|® :

! 1 o 3 E] & & 4 3

Out oy
] I}

: 1 2z 5C B! 5= g 7 E
In

c s z 3 4 5 é 7 3
Ous

b 1 2 2 4 5) 7 3

Figure 1: A snapshot of the animated Githreads barriee Figure 20 A snapshot of the animated Gihreads inutex
display. created by Alex Zhiao using POLIKA. chispdav, created by Alex Zhiao using POLKA.

: .‘C_A'ILIS,W'. -{‘_m;!

- ko i i i - SRRV

R S

[ou]

Figure 3: A snapshot ol the array view of the parallel Figure 4: A snapshot of Lthe array view of the parallel
quicksort program under a correet ordering. quicksort program uikler the timestanyp ordering,

T arrmiors | tvoesies | wems

[+ % 3 ’

S -pRRNBSEEE--2] -

Figure 5: A portion of the exceution graph praduced
by the chorcographer. The events are frony a paralie]
aquick=ort progran. The ordering type is testamp,

- BB

‘ ﬂﬂﬂ!ﬂﬂﬂﬁﬂg

Figure 70 A portion of the execution graph produced
Ly the choreographer. The events are from a paral-
Il quicksort program. The ordering type is adjusted
tinestamp.

[tm Trre | ﬁ,”i,‘f"l’.'?,l,,’i"f';;‘,'."*..i s} '

i H = 1 13 & 3 H £ %

i

13

B

B

1 o

....... PGB
L
#
2
o .
B
= % —
: -
B : !
=]]
H 1 g
= : 1
i L .
i 4
= I
i =]
-] i
{ =
4] i
: 2
& i
= =
i $
4 -

Figare §: A portion ol the execution graph produced
by Lhe choreographer. The events are from a parallel
quicksort program. The ordering type is serinhized.

e e e I

3 1 0 £ ¥ # [t

4 mﬂm&l ¢

o PG

2o RGN EETRBE SR

B
G 8 B

¢

-
B
3

L

Figare 8: A portion of the execution graph produced
by the choreographer. The events are from a parallel
quicksort program. The ordering type is maximum
CONCUITEnCY,

B bkt Rk

Figure 90 A snapshot of the swap history view of the
bl <

parpllel quicksort program under the timestamp or-

derig,

Frgure 10: A snapshot of the swap history view of the
parallel quicksort program under the serialized order-
ing.

124

E Dnbaisy :
I -

Figure 110 A snapshot of the swap lhistory view of
the parallel quicksort progrom under the maximun
concurreney ordering

Heferences

[1] Duven Brooks. Towards a theory of the compre-
hewsion of computer programs. Indernational Jour
nitd of Mon-Marcfine Studies, 18513554, 1985

2] Mare 1L Brown. Usploning algorithms using Balsa-
i, (:}in;znisﬁ:;ii{ 3 L0, May TUSK

B3] Mave H. Brown. ZEUS: A systemn for algorithing
anitmation aud ndbi-view editing, Tn Proceedimgs
af the TP 1581 Waorkshop on 1 Usual Languages,
pages 40 babe Japan, October 10410

[G Canfora, AL Clnitile, and UL DeCarlin, Vaps:
Visunl aids for paseal software comprehension. In
Prococdmgs of the Progeam Comprelionsion Work-
shop, pages 1315, 1992 "

BT A Clorbi, Program understanding © Challenge
for the 1900°s. IBM Systens Jowmal, 28(2}, Febry-
ary 084,

6] Janice 0. Cuny, Alfred A, Hough, and Joydip
Rundu. Logical time i visualizations produced
by paralle] programs. by Vispadizelion 92, Boston,

MA, October 1902,

{71 Jeaune Ferrante, Karl J. Ottenstein, and Joe D,
Warren, The program dependence graph and jts

use in optimization. ACM Transections on Pro-
gramming Languages and Systews, 93], July 1987.

M. Harrold and B, Malloy. A unified interprocedu-
ral program representation for a mamtenance envi-
ronment. I Proceedings of the Conference on Sofl-

agare Mamtenance, pages 138147, Sorrento, Htaly,.

Octaber 14481,

David Kinlech
bined representation for the maintenance of e pro-
arams. In Procecdings of the Program Comprefien-

e
e
St

sion Workshep, pages 119-127, 1903,

[0l Eileen Rraemer and Jobn T, Stasko. The visual-

ization of parallel systems: An overview. Journal
af Parallel and Distributed Computing, 1823105
17, June 1993

[11] Bileen Kraener and John T. Stasko. Toward flex-
ible control of the temporal mapping from con-
current program events to animalions. Procecid-
ings Faghth International Parellel Processing Sym-
posium, pages 902-908, 1994,

[12] P4 Layzell, B Champlon, and M.J. Freeman,
Docket: Program comprehension-in-the-large, In
Proceedings of Hie Program Comprehension Work-
shop, pages 1401448, 1993,

(13] Thonwas J. LeBlanc, John M. Mellor-Crummey,
and Bobert 3. Fowler. Analyzing parallel program
execution using multiple views, Journad of Paral-
fef andd Dhpfribided Computing, 9{2):203-217 . Jane
RN

[14] Panagiotos Linos, Philippe Anbet, Lavrent

Durmas, Yan Helleboid, Patricin Lejeune, and
Philippe Tulula. Facilitating the comprehension of
e programs: An experimental study. ln Procecdings
af the Pragram Comprehension Workshop, pages
5563, 1983,

[15] Panos BE. Livadas and Scott D, Alden. A toolset
for program understanding. In Proceedings of the
Program Comprelension Workshop, pages 110~
118, 1993,

[16] David P. Olshefski. Position paper: Toels facili-
tating software comprehension. In Proceedings of
the Frogram Compreliension Workshop, pages 32—
34, 1992

(171 Kart J. Ottenstein and Linda M. Ottenstein. The
program dependence graph in a software develop-
ment environment. SIGPLAN Nobtices, 9:177-184,
May 1984.

and Maleolm Munre, A come)

125

[18] Cherri M. Pancake and Sue Utter. Models for
visualization in parallel debuggers. 1n Proceedings
of Supercomputing 89, pages §27-638, Reas, NV,
November 1988

119] Blame A. Price, Ronald M. Baecker, and lan 5.
Snall.. A principled taxonomy of soltware visuak
tzation. Journal of Visual Languages and Compul-
searigy 4 (32 2606y SeptemberA 98 de s

[201 V. Rajlich, N. Damaskinos, P. Linos, and
W, WKhorsid, Vifor: A ool for soflware mainte-
nance. Software - Practice and Erpericnce, pages
6777, January 1990,

[21] Spencer Rugaber. Reveese engineering by sunul-
Laneons progran anatysis and domain synthesis. In
Proceedings of the Program Comprohension Work-
shop, pages Ab-47, 1992,

[22] Oreste Signore and Mario Lofiredo. Charon: &
taod for code redocumentation and re-engineering,.
In Proceedings of the Program Comprelension
Waorkshop, pages 1689175, 1993,

[231 E. Soloway and K. Elrlich. Empirical studies of
programining knowledgekk. JECE Transaclions on
Software Engincering, SE-1G{5}:585-608, 1934,

24 John T. Staske. TANGO: A framework and sys-
tern for algorithin animation. Compuler, 23{0}:27-
34, September 1890,

[25) John T Stasko and Etleen Kraemer. A methadol-
agy for butlding applieationspecific visualizations
of parallel programs. Journal of Parallel and Dis-
tributed Compuling, 18{2)258-204, June 1985

[26] John T. Stasko and Charles Patterson. Under-
standing and characterizing software visualization
systems. In Proceedings of the 1EEE 1992 Work-
shop on Visual Languages, pages 3-10, Seatile,
WA, September 1992

[27} Janice M. Stone. A graphical representation
of concurrent processes. SIGPLAN Notices,
24{1}:226-235, January 1989, (Proceedings of the
Workshop on Parallel and Distributed Debugging,
Madison, WI, May 1988).

[28] E. Tufte. The Visual Display of Quantitalive In-
formuation. Graphics Press, Cheshire, C'T, 1883,

[20] E. Tufte. Enwsioning Information.
Press, Cheshire, C7T, 1990.

Graphies

Using Procedural Patterns in Abstracting Relational Schemata

Oreste Signore - Mario Loffredo -~ Mauro Gregori - Marco Cima

CNUCE - Institute of CNR - via S, Maria, 36 - 56126 Pisa (Italy).
‘Phone: +39 (50) 593201 - FAX: +39 (50) 904052 E.mail: oreste@vm.cnuce.cnr. 1t

Absiract

The rebuilding of the database concepiual schema from
the physical database structure is a fundamental issue in
the re-engineering and design recovery processes. In this
paper we present an approach 1o the reverse engineering
based on the identification of schema, primary key, SOL
and procedural indicators that lead 1o the assertion of
Prolog facts and, by some hewristic rules, 1o ithe
rebuitding of the conceptual schema.

1. Iniroduction

In the Iast years, RDBMS have significantly increased
thelr capabilities of handling constrainis at the schema
level. This means that a large pant of the existing code can
be “cleaned” from the statements that implement the
constrainty,

On the other hand, the mapping from the dalabase
conceptual schema io the physical siructures is a sequence
of transformations that induce a progressive degradation
of the schema, that becomes less complete, simple,
readabie and cxpressive, Every datsbase design
methodology must face the problem of the difference
between the semantic richness of the ER (or exiended FR)
model and the simplicity of the target relational model. In
i9] the reader can find an analysis of the problems met in
the mapping phase and a set of mapping rules. The
application of the mapping rules and of the different
semantic richness between the source and target models
has the obvious consequence that many constraints must
be implemenied in a procedural way, Therefore it could
be very difficult to capture the semantics of the
conceptual schema by simply looking at the physical one,

2. Related work

In spite of his relevance in the RE area, very few
research efforts have been put in the Database Reverse
Engineering (DBRE) activities. At first glance, it seems
that even commercial producis are able o solve the

(-8186-5647-6/94 504.00 © 1904 IEEE

123

problem, but we must stress that almost all existing

approaches are conditioned by a set of resirictive

hypotheses, namely:

» all the conceptual requirements have been transiated
into data structures and constrainis;

» ihe mapping from the conceptual o the logical and
physical schema has been done by strictly applying the
mapping rules, without any “trick™

« additional requirements diciated by the user or ihe host
environment did not give raise to further restructuring
of the schema;

= the company defined some “naming policy” for the

elements of the schema,

However, we must think that a satisfactory Relational
DBRE (RDBRE) should consider several implementation
solulions, both foreseeable and uncommon, Furthermore,
we must be able 10 analyse schemata implemented in Jess
recent DBMS environment, that show some well-known
DDLU limitations to the possibility of explicitly expressing
the concepts of primary and foreign keys, referential
intogrity constrainis, domain constrainis, eic,

Batini, Ceri and Navathe {{1]) proposed an extremely
simple and limited RDBRE process that skeiched a series
of sieps for the analysis of the relations and the
identification of the concepls a reverse engineer having 2
good semantic knowledge of the source relational schema
should follow. It can represent a good starting point,

Another approach, described in {71, faced the problem
of DBRE from a more experimental point of view by
offering an enhanced set of methods, technigues and
practical examples.

In [5] a short survey on the DBRE and data-oriented
applications state of the art through is exposed. It
synthesized some issues related io the difficuliies met
during a DBRE process that is independent from the
adopied data model. According {o the authors, the DBRE
problem can be expressed as the research of a polential
conceptual schema able to lead to the physical
organisaiion constituted by the DDL, the host language
data structures and the procedural specifications. Hence
the process solving such a problem has two generally

sequential phases. The first one is the Data Structure
Extraction (DSE) that reverses the physical design phase
by reconstructing the data structures from their DDL and
host language represeniations. The subsequent phase is
the Data Structure Conceptualisation (DSCY, that reverses
the logical design phase by the identification of a possible
conceptual schema starting from the DSE output
nformation. e T T

In [2] the authors presented a methodology for

f:xiracimg an extended ER mode! from a relational
database. Their methodology analysed nol only the data
scheme, but also data instances. However we must noie
that the resulis of this iechnigue not only arc not
completely decidiblel, but also are limited by the amount
and the guality of the data stored in the database.

Moreover we have to remind that very often the
knowledge is embedded in the code, without any up (o
date and reliable documentation, and none of these
approaches take into account this peculiar aspoct.

3, The methodology

The reverse engincering process is performed
egsentially in three phases: the identification of primary
keys, the delection of the indicators, and finally the
conceptualisation.

In the first phase we move from the facts represented in
the initinl knowledge base, including information {aken
from the catalog and the SQL procedural patterns used in
the manipulation of the database (L.e. PETCH loops). In this
phase, we auvtomatically detect, if possible, the primary
keys of the relations, Otherwise, we look for the usage of

some subsels of the relations’ attributes, detecling some -

identification indicators, that can help the user in the
manaal identification of the primary keys. We assume that
alf the information used in this phase is represented by a
set of assertions, criginating from the processing of boih
the catalog and the output of a static code analyser2,

In the second phase, named indicators’ detection, we
search for some pre-defincd indicators, Le, a set of
information detectable from one or more available sources
(catalog, SQL code, cutput of a previous analysis phase),
than can be significant to characterise, in the conceptual
model, one or more relational schema items,

In the third and last phase, the conceptualisation, the
user can formulate hypotheses on the conceptual meaning
of the elements of the relational schema, evaluate them
together with the conceptually not identified relations, and

1 for example, the attribute A cannot be a eandidate key for the

relation T if we find two tuples having the same valoe for A,
Ctherwise, we cannot assert anything.

We are well aware of the limitations of a purely static analysis, of
course.

decide to restart some RE process phases, eventually
making choices that are alternative to those previously
taken.

4. Primary and candidate Keys

The detection of a primary key is a trivial process if the
RDBMS supporis itg explicit declaration; otherwise, if
there is only one UNIQUE index defined, it is a reasonable
assumption to take as primary key the set of attributes it is
defined upon. If there are more than one UNTQUE indexes,
we can take every set of sitributes as candidate key,
calcufate their frequency of usage, and ask the user {o
choose,

If we don’t succeed in the identification of a primary or
candidate key, the analysis of some programming patierns
can lead to the detection of some identification indicators
that can help us in fulfilling the task.

For each table T, having ncither an explicit primary or
candidate key, nor any UNIQUE index, we consider the set
Pof thenot ¢ attributes, having INTEGER, SMALLINT,
CHARACTER, DATE, TIME or VARCHAR type. For each subset
S={aj, a2,..., ag}cP of the attributes, we perform the
control of some identification indicators. The underlying
hypotheses are:

« at least one WHERE clause of a SQL. siatement must
mention all them;

« the structure of the code must cxclude that the
selection retumns a set of tuples {loop of felches,
aggregation operators, ORDER_BY Of GROUP_BY clanses,
eic,).

In table 1, we report the various patterns3, their
meaning, the corresponding assertions. In more detail, we
can see that the condition (a} is based on the assumption
that a candidate key should be referred by at least one
WHERE clanse in a SQL statemeni. However this
assumption could be not true in some special cases, for
example when a timestanp has been chosen as primary
key, All the other conditions (b-g) occur when the
programmer expecls to select a set of tuples, so excluding
the possibility that the attributes” set could be a primary
key.

Every subset S={aj, ap,..., aglcP satisfying all the
conditions, can be proposed as a possible key. It must be
noled that the previous criteria cannot be considered by
themselves sufficient to identify the primary key, while
they can need some furlher refinements. Moreover, they
are, in certain sense, depending on the quality of the
software.

UL

3 The term commalist simply identifies a list of elements of the
specificd type, separated by a commia.

Pastern

WHERE aj=<scalar exp)> ANDLAND ag=<soalar expe>

No declaration of a cursor ke
DECLARE <cursoer_ids> FOR
SELEQT «<selection»>
FROM T

followed by

OPEN <cursor lds

and a loop containing:

FETCH <cursor ids THTO «list of host_vars»
falul B . .

WHERE aj=<scalar expi> AND.AND acgz<sgalar _aXpgs

o assignment of the selected tuples to an array.

¢ | No statement contains;
SELECT ALLIDISTINCT
FROM T

<sglectlons

YWHERE aq=<scalar_expi» ANDUAND agw<scaliar oxpegs

a | No statement contains:
SELECT =function-refs

digvinsr-funcrion-ref: =
all-funcrion-ref:i=

{AVGIMAK I MINSUM
{AVGIMAR IMINISUMICOUNT {

FROM T

WHERE aj=<sgalar_axpi»> ANILAND agm<gscalar e
where

funccicn-vef: = COUNT{*} | distincr-funcrion-raf

OUNT} IDISTINGT
[AlLLilscalar-axp)

ball-function-retf

Mo siatement contains:
SELECT «melention>
FROM T

CGROUP BY <column-ref-commalists
ar

BELECT «<selections

FROM T

ORDER BY <ordering-ref-commallsts>

WHERE zjm«<scalar_expi> ANDLAND ag=<scalar exp

g

WHERE ai=«<scalar _expi> ANDLAND ag=<scalar_eXpgr

r Mo statement contains:
BELECT wselsctions
FROM T

GEOUP BY ay, ap,., ag

&

No statement contains:

where < subquerys s like
SELECT <geiectlons
FROM 7

B WHERE <scalar-expr {MNOT] IN <suboguesry>
or
WHERE <scalar-expecomparison> ALLIANYS0ME «subzpizrys>

WHERE aq=<scalar axpi> ANDAND ageo<scalar_oxpes

Table 1 - SQL patterns and corresponding asseriions

Therefore, we think that i is necessary a user
iniervention to get the final decision by observing the
ciues deiected in the previous phase.

Consequently, we show 10 the user the altributes’ seis
that satisfy all the {a)-(g) conditions, the sets of altributes
that satisfy only some of them, the frequencies of usage.
Finally, the user, making use of the information supplied
and of his/her semantic knowledge of the application
domain, can decide to identify a subset § as a certain
primary key, or he/she can formulate g hypothesis on the
primary key of T.

Anyway, af the end of this phase, for every relation we
must have a primary key or we must formulate a
hypothesis for the primary key and indicate the existence
of candidate keys.

13¢G

5. Detection of the indicators

In the first phase, we identificd the keys by inlegrating
and comparing some clues ahout sets of aliribules, that
derive directly from the constraint that a key is mandalory
and unique. In the second phase, the reverse process must
face difficulties arising from the different semantic
richness between the ER and the relational model. Firstly,
the mapping from an ER to a relaiional model is not
unigue, secondly, some factors can have affected the
relational schema, namely oplimisation choices, poormess
of the DDL, unusual implementation technigues.
Therefore, the process cannot rely on one-to-one
correspondences between the ER concepts and the
relational schemaia’s elements, as it was in the preceding
case, when we made use of the equivalence between the
entity identifier and the primary key. We must adopt a

“clued” approach, instead, while in the subsequent
conceptualisation phase we will identify probable
concepts based on suitable combination of indicators.

5.1. Domain identity

... The. firss step .is the identification of homonyms. .

(atiributes belonging to different relations, identified by

-the-same- name but-defined -on-different domains).and -....

synonyms {attribuies having different names, but defined
on the same domain). We can easily solve all the cases of
homonyms just adopting the extended name of the
atiributes {(tablename.attributename), while the
detection of synonyms requires some additional
processing. Indeed, SQL is a language having simple dats
types and weak type checking, and therefore the type
checking based on the content of the cafalog cannot
provide reliable information. The underlying idea is that
al the conceptual level the definition of the types is nicher
than at the relational level ([3]). Would the designer and
the programmer {ake into account the constraints defined
at the conceptual level, but non directly supporied by the
DBMS, we should find an cvidence in the data
manipulation procedures. Therefore, we detect the
synonyms by some SQL indicators taken from the
analysis of SQL statements (table 2)%.

As an example of a nested query, and of the
ambiguitics coming from a simple comparison of the
columns’ names, consider the following relations:

BOOKS (IR, TITLE, AUT,
AUTHORS (ID, NAME,..)
and the query asking for the names of the Authors
published by the publisher XYZ:

SELECT NAME

PUBLISHER, ...)

FROM AUTHORS, BOOKS

WHERE AUTHORS.ID = BOOKS.AUT AND
. BOOKS. PUBLISHER = 'XYZ'

OF

LSELECT NAME

FROM AUTHORS

WHERE ID IN

{SELECT AUT
FROM BOOKS

WHERE PUBLISHER = 'XYZ'}

It is evident that AUTHORS . ID and BOOKS.AUT are
defined on the same domain, while AUTHORS . ID and
BOOKS. 1D aren’t, even if they can have the same SQL
iype (e.g. CHAR (53).

The identification of the join of a relation with itself is
syniactically equivalent 1o the join between two different
relations, but, when it involves all the components of the
key, can be semantically highly significant, as the first
step towards the detection of unary or recursive
relationships.

Other DML statemenis, as INS8ERT, DELETE,
UBDATE, can help in the identification of synonymies. For
example, an instruction like:

INSERT INTD <tabler {(<column-commalists)

SELECT «selaction-commalisis

<table-axpr.
clearly lead to the identification as synonyms of the

Type

Pattern

SELECT
FROM T3
WHERE .7

. Ty

equiioin 2
1A

FELECT
FROM Ty
T

WHERE

multiple join :
1.

AND Ts . ATTRy 4 Fary.arrRidl

SELECT

FROM Ty

nested querles
or:

WHERE ..T1.ATTR [NOT} IN (SELECT Tp.ATTR'
FROM To, .
WHERE ..)

WHERE .T1.ATTR{=i#} {SELECT T2.ATTR'
FROM T7,..
WHERE ..}
SELECT ALSTAFF 1D
auto-join FROM STAFF A, STAFF B
WHERE A,SALARY » B,SALARY AND A, SUPERVISGR = B.STAFF.ID
Table 2 - Query patterns

4 Intable 2, ATTR;U) denotes the i-th atribute of the j-th relation.
Obviously, when we use the options NOT IN or #, we are not in
presence of an equi-join. Nevertheless, it s evident that the
programmer intends to compare two values taken from the same
domain. This form of statement is reported here for compactness.

131

attributes that has the same place in the two lists <column-
commalist> and <selection-commalist>.

It must be noted that in some cases the semantic
equivalence of the domains could be deduced from the
usage of the host variables, as it happens when a join is
implemented by separate SELECT on different tables, e.g.:

SELECT NAME

FROM AUTHORS A, BOOKS B

WHERE A.ID = B.AUT AND B.TITLE =
is equivalent to;

SELECT AUT

INTO :aut_code

FROM BODKS

WHERE BOOKS.TITLE =

tbook

shook

SELECT NAME

SINTO raub_name .

FROM AUTHORS

WHERE ID = :aut_code
However, the detection of this kind of patierns requires
ihe identification of the data dependences,

5.2. Foreign keys

Once the synonymies have been detected, we can look
for the foreign keys, that model the associations between
tables, The process takes place in three steps:

) Annotation of the explicitly declared foreign keys.
This is the simplest case as the DDL possesses the
appropriate mechanisms,

Detection of non explicitly declared foreign keys.
Given a relation T having a known primary key PK,
we single out the synonyms of the componenis of PK
that all belongs to a relation T, They are the
components of a foreign key, defined in T, referring
T.

Detection of foreign keys referring uncertain primary
kevs.,

For all the relations that only have an indication of
possible primary key (PPK), we have to apply the
same process described in the previous step, but we
have 1o transfer the uncertainty of the information
about the primary key to the result,

b}

€}

5.3. Referential integrity constraints

The uncertainty of the information gained in the
previous step makes necessary 0 atiempt o confirm the
indications by looking at referential inlegrity constraints’
checks in the code, There are several cases when we have
to check the referential integrity constraints: insertion in
the referencing relation or updating of its foreign key,
deletion from the referenced relation or updating of its
key. The older versions of SQL did not provide any mean
either to explicitly define the primary key, or {o guarantes
the referential integrity constraints; hence, their check was
entirely charged to the programmers. The more recent
SQL standard has some special DDL constructs to define

132

PROFESSORS (LITNAME, FREINAME, BIRTHDATE,
ADDRESS, ..}
COURSES (COURSE IR, CLASSROOM, FROF, LSTNAME,
FROF,_FRSTNAME, PROF_BIRTHDATE,..)

EXEC SQL BEGIN TRANSACDTION:
BXEC 50L
SELEZT *
FROM PROVESSORS
WHERE LETNAME =
FRETNAME =
BIRTHDATE =
1f {SOLCODE =z §)
e R B
EXED 30L
INSERT INTO CCURSES [COURSE_ID,
FROF LSTHNAME, PROF_FRETHAME,
FROF_BIRTHDATE)
VALUES {:courssa,

prof lstnamse AND
iprol frstname AND
idave;

ipraf lstnama,
tprof frstname :date)
EXEC S0L0 COMMIT YIORE;

H
else <call of the error_handling roulines

Flg. 1 - A simple database and a rejerential
integrity constraint pattern

primary and foreign keys (4], [6]). Many commercial
products make available triggers that can fire on inseriion,
update or deletc on a table. The identification of the
procedural patierns that implement the constrainis can
help in the simplification of the code and assure a more
homogeneous implementation of the constraints, moving
many actions directly at the schema level,

In fig. 1 we can see a simple procedural pattern
assuring the referential integrity constraint at the insertion
in a referencing table.

5.4, Analysis of the referential
consirainis

integrity

Recognising foreign keys and referentinl integrity
consirainis can help in the detection of the associations,
We have pointed out as the uncerizinty about the
identification of the primary key can affect that of the
foreign keys. However, it scems reasonable to recognise
simple programming patterns, or 1o proceed with a
manual approach, guided by static analysis tools,

CUSTOMERS {(CUSTOMER 1013, COMPANY, COUNTRY,..]
AGENTS {4 ol i e BONEG S
EXEC S0L BEGIN TRAMNSACTION;
EXED BQL
SELEQT *
FROM CUSTOMERS
WHERE COUNTRY = :zone:
if [SCGLOODE == 0)
{
BXEC SQL
INSERT INTS AGENTE {AGENT _ID,.., ZONE]}
VALUES {:agent,.., 1zoned;
EXEC BQL COMMIT WORK;
glse «<call of the error handling routines

Fig. 2 - A dynamic constraint check pattern

Schema indicators Primary key SQL indicators Procedural indicators CONCEPTS
indicators
+ doesn't correspond to Fundamental entlty
PK of other relations - without multivalued

» doesn 't contain FK

aliributes
- non belonging io any
hierarchy

{possible key Jommance
K 4 1+2 atiributes)

. is.cnmpowd by some
FK

= join with the related
relations

« referential integnty
constraint checks {not

DIDL supports their explicit

deglaration)

the referred relations
have the same name

e.xglicilly defined by the
DBBL)

2-wyeferential integrity osee explicitly defined by the..oo.o§ o Relatlonshlg. oo fo s
constraint ot Ihigﬂg(the DglL) Y ¥ ¥
DDL sapports their explicit
declamation)
= key domnance (K + & = dosan't contamn K 15 refermed in 2 number | » relerential infegnty
single atribute) of relations (j.e. its PK is | constraint checks {not Enumerafive type
« non key attribute unique and the FK in several explicitly defined by the relation
not md] relations} DDL} {decoding table}

+ z few or no insert,
delete o update (or with
DB administrator grants)
» key domisance (FK +a « cormesponas to P of « the 1/0 procedures on the refations incduding the related
single agribute) other relations PK are caecuied using it always for coding/decoding
= non key aitribute unigue and operations . Key coding relation
not nall < the selection and manipulation statements on the
relation including the related FK can use it for
coding/decoding a key
= “full PR « PR includes 2 Fi and a | « 15 referred by a single « refereniial integnity
* referential integrity single attribute relation consteaint checks (not
constraint on the FK (ke » usually FK and PK of Simple type

muliivalued atirihnte

~Tey dominance (PR + &
single attribute)

» non key attribute not null

«seferential integrity
constraint on the FK (the

+ PRoincludes a P and a
single disctiminating
attrsbute

+ usually FK and PK of
the referred relations

15 referred by a single
refation

- referential integnty
coastraint checks (not
explicitly defined by the
DL

Simpie type
multivalued attribute
(The single vatues for
each entity are made

DDL suppods their expliclt | have the same name distinet by the value of

declarstion) the discriminating
atlribaste)

« "l PR « PK includes a PR and « 15 refered by & single « referential mtegnty

« peferential integrity some attibutes relation constraint checks (not Complex type

constraint o the FR (the « usually FK and PK of expcidy defined by the multlvalued atiribute

DIDL supports their explicit the referred relations DDL}

declaration) have the same hame

« reterential integnty « P mncludes 2 FR and a | = 18 referred by a single « referental intogaty Complex type

constraint on the FK (the
DD s

declaration}

is their explicit

single discriminating
atinbute

« wsually FK and PK of
the referred relations
have the same name

rulation

constraint checks {not
cx]glici!ly defined by the
DLL)

muitivaiued atiribute
(The single values for
each entily are made
distinct by the value of
the discriminating

atiribute)
« sels of relations (#22) { » each relation belonging | + decision statements are Disaggregate hierarchy
with related PK to the set has present to conditionally of subsets or partitions
autonomous join with operate on the taples of the (It includes several
other relations subsets by using DML relations)
statemnents
+ 0 general 1 decision statements are
characterised by present to conditionally Agprepate hierarchy of
associalions with several | operate ca the tuples of the subisets or partitions
relations subsets by using DML (It inchedes several
statements relations)
» corresponds 1o PR of » has autonomous jois decision statements are
other relations with other relations present to conditionally Generalisation entity of
operalz on the tuples of the a hlerarhy
subsets by using DML
statements
« corresponds to PR of + has aulonomous join deciston stalements are
other relations with other relations present 1o conditionally
operate on the tuples of the Subset entity
subsets by using DML
statements
«1n gereral doesn | have key |+ contatns PR i general fas Weak entity
dominance avtonomoys join

Tabie 3 - Matrix of indicators

133

Tegenda
T_ed: referenced table, K_ed: refersnoede key,
T, ing: referencing table, K_ing: referencing key

Letection of s
check petiern

{"Annotate the check of |

asertion
foreigmn ke

ing K ing T ed

{possivie_primary key(T_cd, K ed

T\%/ » it could be a check of & dynamic
o S— - constraint
= F: possible_foreign_key (@ ing, F, T * It could be wrong the fact
anpd K ing=F passible primaty_key(T ed, K}
v where K 2 K_ed
Y
Lonfirmation ok perrem
» primary_key(T_ed, K ed) . . N .
. gj:‘cign,ke;y(fjng, K ing, T _ed ipessitle_foreign_key(T ing K ing, T_ed

Flg., 3 - Algorithm for referential constraints’
analysls

Anyway, the procedural indicators taken from the
analysis of the control of the integrity constmints can give
a valuible help in the identification of the foreign keys (if
the primary key of the referenced relation is known), and
in confirming or rejecting previously formulated
hypotheses on the primary keys,

We must nole that some patierns can be very similar,
gven if they have different purposes. In fig, 2 we report a
simple example of the implemeatation of a congtraint that
sdopis & pattern that could be confused with a referential
integrity pattern, as it differs from this last one only
because the exisicnce check is performed on a non key
altribute of the referenced relation. Fig. 3 skeiches the
algorithm for the check of the referential integrity
constraints, with an obvious meaning of the assertions.

6. Conceptualisation

We have to refine the knowledge acquired in the
previpus phases, to identify the features of relations that
implement some peculiar conceptual elements. As we
have pointed out before, the indicators can be classified in
four categories according to the source they derive from,
Such a clagsification is the foundation of a simple and
extensible paradigm, the matrix of indicators, aimed to the
identification of the elements belonging to conceptual
schema. The matrix of indicators (Table 3) has the
following layout:

» the rows correspond to different ER concepts,
including hoth those having a direct mapping to the
relational model {strong and weak entities) and those
who, on the contrary, can’t be modelled directly with
single relational objects (hierarchies, relationships
with atiributes, n-ary relationships, etc.);

= the columns comrespond to the categories of indicators;
» every matrix cell contains the indicators of the related
colamn we can start from to deduce the concept of the
related row.
The phase of populating the matrix of indicators moves
from both the theoretical knowledge about data models
and the mapping rules, and the practical knowledge

.. derived. from implementation experiences.. We. cannot .

134

give general rules for the identification of the conceptual
elements, as it depends on the quantity and qualily of the
indicators in the matrix. As an example, the structure of
the primary key can be a “strong” indicator of an
associative table, while a high join frequency with the
associate {ables can be taken as an indicator that confirms
a hypothesis. i for a relation we are not able to detect any
indicator for any row of the table, we have o;
i. show that it is impossible to clearly state the
conceptual meaning of the relation;
2. display all the detecied indicators;
3. ask the user to formulate a hypothesis.
Some inconsistencies can arise; in these cases, if can be
necessary o re-execuie some phases of the whole process.

6.1.The hierarchies

IS-A hierarchies can be mapped in different ways:
creation of an aggregation tsble, that contains all the
aitributes of the generalisation and specialisation classes,
or as many relations as are the classes and subclasses, In
both cases, we can {ind some typical patierns, as shows in
fig. 4-5 (with obvious meaning of the variable names),

EMPLOYEE {EID. Di,..Dnj
MAMAGERS {EID, MIL... Mp}
TROMNICIANS (21D, T1,..,7Tg)
SECRETARIES {(EIDL, 81,., 87}

EXEC 30L
THSERT INTO EMPLOYEE {EID, D1,.,Dn}
VALUES {:id, d4di,.,:dn):
switch i{role)
{
case ‘010
EXEC SQL
THSERT INTO MANAGERS [(EID, ML,.. Mpi
VAILUES (114, ml, ., :mpi;
break;
case '02':
EXEC SQL
INSERT INTO TECHMNICIAMNS (EIDR, T
VALUES {:14, :tl,..,:5gy;
break;
cage '03°:
EXEC SQL
INSERT INTO SECRETARIES (EID,
VALUES {:id, :si,..,:sr};
break;

Fig. 4 - A typlcal insertlon
disaggregate hierarchy

pattern for a

oiefoneed B BRI TP EMELOY B R L B LD Dy

EMPLOYEE (EID, Dl,.., Dn, ML, .., Th, et

Te,81,., Sr),

Mp,

switch (role)
{
case "0l':
EXEC 5QL
INSERT INTO EMPLOYEE (EID, D1,...Dn,
VALUES {:id, :al,..,:an, :ml,..,:mp};
Lobreak; . e
case 02
EXEC S0L

M1, .. Mo}

x iy RO
A

conceptual schema.

The proposed methodology shows some innovative
aspects in respect with others presented in the literature,
In fact, the particular “cognitive” approach recognises
specific properties of the relations not only taking into
account the knowledge that can be deduced from the

database structure, but-also-attempting-to interpret how.

the applications make use of the data. This is done

T3
VALUES {:id, :al,..:an, :tl,.,:tq};
break;
cage '03ts
EXED 3L
INSERT INTC EMPLOYEE
VALUES (:id, :al,.., :an,
break;

}

Fig. 5§ - A typlcal Insertion paitern for an

aggregate hlerarchy

{BID, DI,...Dn, Bl,.., Sz

18, ., 1800

6.2. Associations

The cardinalify of the associations can be derived from
an analysis of the procedural patterns yet described in the
paragraph about the primary keys., Some other indicators,
and the features that can be derived from, are reported in
Table 4,

7. Conclusions

In the reconstruction of the ER schema of a database,
we can identify the constraints that are maintained at the
procedural level, too. Therefore it becomes possible to re-
engineer the applications getting all the advantages
provided by the most recent DBMSs, that allow the
definition of many constraints directly at the schema
level. In this work we described the problematics and the
guidelines of a RDBRE taking in input the DBMS catalog
and the source code, and is able to deduce the database

Feature

Type Pattern
Schema | NULL <toreign _keys>. total
NOT ALLOWED IN <tables .
associalion
Schema ! NULL <foreign key> ALLOWED :
IN <tables parua'l .
association
SELECT .. :
SQL FROM . T partial
WHERE ..T.FK IS [NOT] NULL { association
SQL Joins FE-PK have clauses:
FROM T
WHERE FKl=:host_varl
SI;D..‘AND F¥n=:host_varn multiple
FROM T, T° association
WHERE T.FK1 = T/ .PKl
AND..AND T.FEn=T'.PKn

Table 4 - Some patterns for assoclation
detection

136

gearching-for-some-SQland procedural-patternsthat cans- o

be significant for the detection of the searched properties.

As the proposed approach requires a user interaction, it
is evident that the recognition potentiality and the quality
of the knowledge base depend on the user’s experience in
developping datz oriented applications and his/her
knowledge of the application environment.

A Prolog prototype of an “expert system” implements
the methodology. As a future development, to make a
more extensive {est on a suitable number of applications,
we foresee the integration of the tool in TROOP, a reverse
engineering tool currently under implementation ([8]).

References

(1] Batimi C., Ceri 8., Navathe 85.B.: Conceptual Database
Design: An Entity-Relationship Approach, The
Benjamin/Cummings Publishing Company,Inc., 1992,
Chiang R.H.L., Barron T.M., Storey V.C.: Reverse
engineering of relational databases: Extraction of an EER
model from a relational database, Data & Knowledge
Engineeering, Vol. 12, N. 2 (Mar. 1994), pp. 107-142

Codd EF.: Extending the Database Relational Model to
Capture More Meaning, ACM TODS 4, No. 4 (Dec. 1979)
Date CJ.,, White C1.: A guide 1o DB2 - Second edition,
Addison-Wesley(1987)

Hainaut J-L., Chandelon M., Tonneau C., Joris M.:
Contribution to a Theory of Database Reverse Engineering,
Proc. IEEE Working Conference on Reverse Engineering,
Baltimora 1993

Information technology - Database languages - SQL2; 18O
standard N, 9075

Premerlani W.1., Blaha MR.: An Approack for Reverse
Engineering of Relational Databases, Proc. IEEE Working
Conference on Reverse Engineering, Baltimora 1993,
Signore O., Loffredo M.: Re-Engineering towards Object-
Ovriented Environments: the TROOP Project, Proc. of The
8th Int. Symp. on Computer and Information Sciences
{ISCIS VII), Nov. 3-5 1993, Istanbul (Sponsored by IEEE)
Teorey T.J., Yang D., Fry 1P.: A Logical Design
Methodology for Relational Databases Using the Extended
Entity-Relationship Model, ACM Computing Surveys,
Vol.18, No.2, Jun. 1986.

f3]
(4]

(5]

(1]
(71

18]

{91

Relational Views for Program Comprehension

Tim Jones, Warwick Allison, David Carrington
{1s3, warwick, davec] @cs,ug.oz.au

Software Verification Research Centre
epartiment of Computer Science
University of Queensland
Queensland, Australia 4072

Abstract
in this paper we describe UQ%, an integrated
development environment that is currenily under

construction gt the University of (ueensland, Iy
grchitecture supports the definition of multiple documients
and multiple document types, and allows the relationships
thar are Dmplicit within the set of documents o be
represented explicitly. We identify rwo techniques that aid
program comprefension whickh require knowledge abowt
the relationships that exist in and between documents.
They are program dependency analysis and literote
programming, Two simple examples are prescated o
Hinsirate the flexible definition of relations within such an
arehiteciure and the use of relutions Jor presentation of,
and navigation through, varfous views of a program and
ity related documentation, These examples highlight 1he
application of such an gpproach to program dependency
analysis gud literate progranming.

1 Introduction

Program comprehension, also refemed 10 as program
undersianding, is the act of perceiving the meaning and
structure of a program. When is program comprehension
unportant? Sofiware maintenance takes over 30% of the
total expenditure thai is allocated 10 a software system
during iis lifetime and program comprehension takes at
fcast 50% of the time spent on the maintenance task (11,
12}, However, program comprebension is not splely a
myinienance issue. Program comprehension is also a
significant task during implementation. For example,
individoal members of programming teams continually
review gach others’” code [or both quality and corrective
reasons, Even individual programmers reviewing their
own code that was written over an extensive period of
time will, for various reasons, find it necessary 1o
investigate what various parts of their program do.
Additionally, program comprehension is imporiant during

(-8186-5647-6/94 $04.00 © 1994 IEEE

136

testing and debugging. Programmers mosi undersiand
programs 1o devise complete and comprehensive lest cases
and 1o locate bugs. The need for 1ols 10 support program
comprebension is well documented {191, These tools
should support program comprehension during
mmplementalion, mainienance, testing and debugging,

Wilde [32] cmphasises that “A key fo program
understanding is unravelling the interrelationships of
program components”. In the coniexi of & program source
documen, these relationships are more commaonly known
as program dependencies. Since the late seventies, much
work has gone into the theorctical aspects of program
dependencies 133, 34, 27, 28, 15, 24, 32, 21, 14] w pave
the way for astomating thelr extraction and presentation.
This work has resulied in a wide variety of tools that
address this issue. Large Integrated environments such as
Pecan [221, PV [7], MicroScope [1], ProDag in the
Arcadia environment [23] all provide views of a limited
sed of program dependencies for a specific implementation
janguage. Siand-alone program analysis and editing (ools
such as PUNS [121, Whorf [3], DgQuery and its
associated tool-set [337, CIA [9) 1107 and ClA++ [8]
provide more comprehensive coverage of program
dependencies, but are siill language specific. Some
program analysis tools such as LogiScope [13] are capable
of analysing many different languages, but only provide
views of a limited sgt of program dependencies.

Another imporiant kKey 0 program comprehension is
the documentation that accompanies the program, One
well-known approach is the literate programming styie
I1al, However, Knuih's literate programming sysiem
WEB fell short of an ideal environment to encourage good
documentation practice. Broom [5] improved on WEB by
providiag an interactive on-Hine presentation and
simubtaneous manipulation of both documentation and
code as well as off-line presentation of a ‘literate program’
i an editor/browser called Sue. However interaclive
systems that support literate programming should not siop
at this. Tools that support design and reverse eagineering

utilize graphical diagrams to convey ideas about a
program. Literate programming and environments that
support it should include appropriate graphical notations to
allow enriched explanations of programs.

The comment by Teitelbaum that “Programs are not

“text; they are hierarchical compositions of computational

structures and should be edited, executed, and debugged in

There are three accepted categories of theories that
describe the cognitive processes involved in program
comprehension. Corbi [13] describes these as the bottom-
up, the top-down and the opportunistic theories. Botiom-
up theories are based on the notion that a programmer

understands aprogram by Heratively abstractingand -

connecting together ‘chunks’ of code. Top-down theorics

VT T O e T oS TS e H I e B W eH ge ¥ ania

reinforces this viewpoint”™ [26] indicates the need to
integrate programming tools into a single environmernt
based on a uniform representation, This comment was
associated with an environment based on a structure editor
which emphasises a fixed view of the program, Weish [29]
indicates that environments not need be restricied to
structural views (o reinforce the fact that programs are
hierarchical compositions of computational structures.,
Ambras extends this concept and indicates that
“Programming environmenis that support evolutionary
software development must include tools that help
programmers understand complex programs” [1]. We
believe that these ideas should be extended Farther so that
the documentation associated with the design and
development of a program’s source code is manipulated in
the same way as the program’s source code. Thus a
programming environment should reinforce the fact that
programs and their associated documentation are
hicrarchical compositions and should provide facilities to
edit, execute, debug and understand them,

In order to support these concepts, we are developing
an environment, UQ, whose architecture supporis the
definition of multiple documents and multiple document
types, and sllows the relationships that are implicit within
the set of documents to be represented explicitly. The
documenis and views supported by such an architecture
may be textual, graphical or both. The aim of this approach
is to provide the ability to incorporate docoments from the
carlier phases of the software development life-cycle into
the same architecture as the program, and 10 emphasise the
inier- and intra-document relationships that atlow more
flexibility in defining and navigating through views of the
software system than do cenventional editors and
environmenis. An important issue in the conceptual design
of this architecture is that the program sousrce is just
another document whose language happens to be
compilable into executable form. UQ¥ provides the
flexibility to define views of program dependencies
through the definition, manipulation and use of relations.
Furthermore it encourages literate programming. Programs
which are not literate and their development
documentation can be loaded into the environment and
woven together by creating the appropriate relations as the
programuner explores the documents,

CAre BASEA O TE NGO (it The programiiner uses their own

experience and attempts (o confirm their expectations.
Opportonistic theories are 4 mixture of the Grst two types
of theories, where the programmer uses an as-needed
rather than a systematic approach to understanding the
actual code [17]. By supporting flexible views of program
dependencies and the ability to peruse development
documentation in a ‘literate’” style, UQ¥ will support all
three types of theories, particularly opportunistic theories.

I this paper, we discuss in more depth the importance
of relations in program comprehension in section 2, and in
the following sections illustrate how UQ+ takes
advantage of this 1o provide an integrated development
environment that addresses these issues. In section 3, an
overview of the architecture of UQ% is presented. An
example is presented in section 4, showing the derivation
and application of relations for program dependencies, and
section 5 contains another example which shows the use of
relations for navigation within and between documents.
Section 6 presents an overview of the work presented in
this paper and related work at the University of
Queensiand.

2 Relational Views for Program
Comprehension

In this section, we extend the ideas presented in the
niroduction to show the important role that relations play
in program comprehension. By treating relations as an
underlying conceptual structure of a programming
cnvironment, all the views discussed in this section are
available to the programmer. We confine the discussion to
two areas in which relations form the foundation of views
that contribute (0 program comprehension. The first area is
program dependencies and the second area is relationships
between development documents and program source
documents.

2.1 Program Dependencies

Program dependencies are relationships between a set
of program elements that are dependent either syntactically
or semantically on another set of program elements. In an
environment based on relational structures, these
relationships can be made explicit within the structure in

which the program sopurce document is contained. If inter-
and intra-document relations are handled in the same
fashion, the expression of prograin dependence relations is
not resiricted to being within a single program source
document; they can be expressed between program source
documenis of both the same and different languages. This
means that program dependencies can be traced through
sub-programs that are writien in different languages from
the parent program under investigation,

Discussion of program dependencies in this section is
limited 10 those found in conventional imperative prog-
rasnming languages. When considering such languages, we
identily four classes of program dependencies: data-iype
dependencics; dota-iiem dependencies; procedure/function
dependencies; and module depeadencies, Each of these is
presented individually in the [ollowing sub-sections.

Data-Type Dependencies: In typed programming
languages, data-type dependencies are the simplest type of
dependency. Such languages have a finite set of pre-
defined types; however in most of these languages the
programuner can use these basic types as building blocks 1o
create new, more complex {ypes, Thus a programmer who
has to undersiand a program, ot some siage will be
required to work out how these more compiex types are
constructed.

Data Item Dependencies: Datn tiems arc any
componenis of a language that represent a particolar value,
Examples of data Hems are variables and constanis, In
most Ianguages, data lems are dependent on two things:
their declaration which specifies what type of valoe can be
stored; and other daia vems that are used 1o derive thelr
valug, In the Hrsi case, the progrummer is inferested in the
type of a given data item. This type may be a complex Lype
that requires further investigation (section 2.1.1), In the
sccond case, the programmer 15 interested in the effects of
operations on data ttems, There are two questions o
consider in this case: :

{1y What operations affect a particular data tem at a given
place in the program?

{2} What data ltems are affecied by o change in g given
operation?

The first guestion involves isolating the statements that
have a direct effect on the given data item. Weiser [27]
described & related technique, which he called program
sticing, as a method used by experienced programmers {or
abstracting and understanding programs. This technique is
also an excelient and widely used {echnique for debugging
programs [28]. A program slice is formally defined as the

138

minimal subset of a program that produces a selected sub-
set of the program’s original behaviour. Weiser [27] says,
in general, automatically finding a slice is impossible.
However dataflow algorithins can be used to approximate
a slice where the behaviour subset is the values of a set of
varigbles at a sialement.

The second question involves isolating statements
which use the resull of the given data item 1o derive the
values of other data Hems. Yau [35] describes this as ripple
effect analysis, This technique is most applicable 1o
maintenance {35, 341, and like program slicing, it relies on
dataflow alporithins o locate the desired information.

Procedure / Function Dependencies: Procodures and
functions! can be seen as functional black boxes,
providing thelr full bebaviour is known and does not need
to be changed. However if this is not the case,
programmers irying o undersiand various aspects of o
function’s behaviowr are faced with the problem that a
function may contain references o program elements tha
arg not defined in the function, Such references are known
as a function’s giobal depeandencies. In structured
tanguages like C, Pascal and Modula-2, the global
dependencies of a function may be any of the {ollowing:
= (lobal type declarations;

+ {Global variables;

o (Other funclions; and

» {onsianis.

As with data itemn dependencies, a programmer may be
intergsied in the declaration of the dependency, or the
operation effects of the dependency.

Module Bependencies: in this paper we consider
modules 1o be separate files such as in Modala-2. By this
definition, classes in object-oriented languages such as
Eiffel can also be seen as modules. As with functions,
modules can contain references to program elements that
are not defined in the module. Such references are known
as the moduie’s giobal dependencies. In struciured
ianguages, the global dependencics of a module may be
any of the following:

L3

(lobal type declarations;

&

(Global varinbles;

&

Global Tunciions; and
Constanis.

1. In this section the word function is used to mean procedure as well as
function.

The global dependencies of a module are always
contained in another module, but are not necessarily the
entire module. Thus this type of dependency is a more
abstract dependency than the ones presented in previous
sections. As well as module dependencies, a programmer
~qnay bedinterested in-the declaration: of the dependency, or

the operational effects of the dependency.

The first iaw indicates that maintenance is likely to be car-
ried out in the foture, and the second that this maintenance
will be more difficult unless specific action is taken now,
By making a program literate, its structure is captured and
reinforced, easing the load on both current and particularly

“future activities that involve program comprehension, ™

2.2 Relations Between Development and Program
Documenis

Development documents reflect both functional and
siruciaral aspects of a program’s implementation, as well
as reasons for design decisions. Typical development
docoments include requirement, specification, design and
program description documents, These documents may be
tessual, graphical or both. Advocates of top-down program
comprehiension theories indicate that domain knowledge is
the fundamental starting point for program
comprehension. In many cases, particularly program
maintenance, programmers will have a very limited
knowledge of the domain. In such cases, programmers rely
on the development documentation to gain this knowledge.
This task is poteatially time-consuming since the set of
such documents associated with a program is often larger
than the program itself. To further complicate matiers,
mdividual development documents usually only describe a
few aspects of the program in question.

However development documents are ofien highly
structural in nature. This structure resulls in explicit and
implicit relationships both among development documents
and between these documents and the program source
documents. Understanding these relationships provides
valuable insight into the functionality and structure of the
program and issues that reflect why the program was
implemented the way it was, Furthermore these
relationships can be used 1o weave a ‘lerate program’ that
contains both (ext and graphics. -

Unfortunately, the development documentation
associated with large software projects is rarely indicative
of the current state of the programs. Belady and Lehman
[2} proposed three laws of program evolution, two of
which indicate why it is important (o spend time updating
the development documentation so it is consistent with the
current state of the program,

(1} “Law of continuing change. A system that is used
undergoes continuing change until it is judged more
cost-effective to freeze and recreate it

(2) “Law of increasing entropy. The entropy of a system
{its un-structured-ness) increases with time, unless

specific work is executed to maintain or reduce iL.”

139

Z-Architecture o UQ#

The UQ+# system is based on a structured document
model [30]. It allows for the representation of the syntactic
and semantic siructure of documents. [t provides document
construction facilities via textual and graphical views of
document structures. Documents may alse be constructed
by integrated software-analytic tools and by imporing wext
files.

The architecture providing this support is a persistent
store of documenis manipulated by fronr-end and back-end
tools, as depicted in figure 1. Front-znd wools are those
which interact with users to present and modify the
document store, while back-end tools are those which
perform analytic operations upon the documents,
producing resulis which become part of the document
store,

Persistent
document
server

Figure 1. A high level view of UQ%* architecture

3.1 Documents

The syntactic structure of traditionally textual
documents such as Pascal programs can be expressed via
an EBNF document which is in the document store. From
this, the system produces a state machine used for
scanning and a grammar for parsing. These are used by the
document construction facilities in textual views 1o build
parse tree documents from fext input in the language
specified by the EBNF grammar. These parse trees are the
document representation; textual views are formed by
unparsing.

- The document store consists of atomic elements and
relationships between these elements, such as a Statement
parse tree node and its parent-child relationship to its

syniactic constructs. Other document structures, such asg
the infer-relationship of the specification, design,
tmplemnentation, and the uvser manual of a software system
can also be expressed.

3.2 Relations

Relations gxist between document segmenis. Relations
can be classified by the mechanism by which they are
created. The categorios of relations supported by UQ#
HIe:
= User-Defined Values. The user creajes individual Binks

between document components. For example, a user

might link poriions of the implementation of an
algorithim o points i a texiual discussion of the
algorithm in the design documentiation,

» Prg-defined, The U0 parsing mechanisms create
hicrarchic links in parsed documenis. Alsp, EBNF
grammars are presenied as relations among symacis
CONSTuCtSs,

= User-Defined Derived. The user expresses a relation in
ierims of other relutions. For example, a user might
define a call-graph from relations defined by tools and
the parsing system. This example is illustrated in
seciion 4,

= fool-Defined. A wo] defines new relations based on
gxisting relations. For example, & back-end tool (fipure
7 might generale a relation describing the scope of
variubles from the syatactic structurd relntions,

3.3 Back-snd Tools

Back-end tools can be used 1o contrtbute o the
document store. They may generate relations between
dovument conmponenis, and generate document
components {or either inspection or further manipulation
by the user, The nature and contribution of such tools are
varicd, A compiler may produce a list of errors, or an
execuinhle. A constraint verification tool may produce a
single yes/no value based on iis analysis. A program
dependency analysis ool may produce a set of dependency
relations. These are only a few examples of back-end 1ools
that may be coupled with UQW. A simple exampie of 2
possible application of a back-end ool is highlighted in the
example presenied in section 4.

3.4 Front-end Tools

The user interacts with the underiying documents via
views of the structure provided by front-end {ools. For
interactive presentation and manipulation, the view can be
some combinaiion of text and graphics ranging from an

140

avtomatically formatied unparsing 10 a graph of nodes and
arcs. Similar view generalion is able 1o generate
publication-quality presentations, by generating LaTeX
input.

4 A Simple Program Dependency Example

In this section we present an example to highlight the
flexibility of definition and use of relations with UQ%.,
The example is a user-derived relation for a call graph in
Modula-2, A call graph is o direcied gruph depicting the
procedure call structure of a program. It 18 defined by the
relafion between each procedure or moduele in o program
and gach procedure i calls,

Caller

Fanet

\ Proc

\x A

CallGraph Relation

Figure 2. Call graph showing derived CallGraph
relation

The example 1s lustrated using the Z notation 23] ©
show how a useful relation can be derived from other
given reintions. The relation described is the CafiGraph
relaticn {figure 2). Figure 3, provides an overview of the
example under discussion,

We start by defining the set of all possible nodes in the
DArse (1ee as:

[NODE]

A relation 15 a segment that relates two other segments, We
therefore define a relation as a mapping between two
NODE eclements. For this example, three relations are pre-
defined:

GrammarNodeType : NODE +3 NODE
Pargnt : NODE + NODE
Declurationlse : NODE ¢ NODE

The first two relations must exisi {or all documents.
GrammarNodeType i8 a relalion between a parse-iree node
and its grammar-node and is inherent in the EBNF of the

MaoduteDecl
MODULE M;

DaclarationList~< | |
ProceduraDec <"

'PROCEDURE A;

GrammarNodeType

N

ProeDecProcUse : NODE &3 NODE

Y declaration, use_id : NODE »
(deckaration, use_idy € FrocDecProclse e
.. Weclaration, use_jd) e DeclarationUse .. —
(declaration, “ProcedureDecl™) € GrammarNodeType A

ENI} A

ProcadursDec!

PROCEDURE B;

FroceduraDesd
PROCEDURE C;

ProcDecProctse

Declarationlise
CallGraph

BEGIN

ProcedureCalt

= identifier
=
A

?

Params

(1

NearestProcOrMod

rocOrModParent

\u

END G

Parent
e W'
s

|

BEGIN

END B;

Key

Relation

BEGIN | Grammar node

END M.

Parse tree nodes

Figure 3. Relations involved in the derivation
of the CallGraph relation

document. Parent is a relation between a child node and its
parent node and is inherent in the structire of the parse
tree, In this example Parent is defined as a partial Tunction
which is a specialised relation. DeclarationUse is a
relation between the declaration of a program element and
all uses of that element and is assumed 1o have been
constructed by a back-end tool familiar with the semantics
of Modula-2,

The DeclarationUse relation contains some information
that is not relevant to call graphs since call graphs only
consider procedure declarations, not all program elements.
To extract the required information, a derived relation
ProcDecProcUse is defined. This relation contains only
those (declaration, use_id) pairs where the declaration is a
procedure declaration and the parent node in the parse tree
of the use_id is a procedure or function call,

141

L {Parent Guse_id), “ProcedureCall”) & GrammarNodelype v

Y Perrent (use. 1y, “FunctionCall Yy e Crammar] odelypey

Two farther derived relations are required to define the
CallGraph relation: MoedOrProcParenr and
NearestModOrProc. ModOrProcParent velates each node
{o every enclosing procedure or module declaration.

ModOrProcParent : NOBDE +3 NODE

Y descendmnt, ancestor : NODE
{descendant, ancestor) & ModUrProcParent ¢
{descendant, ancestorye Parent™s
{ f{ancesor, “ProcedureDec! ™y ¢ GrammarNodeTyvpe v
{ancestor, “ModuleDecl ™} & GrammarNodeType)

NearestModOrProc is an additional specialisation that
relates each node to the closest enclosing procedure or
module declaration.

NearestMod OrProc : NODE 3 NODE

Y descendant, nearest : NODPE »
(descendant, nearesty & NearestMadDrProc e
(descendant, nearest) € ModOrProcParent
- { 3 ancther : NODE » another # nearsst
{descendant, another) e ModOrProcParent a
{another, nearest) € MedOrFrocParent)

From these derived relations, the CallGraph relation
can be defined. A callee is any procedure declaration in
ProcDecProcUse that has a corresponding caller in
NearestModOrProc. -

CallGraph : NODE «3 NODE

Y caller, calleer NODE o (caller, callee) € CaliGraph &
Fuse_id : NODE »
(callee, use_idye ProcDecProcllse A
(use_id, caller) € NearestModOrFProc

As with the other relations derived in this example, the
CallGraph relation may be used as a starting point for
deriving other useful program dependencies.

5 Presentation and Navigation through
Documents

In this section we illustrate how relations can be uscd
by ront-end tools o allow the programmer (O navigale
through a collection of decuments. Our illustration traces a
enguiry session of a simple program that swarts with a call
graph and allows the programmer to browse the program
progressively in more detail,

Figure 4 shows a call graph for a program thai
calculates the greatest common denominator for a set of
positive integer pairs. Such a graphical view may allow the
user 1o select a node and view the related code. The
CallGraph relation was described in the previous section
as o relation between the caller and the callee, which
represented the arcs in the call graph. The nodes in the
seaph are the ProcedureDecl nodes in the parse tree (figire
1). Thus by selecting a node in the call graph, UQ% is
given a handle o the corresponding node in the passe tree,

GetNumbers oCch

Figure 4. Call Graph of GCDprog

In figure 4 the procedure GCDprog has been selecled.
GCDprog is the root module with the same name. Figure 5
shows GCDprog as well as text and Z documents that
describe it. A relationship exists between the GCDprog
module and the text and Z documents, This relationship
allows Q% (0 establish this view.

Additionally the detail of the procedure declarations in
GCDprog is suppressed. The use of detail suppression [4,
291 supports program compreheasion by reducing the
amount of information the programmer has to contend
with. However the programmer may at some stage be
interested in these procedures,

View generation allows the programmer Lo expand the
procedure declaration in situ, but this would make
presentation of associated documentation more cluttered.
Although the programmer may be interested in onc of the
two procedures, the information contained in figure 5 may

UQ2 — goddoc 2
(Filr v) (Ediv) {Eanients w) (Seareh) (Fools v) (MBC w) (Pros
% hegin Lalex., .

This progras saleulates bbe GC3x of w E1le of integer paics
rnmgly, ths pragram pheys the follaving specificabion

%)

a1 [+

T
|

[e L 1T

I 1t seq (M2 M) %
H

1

1

oi saq M

sb = GED o« 17

In practice the' u\tog-x puu- sps coad from tha atanderd
irgut anzsam, and the GCJ3 saloulated are vritten o the
“atadacd outpst sireaa. oo¢ pec Line. wim the acduls SinplelD

iMODlTLE GCOptar.

TMPORT Simplel.

| PROCENTIRE Getlnmbers{VAR «. ® CARDIMAL) BIOLEAN
§Pmnmu: GED (s b CARDRMALY - CARDINAL,

IVAR o, b CAFDINAL

XBEEIN
{ WHILE Getlumezersie, 4} DO

SumplelD Wneelard(GCTHa. b). 10) .
i Simpl D Waed.n

Figure 5. View if GCDprog and associated
description documents

o) UQ2 - galdoc =
(Rdit v { Contims =) (Searr

e
) { Toais v] (Misc v)

{Erop, vy

fal Tl

T Finreen GOl thrauies the Usexzzat Loapon Liviset
ui iL3 Tww patanetesa, 43 deiined by
AR
[4Jot» I ea Bl ET TR ol
W b P
vomod OUD (a0 % w0 0 &
bomsd OO0 (e B} - DA
~: FBle g 200 (o W Aaroda =0 A bR -0

a
Tha calvabatioa 13 achaewed wsing tw Tuglud'a a.‘.E:nLhn
Hizta that if $a% in Inas than £hi initially, the firsc
ttecarien of the lacp sinply exchmnges thaiz ralues.

PROCEDLRE CID(a. b CARDIMALY CARDTHAL.
VAR v CARIIHAL,

BEGIN
LOOF
o~ 0 MOD b
1F r - 3 THEN
RETORN b
END.
e = b
LEEC
EXD
END GID;

U DAL o

L.

Figure 6. View of GCD and associated
description documents

also be required. Opening another window (e display a
chosen procedure addresses both of these 1ssues. An
example of such a window for GCD is shown in figure O.
Oman [20] emphasises that off-line presentation of
program sources are still a necessity even with the
availability of mulliple window system like UQ, and
proposes a book paradigm for the presentation of such
documents. UQ7 is ideally suited to producing such
documents through its ability to interleave multiple

document types, include LaTeX commands in text
documents and generate views [rom cross-reference
{rclation) information,

For the example described in this section, a presentation

promoted by Lhc book paradwm may havc Ehe followma

“eOniems page:”
“Contents
Structurechart. 1
GCDprog. ... n, 2
GCD. 3
GetNumbers. -
Index . oo 5

The structure chart is the view presented in Figure 4.
The GCDprog and GCD would be the views presented in
figures 5 and 6 respectively and GetNumbers would be the
equivalent view for that procedure. The index would
contiin page and possibly line numbers for the declaration
and the uses of program elements occurring in {he
program. Note that this can be constructed from the
DeclarationUse relation presented in the example in
section 4.

6 Conclusion

Program comprehension is an important issue in
software engineering. This paper has identified two
techniques that can be employed, both to comprehiend
existing programs and to encourage the development of
more comprehensible programs, They are, analysis of
program dependencies and literate programming,

Documents that describe a software system are often
highly structural in nature. This structure resulis in explicit
and implicit, inter- and intra-document relationships.
These relationships may be used in program dependency
analysis or to link parts of various decuments together (o
forin literate programs,

We described UQ¥, an integrated development
environment which supports the use of multiple documents
and document types and allows the relationships that are
implicit in a set of documents to be represented explicitly.
1t will allow existing programs and related documentation
to be imported for analysis and construction into a literate
program. Furthermore it encounrages the literate
development of new programs, by providing the basis for
hyper-textoal literate views of programs. We illustrated a
possible definition and use of relations within the UQ#%
environment in two short examples. The first presented the
derivation of a simple derived dependency and the second
illustrated the use of relations for navigation throngh and
presentation of multiple documents of differing

143

“7 Kcknowledgemients’

descriptions. The relations and views presented in these
examples are only a limited set of the views that UQ% will
be capable of presenting,

To conclude, we believe that an environment that treats
relations as a fundamental part of documem structure is

“~hoth flexible in definition and nature.

The work described in this paper is an exteasion of
work coordinated by Professor Jim Welsh and performed
at the University of Queensland over recent years. The
UQ% environment is based on work done on UQ1 [31]
and UQ2 [6, 29]. Early investizations of document based
processing was performed by Jun Han [30} and contributed
to the relational approach adopted in this paper. Current
research is investigating coherent mechanisms for the
graphical presentation and manipelation of software
documenis in the UQ# environmeni, Much of this work,
including the current research has received fuading from
the Australian Research Council.

We would specifically like to acknowledge Professor
Tim Welsh for proposing the paper, Kelvin Ross for
contributions o the definition of the Z schemas used in the
example and Tim Mansfield for reviewing the paper.

References

Ambras J, P., Berlin L. M., Chiarelli M. L., Foster A. L.,
O'Day V., Splitter R. N. Microscope: An integrated
program analysis toolset. Hewleti-Packard Journal,
39(8%71-83, August 1988,

Belady 1., Lehman M. A model of large program
development. IBM Systems Journal, 3:225-52, 1976.

Brade K., Guzidial M., Steckel M. Soloway E. Whorf: A
hypertext tool for software maintenance. International
Journal of Software Engineering and Knowledge
Engineering, 4(1):1-16, January 1994.

Broom B., Welsh J. Detail suppression systems for
interactive program display. In Proceedings of the Sth
Australian Computer Science Conference, pages B3-93,
Tapsary 1986.

Broom B., Welsh J. Another approach to lterate
programming. In Proceedings of the 1lth Australian
Computer Science Conference, pages 257-68, Brishane,
February 1988.

Broom B., Welsh [, Wildman L. UQ2: A multilingual
document editor. In Proceeding of the 5th Australian
Software Engineering Conference {ASWEC '%0), pages
289-94, Sydney, May 1990.

Brown G. P., Carling R. T., Herot C. F.,, Kramlich I. A,
Souza P. Program visualizat:on: Graphical support for

software development. Computer, 18(83:27-35, August
1985,

(4]

{51

(7]

{18

22}

Chen Y. F., Grass J. E. The Co+ Information Abstractor.
I Proceedings of the Second Ca + Conference, pages 34—
50, USENIX, April 1990,

Chen Y. F., Ramamoorthy C. V., The C Information
Abstractor. In Proceedings of the Tenth International
Compuier Software and Application Conference, pages
291-98. COMPAC, TEEE Computer Sociely Press,
October 1986

Chep Y.F., Nishumoio M. Y., Ramamoorthy C. V. The C
Information Abstraction system, JEEE Transaciions on
Software Engineering, 16(37:325--34, March 1990,

Cleveland L. A wser interface for an environment fo
support program understanding. In Proceedings of the "848
Conference on Software Maintenonce, pages 86-91,
Phoenix, Arwona, October 19880 IBEEE Computer
Society.

Cleveland L. A program ooderstanding support
envitonment. I8 Systems Journal, 28(2):324-44, 1989,

Corbi T. A, Program understanding: Challenge for the
1990s. [BAM Systems Journal, 28(2).204-305, 1989,

Hamrold M. 1., Soffa M. L. Computation of interprocedural
definition and vse dependencies, In Proceedings of the
1990 JEEE Imtermational Conference on Computer
Languages, papges 297-306, [EEE Computer Sociely.
1990,

Keables J., Roberson K., Mayrhauser A Data flow
snalysts sod its application o software mumtenance. In
Proceedings of the 88 Conference on Software
Maintenance, pages 335-47, Phoenix, Arizons, October
1988. IBEE Computer Society,

Kowh D. E. Literate programming. The Computer
Journgl, ZT2y9T-111, February 1984,

Mayrhauser A, von, Vans A M. Prom code anderstanding
needs (o reverse engineering fool capabilities. In
Proceedings: International Conference on CAISE "93,
pages 230-39. IEEE Computer Society, 1993.

Meekel 1, Viala M. LOGISCOPE: A wol for
maintenance. In Proceedings of the "88 Conference on
Software Mointenance, pages 328-34, Phoenix, Arizona,
October 1988, IHEE Computer Society.

Oman P. Maintenance tools. JEEE Software, 7(33:.59--63,
May 1990

Oman P., Cook C. The book paradigm for improved
maintenance. JEEE Software, T{1%:39-45, January 1990,

Podgurskl A., Clarke 1. A. A formal model of program
dependencies and s unplications for software {esting,
debugping and mamtenance. TEEE Transactions on
Software Engineering, 16(9):965~79, Septemnber 1990,

Reiss S.P. Pecan: Program development systems that
support multiple views. [EEE Transactions on Software
Engineering, SE-11(3):276-84, March 1983,

144

(23]

$34]

[35]

Richardson D. I, O'Malley T. O, Moore C. T., Aha 8. L.
Developing and imtegrating ProDAG in the Arcadia
environment. In Herbert Weber, editor, Proceedings of
the Fifth ACM SIGSOFT Symposium on Software
Development Enviromments, volume 17 of Sofbvare
Engineering Notes, pages 109-119, Tyson's Comer,
Virginia, USA, December 1992, Special Interest Group
on Sofiware Enginecring, ACM Press,

Schwanke R, W., Platofl M. A, Cross refersnces are
features. In ACM Ind Imiernational Workshop on
Software Configuration Manogement, pages B6-93,
Pripceton, N, 1, October 1989, ACM Press.

Spvey LM, The 7 notation: & reference manual Prentice
Hall International, 1989,

Teitelman W. A display oriented programmer’s assistant.
Fternational Jewrnal of Man-Machine Sudies, 11157
87,1979,

Weaser M. Program slicing. In Proceadings of the 5th
International Conference on Softwvare Engingering, pages
43949, Sen Diege, Cabiforma, March 1981, IEEE
Computer Society.

Weiser M. Programmers use slhices when debugging.
Conununications of the ACM, 25(71446-52, July 1982,

Welsh I, Broom B., Kiong DD, A desiga rationale for a
bangnage-based editor. Seftware-Proctice and
Fxperience, 21992348, 1991,

Welsh 1., Han 1. Seftware documenis: Concepts and tools.
Technical Report TR-93-23, University of Queensizad,
Brishane, Australia, 1993,

Welsh J., Rose . A, Lloyd M. An adaptive program
editor. Australion Computer Journol, 18:67.74, 1986,

Wilde N, Understanding program dependencies.,
Curicutum Module SELCM-26, Camegie Mellon
Universily, August 1990,

Wilde M., Huitt R, Huiit 8. Dependency apalysis wols:
Reusable components for software maintenance. In
Proceedings of the 89 Conference on Sofiware
Mainienance, poges 126-31, Miami, Flonda, Ociober
1989 IEHE Computer Society.

Yau S. 8. Methodology for software maintenance.
Technica]l Report RADT-TR-83-262, Rome Alr
Development Centre, Griffis Alr Force Base N Y,
February 1984,

Yau 8. 8, Coliofello J. 5., MacGregor T. Ripple effect
apalysis of software maintenance. In Proceedings of
COMPSAC °78, pages 6065, IEEE Computer Society,
1978,

Object Data Models to Support Source Code Queries:
Implementing SCA within REFINE

"""" Santanu Paul

. Dept of Electrical.Engiﬁééring and Cdinp'ﬁtef Science
University of Michigan, Ann Arbor, MI-48105

Abstract

The REFINE ' object base is being used widely
for cede analysis and reverse engineering, From the
perspective of program querying and inlersctive pro-
gram analysis however, REFINE-like object bases offer
only general-purpose programming languages 1n which
users must code their program queries. In conirast,
Source Code Algebra (SCA} is an object algebra
designed to serve s an applicative source code query
language. We are currently implementing an SCA-
based gquery processor within the REFINE environ-
ment. This paper provides insights inlo some object
data model features which are currently absent in the
REFINE framework, and argues that their incorpora-
tion will enable certain source code queries {o be han-
dled more efficiently. We also argue that the inclusion
of these features will greatly simplify the fmplementa-
tion of the SCA gquery processor.

1 Motivation

Good systems to support querying on source code
are an important part of a toolkit that aids program
comprehension and reverse engineering. The purpose
of a source code querying tool is to help human re-
verse engineers indulge in plausible reasoning or do-
main bridging [2] — an iterative process of guesswork
and verification that leads them to a better under-
standing of what the source code is doing.

The choice of a suitable data model for programs
is a central question in the design of source code
querying systems. The most rudimentary “querying”
systems include string-searching tools such as grep,

18oftware Refinery, REFINE, DIALECT, REFINE/C, RE-
FINE/COBOL, and INTERVISTA are trademarks of Reasoning
Systems

0-8186-5647-6/94 504,00 © 1994 IEEE

145

which treat program source code as a stream of char-
acters (represented in files). Files are also the chosen
representation of cross-referencing tools which keep

track of identifiers and their corresponding references.

Progress in database theory has had significant impact
on the evolution of program data models. The rela-
tional data model has been used to model program
information in the CIA [5] and CIA++ {8] systems.
Subsequently, the graph data model has been adopted
in SCAN [1], Rigi [10], and other graph parsing-based
systems [15] as the “natural” model for representing
software structure and resource flow information. The
syntax tree-based model (a restricted version of the
graph data model) has been used in systems such
as SCRUPLE [12]. At the present time, the object-
oriented data model, a logical extension of the graph
data model reinforced with strong type semantics, has
emerged as the more appropriate data model for pro-
gram information. In particular, the REFINE object
database built into the Software Refinery [14] com-
mercial product has been successfully employed in the
analysis and reverse engineering of legacy software sys-
tems [3, 9].

However, this increase in modeling power is some-
what compromised by the ahsence of formal as well as
flexible query mechanisms in the sophisticated mod-
els. For example, in grep, a query is specified declar-
atively using a simple regular expression. In a rela-
tional framework, a query is either a relational calcu-
lus (or SQL) expression (declarative) or a relational
algebra expression (applicative). Either way, a query
is essentially non-procedural, i.e., it doesn’t have to
be programmed explicitly by the user in some elabo-
rate programming language. In contrast, in the graph-
based and object-oriented models, there are no simple,
flexible query langnages. This can be ascribed to the
absence of sufficient formalism in these models. Con-
sequently, systems based on these models provide ei-
ther a pre-programmed menu of query features, or a

general-purpose programming language in which users
must explicitly program their queries.

To alleviste the problem of formalism, we have al-
ready proposed a Seurce Code Algebra (SCA) as the
foundation for building program query systems [13].
The zlgebra defines an object-oriented model for rep-
regenting program or source code information and
gives a well-defined set of operators that can be uged
to make queries on the information. The analogy is
the use of relational algebra [6] as the foundation for
relational database systems. As in relational algebra,
queries are expressed by writing exprassions using the
given operators. The benefits of using an algebra as
the basis for a query language include the ability to
provide formal specifications for query language con-
structs, the ability to use the algebra itself as a power-
ful applicative query language, and opportunities for
query opiimization,

This paper deals with an experimenial effori o
extend REFINE with a2 8CA-based non-procedural
query language and processor. Specifically, we are in-
terested in querying and analyzing C programs. In
our view, this is an exercise with interesting possibil-
itles. On one hand, REFINE/C, a commercial prod-
uct based on REFINE tailored to handle ¢ programs,
comes with a predefined € data medel. REFINE
also comes equipped with a powerful, multi-flavored
database programming language that can be used for
diverse purposes ranging from code transformation to
metrics nnalyses. On the other hand, SCA offers the
possibility of an applicative, optimizable query lan-
guage which REFINE currently lacks. A combina-
tioi of the two approaches can be achisved by im-
plementing an SCA query processor within the RE-
FINE framework. To achieve this, two steps are nec-
essary. First, the SCA data model must be mapped
into a corresponding REFINE data model. Second, an
SCA algebralc evaluator must be implemented within
the REFINE environmeni to serve as a query proces-
sor. We have already implemented substantial paris of
the SCA-based query processor within REFINE. The
prototype is operational and many complex program
queries can be processed with it.

Some important issues related ic object-oriented
modeling arose in the contexi of mapping the SCA
data model into REFINE. In particular, we found
that the REFINE daia model lacks first-class citi-
zen support for collections such as seis and sequences.
It also does not support an inheritance hierarchy of
attributes. Furthermore, we also found that unlike
some other object-oriented databases, REFINE does
not contain automatic support for extending class

146

schemas at runtime. Admittedly, these shortcomings
do not cripple REFINE since any missing functionality
can be programmed in REFINE (as we have done in
the abovementioned cases) using its powerful database
programming language. However, as we hope to show
in this paper, the lack of these features complicates
the implementation of the SCA query processor and
makes it harder to handle certain classes of program
queries within the REFINE framework.

Section 2 provides a brief description of the SCA
machinery required to understand this paper. Bec-
tion 3 sketches the current features of REFINE and in-
dicates the target environment we are trying to build,
Section 5 elaborates on the features that are currently
unavailable in REFINE, shows why they are impor-
tant, and discusses what we have done to implement
them. Finally, Section 6 provides a suminary and con-
clusions,

2 SCA: Source Code Algebra

SCA models C source code as an glgebra. Infor-
mally, algebras are mathematical structures that con-
sist of data types (sorts) and operations defined on
the data types {operaiors). Qur objective in design-
ing o Source Code Algebra {SCA) was to model the
data types in the source code domain as sorls, and
to design source code guery primitives as operators.
A clear analogy can be found in the relational data
model, where ihe relafional algebra serves as the un-
derlying mathemaileal model. By modeling source
code as an algebra, we can employ a non-procedural
query lanzuage to query ib. Thers is one major distine-
tion though: SCA is a generaiized order sorted aige-
bra while relational algebrais a one soried algebra. In
other words, SCA handles a wide variety of data types
and supports a iype hierarchy. In contrast, relational
algebra supports only one type, namely relalions.

2.1 SCA Data Model

2.1.1 Many Data Types

The data types that arise in C source code modeling
can be classified into three groups:

» Atomic data types: These are the basic data
types such as INTEGER, FLOAT, BOOLEAN,
CHAR, STRING, ete.

s Composite data types (Objects): Examples
of composite data types in C are syntactic ele-

typs DECLARATION.LIST
typs STATEMENT.LIST
typs COMPOUND-STMT
endiypw
type FUNC-CALL
o TR [oot e

type FUNCTION

set of DECLARATION
sequenice of STATEMENT

subtyps of STATEMENT

decluDECLARATION-TAST (comporition)
HminETATEMENT-LIST {composition)

subtyps of EXPRESSION
f‘nncdef:?UNCTIO“ {referenec)
arguments: EXPR-LIET {composition)

subtyps of PROGRAM-OBIECT

#etdlypa

type FILE

R R PE R AR e Gy

ram:STRING (compouition}
paramatert:PARAMCLIST (composition}
body i COMPOUND-STMT (comparitian)
subtyps of FROGRAM.OBIBCT

sam:STRING {composition)

ancdtypa

type STATEMENT

andiyps

{ance:FUNCTION-LIST {¢ompasitien)
globdecluDECLARATION-LIST (compositina}

subltyps of FROGRAM-OBIECT

line-so NTEGER (sznotatian}

4o VARIABLE-LIST {refereace) fnveres ured-by
defines: VARIABLELIST (reierenze) Inverse defined-by
live: VARIABLE-LIST (method) rerampete

Figure 1: A part of the SCA Domain Model

ments of the language such as while statement,
relational expression, identifier, etc,

e Collection data types: These are collec-
tions of other data types. For example,
the type statement-list represents a se-
guence of statement objects. Similarly, the
type declaration-list represents a sel of

declaration objects.

2.1.2 Type Hierarchy

An interesting feature that characterizes source code
data types is the presence of a type hierarchy or class
hierarchy. For example, while-statements are a sub-
type of the type statements (by specialization of be-
havior).

SCA incorporates the source code type hierarchy
as an integral part of the algebraic framework. The
algebra handles the notion of subtyping and inheri-
tance, and supports substilutability, an important fea-
ture which lets an instance of a subtype be used in
place of a supertype.

2.1.3 Object Attributes

There are four different kinds of afiribuies that may
be associated with a source code object, namely, com-
ponents, references, annotlations, and methods.

147

Componenis model syntactic or structural informa-
tion. -In the case of a while-statement object, the
components are its condition and body.

References model the associations between objects.
In addition to simple cross-referencing information,
they offer a way of modeling resource flow relation-
ships that occur between objects. One set of impor-
tant data flow relationships in the source code domain
model are the “uses” and “defines” relationships.

Annotatlions are used to store all other relevant in-
formation about source code objects. Typical annota-
tions to a source code object are line numbers, metrics,
etc,

An attribute of an object can also be a method or
a function that is computed on-the-fly. Methods are
usually computed to obtain reference or annotation
information, during guery ezeculion. Methods are a
standard feature of object-oriented data models and
can be used to introduce complex and specialized al-
gorithms into the data model.

2.2 Source Code Algebra Operators

Given the source code data model in SCA, the next
task is to define the algebra operators that are rele-
vant to the task of querying source code. SCA is an
algebra of atomic types, objects, and collections. We
have ‘used and extended operators from pre-existing
object algebras for set operations, generalizing them

Opezainia Deacripiion

< atirsbuie > Tranature; GOME ok ANY

rpalsz: & attribuie > (C obfect)
semantics: Beturos the value of the apecified atiribale

sminct aignatars: COLLECTION{ANY1} wes COLLECTION{ANTL)
ryntas: salact opontean ,g,.,.",,-an>((abjectigoilection >}
permaniics: ('hooases & 3ubcoliection based on a gondition

projact siganinrs: GOLLEL DION{COME]) — COLLECTION (COMPY)
yniaz: project goqyributelisty (< objesteoilection >)
samantics: Retains only the apecified atsribotes

axiond

Tiheinie COLLECTION(COMP]) — ©OLLEC TGO MBT)

pyatazr axtend onrtpidute:malgebraic expressiond < obiectcatlectian >}
exrmantics: Adds a new adtzibuie to tach objest

ratriava

ngaainre: COLLECTION{COMP) e COLLECTION{ANY)
aynisr: ratriava cuqrributey (< Pbjectcalicetian >}
sermaniics: Aletricves o apecificd atisibuie

closurs

pignalers: COMP e SET{COMP}

Ffalar CIOBUTE goyrrihytaliets {C odTact)
semanficn: Finda al] obiects zeachable using llated attributes

appiy

sranaters COLLECTIONIANY 1) . COLLECTISHIAN Y]
rpatedt WPPIY Caperatarn i€ abfestasliection >}
sermaniics: Applics s shary operator 1o sach slement

produast

sipnalart: LOLLEG bANILGOMEL] X GOLLECTION{TGOMPZRY »e SET{GOME3}
rgatam product{< objecicaliectisnl >, < objantzaliasiiond 3}
szrmanites: Cardesian prodact of two collectiong

HAatisn

aagagiars: COLLECTION{COLLECTION{TOMPL)] e COLLECTION{COMEPL)
sgniaz; flatten{« ebjectcnlicciron >)
semsniics: Hemaves o devel nf neatiag

pick

rpastars COLLECTIOHIANTL] — ANYL
syotam pitk epanlean expraesinn (% odisctecllcation >}
semsantics; Picks an elemant ont of & singleton callection

EYEE:t

sesmanmiicss Retuzrns the size

Tignatare COLLEGCTIGH{ANY] m 1M1
syafar: alge.nf{< objesicoilesiion »)

redune

Tignatarn COLLECTIDN{ANY] —m ANY
1gmiag: f'dusﬂCapc?siur>(< objecicallecison)
2amantics: Appliza a binary operalo? recuraively 4o ithe celisclinn

Tarall

signalunre: Loliliiai L LON{ANYY mom BOGL
sgaten: Tormllopopicon crprevsinny (€ shinstoailantion)
remazntiza: *rue if 21} ebjocta satizfy the condition

FEItIT)

ngnatgre: COLLBCTION{ANY) — BOOL

pyalae: ARIBEA L hoataan c:pn:uibn)“: objectenilection)
ssmantics: True if even oke object aatisfics the condistiasn

e ar onf

yngfars: COLLECTION{ANY1) X ANYi e SOO0L
ryataz: mamberof{< collectionl >, element)
sermantizs; True if element is & member

Table 1: SCA Operators for Objects and Collections

to operate on sequences wherever possible, and pro-
posed appropriate operators for sequences. We have
introduced seqg.extract, a powerful new operator for
sequences which uses regular expressions as the basis
for extracting subsequences. SCA offers a unified ap-
proach to querying celleciions, whether they be sets
or sequences. This is a departure from earlier ap-
proaches where the data model is either essentially set-
oriented or sequence-oriented. Using the SCA opera-
Lors, source code queries can be expressed as algebraic
expressions. An evaluation of an algebraic expression
on the source code representation yields the resuli of
the query. A detailed description of SCA operators
can be found in {13].

Table 1 shows SCA operators defined on objects
and object collections. Operators specific to sets and
sequences are shown in Tables 2 and 3 respectively.

Using these operators, users can express a wide va-
riety of queries. For example, consider the SCA ex-
pression:
head) (orderno_of_func,>(set-to_seq(

extendno_nf_func::aizc.of(funcz)(FILE))))

This expression evaluates to the file that has the

148

LApTrnior
unian

Dieacripiion

p3gmainre; SEL{AMTI) X BRILANTLY = SEI{ANTI)
panlan: vnlon{< sef >, < 242 B}

remaniizce: Union ol bwo sois

Tigmatare BETIANTI] X GETIANYI) —m SET{ANTE]
sgataz: intarssciion{d sed >, < 98t >}

sementics Interaaction of tws acle

sigraiarn: SLL{AMNTYI! X SET{ANYL) wwe SET{ANYL;
spniar SYTarance{< sef B, € 2ed B}

sermaaitest Diffevencs af two agis

Intersaziion

diffeennan

rubEal &8 TigRAiErT SR LlANT L) X SETIANTL) s BOOL
syataz; subset.of{< sef >, £ 2ef >}
semanbicst Troe if npe aet is & mubaed of another
SHt Lo _aniy signatnrs; SL {ANYL) e E:EQ{A'N‘:’A)

ayaien: seb.to.seq{d e D}
semantics: Praduges s random seguence {rpm $he ant

Table %; SCA Qperators specific to Sets

maximum number of functions. First, the file objects
are extended with a new field, namely no_of func. The
set of file objects 1s then converted into a sequence and
arranged in decreasing order of noof func. The head
of this sequence is the file with maximum functions,

| tributes,

termanieer: Sairncts a aubiequence thal fits the pattern

Operatar Description
tend ignalsrn SEQ(ANY 1) — SEQIANYIL}
trafes: hend ¢ o5 (€ objecireg)
remanfics: Rleturzs n seguence consiating of the first n elementn
tail regmatere: SEQIANY 1) - SEQIANYL)
rpnlas: tall ons (< obiceticg D)
seragnfics: Hetarns a sequence coneisting cf the lant n eloensn
concat fgratere: SEQUANY) X SEQ{ANY 1} — SEG{ANY1)
rynlar: eoncat{< obhjectocg >, ¢ obfeataeg >)
iemanlicer Returns & concatenation of lwe sequengee.
ordar ngnuturn SEQIANY 1} — SEQIANYL)
I capntan order o griributed Cords (K thiectaag >} .
semanlice: Raturns a seguence ordered by 1he attribole valses
sacpmziract tigaaters; SEQ(ANY 1) — SEQIANTYIL}

LArmies: magaxbract o paypeensoceonditions {5 2biegtoeg >0

#eejplerment sgmature; SEQ{ANY 1) —— ANY]
epmtaz: weq.alerment oingery (€ sbiettecy)

semantics: Returss the indexed elomest of 1he sequence.

stbsng .ot tigaafere: SROQ{ANY 1} X SEQIANYL) ewe GOO0L
rpntar: subseqof{< cbjeciseq >, < objacisey >}
sersgnfics: Tree i 01 i2 2 subscquence
weo Ao sal fepnalere: SEQUANY 1} s SET{ANYL)
rpafez: saqtoat{< objecireqg >)
reinabifice: Retuvae & ael copsisting of ihe senoence elemenn
Table 3: SCA Operators specific to Sequences
BlALECT REFINE NTERVISTA
Irput Senrer E
! |
ot L !
el S Olbfest Daubesse
[l LI N .
L= § S sl
! Pl @ ﬁ AL Dty 1]
: SN 4 - i
6 & v @ N e
[""""i ! /
Provr cymed .
o : H & i [
gL ool | L
il i"’ P g e x]
flest 5 - s
| e T | [Aortyra] [Franclonsd :
Chupui Swerce I R

| Coda winem o REFINE Prognenmasg Lasgungs
I i

I 3

Figure 2: Software Refinery Archilecture

3 Software Refinery

The Software Refinery toolkit {14] is a powerful
reengineering system. It has gained considerable pop-
ularity amongst reengineering practitioners and aca-
demics as & convenient vehicle for both sxperimen-
tation and industrial strengih reverse engineering and
reengineening. The toolkit contains an object database
{called REFINE), a database programming language
{also called REFINE), a parser-cum-printer genera-
tor (DIALECT), and a GUI development environment
(INTERVISTA}. The schematic architecture (adapted
from [3]) is shown in Figure 2. We cover the object
database and the programming language in this sec-
tion.

3.1 REFINE Object Base

The REFINE object base is an object-oriented
database that models the objects in an application do-

148

main and the relationships between the objects. Users
can define their own classes and attributes and create
schemas (also known as a domain model specification).

Typically, & program is represented in REFINE as
an abstract syntax tree whose nodes are objects. The
relationships between these objects are modeled as at-

The object base also supports a class hier-

may be program-object. Other classes such
as program, function, efc. are subclasses of
program-object. Similarly, while~statenmant is a
subclass of statement. A class hierarchy is semi-
lattice strueture thai snpports the inheritance rela-
tionship between the different classes.

3.2 REFINE database programming lan-
guage

A powerful database programming language, also
known as REFINE, is at the heart of Software Re-
finery. The language is multi-flavored, i.e., it sup-
ports & wide variety of programming styles and fea-
tures including procedural, functional, rule-based, and
pattern-based constructs. The syntax of REFINE is
lisp-like. The procedural and functional constructs are
useful in writing analysis routines. The rule-based and
pattern-based constructs make it easy to write trans-
formation routines for code reengineering and restruc-
turing. Some of the other highlights of the REFINE
language are:

e Support for high-level data types such as sets, se-
quences, trees and tuples, and their operations.

e Support for syntactic pattern matching.

e Flexible escape to Lisp, so users may write code
in Lisp as and when necessary.

4 Implementing the SCA-based Query
Processor

Our goal is to implement an SCA-based query pro-
cessor within the REFINE environment. Figure 2
shows that currently, all processing tasks such as query
Drocessing, code analysis, and transformation must
be programmed in REFINE using the database lan-
guage. Our objective is to create the scenaric shown
in Figure 3, so that query processing and some analy-
ses on code can be performed by an applicative query
language. To reiterate, such an approach facilitates

REIANE INTERVISTA
!
i ?
T ™ i ;
L~ Estended Gliecs Buubare
l Paresr i‘ o . !
T -
| & 8 v‘\ f U pae wmé
! SN e
[- w @ = errm——
; TR
] [N

Figure 3: Modified Architecture

interactive program querying and promotes data in-
dependence, well-defined query semantics, and query
optimization,

The implementation of our query processor con-
tains two parts, First, a pamser for SCA expressions
must be constructed. The SCA parser converts SCA
expressions written by & user into equivalent SCA ex-
pression trees. Finally, an evaluator of SCA expres-
sion trees must be implemented using the REFINE
database programming language.

At this point, the SCA parser 1s complete and evalu-
ator is nearing completion. The evaluator has already
been used to process many SCA queries, Details of the
queries that have been processed is beyond the scope
of this paper.

5 Bome Issues
Modeling

in Object-oriented

Ws present three important object-oriented model-
ing features that are unavailable in REFINE. We con-
tend that REFINE standsto benefit from the inclusion
of these features, both interms of its modeling as well
as query capabilities. Ve also contend that such fea-
tures significantly simplily the implementation of the
SCA query processor.

5.1 Collections as Classes

The REFINE data meodel does not support collec-
tions as first class citizens. REFINE classes are de-
finable on objects, but not on collections of objects.
For example, REFINE/C provides a class DECLARA-
TION (actually DECLARATION-OBJECT but we
use DECLARATION as a shorthand), the extent of
which is the set of all declaration objects present

150

in a given program. However, REFINE/C dees not
provide a class DECLARATION-LIST, the extent of
which would be the set of all declaration lisi#sin the
program. On the other hand, the SCA datamodel
treats collection data types at par with objects

In the case of source code, collections are extremaly
important. Source code contains syniactic etities
such as statement lists and declaration lists with the

semantics of sequences and sets respectively. (ueries

on these collections must be supported. For exmple,
consider the simple queries:

1. Find all the declaraiions in the program.

2. Find all the declaration lisis in the progran

While these queries may appear contrived inisola-
tion, such simple queries frequently oeccur in the con-
text of more complex queries. For example, if the user
wished to find all declaration lists with more than n
declaration instances, or all declaration lists that con-
tain m or more declarations of type T, then qery 2
would need to be evaluated as the first step. Such
queries apply equally well to paramster lists, state-
ment lists, ete.

Declaration lists can occur as attribute valies of
objects such as FILE objects, COMPOUND STATE-
MENT objects, ete, In the SCA framework, sine both
declaration as well as declaration—1list am sup-
ported as first class data types, the equivalent (dmple)
expressions for these queries are:

1. Ee!eciTﬁgg(DECLARATIGN)
2. selectrpup{DECLARATION — LIST')

The REFINE implementation for the first query is
simple: instances-cf{DECLARATION}. Fo the
second query however, mapping the SCA collection
data types to REFINE classes becomes the first issue.
The query implementation follows from the mapping.

There are two ways to deal with the mapping
problern. REFINE permits collection-valued at-
tributes. For example, the type of an atiribute may be
SET{DECLARATION). One way is to create dummy
classes for collections. For example, we can define
a new cless in REFINE/C called DECLARATION-
LIST with exactly one attribute, say list-aii, which
points to a declaration Iist. In this way, all declaration
lists in the system can be assoclated with a2 dummy ob-
ject of the class DECLARATION-LIST (through one
level of indirection imposed by the atéribute). Tohan-
dle queries such as query 2, a query processor needs
to identify collections as special classes, and tramspar-
ently access the value of lisi-atir for each member of
the dummy class DECLARATION-LIST.

The second way to deal with the mapping
problem is to retain the attribute types as
SEQ(STATEMENT), SET(DECLARATION), etc.
For example, FILE has an attribute globdecls
with type SET{DECLARATION) and COMPOUND-
STATEMENT has an attribute decls with type
SET(DECLARATION). Similarly, there may be many

other “attributes in “the complete ‘schema “definition i e

with the same type. To find all instances of

G

composition seference
st .
condition, body / matrics computation ,'f \‘\
}f r/ N
— i N
(Ean-in) G-y S
wees, defines calls, jumps ‘g;;b e

i

size, metrics author, versiop-rumber

“declaration-1ist using REFINE, 6ne has to write”

procedural code to navigate through objects, locate
attributes with type SET(DECLARATION), and find
their values.

The same query would have been much simpler
if REFINE treated collections as first class cilizens.
In other words, collections ought to be treated as
classes by themselves, at par with classes for sin-
gle objects (STATEMENT, DECLARATION, etc.).
The new classes would be STATEMENTLIST, DEC-
LARATIONLIST, and so on. Finding all instances
of declaration-list would then be equivalent to
instances-of{ DECLARATIONLIST), ie., finding
the members of the class, which is a simple class op-
eraiion. The SCA expression would be:

selectrrup(DECLARATION LIST)

The result of the query would be a set of declaration
lists,

5.2 Attribute Hierarchy or Grouping

The REFINE data model, with one exception, does
not support attribute groups. On the other hand, the
SCA datz model supports four different kinds of at-
tributes, These are composition, reference, onnola-
tions, and methods. This grouping of attributes can
have important pay-offs in terms of query processing.
Consider the query: Find all function calls within the
body of function foo. Clearly, starting from object
foa, the idea is to recursively explove its syntax sub-
tree and filter out objects belonging to class FUNC-
CALL. This can he efficiently done by pursuing only
the composition attributes, as opposed to all possi-
ble attributes. Consider a different query: Find all
statements with which stalement s shares ¢ data-flow
relationship. Here, starting from s, we wish to traverse
only the data-flow attributes (a subgroup of reference
attributes) to locate target statements. Clearly, the
ability to traverse atiributes selectively is an impor-
tant one and can be achieved using attribute groups.
For example, the SCA expression for finding the func-
tion calls within foo is:

Figure 4: Atiribute Grouping

SEIﬂCtobjecfclassﬂFUNCmGALL(CJQEureaampcsEticn(
pickname="foo" (FUJVCTION)))

Currently, REFINE supports composition at-
tributes as a group. This is done using the notion of a
tree atiribuie, effectively allowing the schema designer
to register certain attributes as syntax tree attributes.
A bunch of tree traversal operations are provided to
navigate the syntax trees, There is no equivalent sup-
port for reference attributes. Nor can the schema de-
signer decide a hierarchy of attribute groups of his or
her choice. To implement the SCA attribute groups,
explicit book-keeping is required to keep track of at-
tributes.

This issue is resolved in object-oriented databases
which support atfribute hierarchies, and other object-
oriented systems such as Telos [11], a development en-
vironment for information systems, which treats at-
tributes as first class citizens. The ideal scenario is
depicted in Figure 4. In addition to the four attribute
groups, a schema designer may define other attribute
groups as subgroups of previously-defined groups. An
attribute group in the hierarchy represents a union of
all attributes defined below it.

5.3 Extension of Class Schemas

RETFINE does not permit the dynamic extension of
class schemas. All class schemas are defined at compile
time. This affects view generation, which is a standard
feature in relational databases [7]. Views offer a mech-
anism to compute information not explicitly stored in
the database. For example, the join operation in rela-
tional algebra computes new relations (or tables) from
existing ones. In object-oriented databases, new views
can be created by performing computations on exist-
ing attribute values of objects and storing the results
as new attributes. Consider the query: Show the five
largest functions in terms of size (in lines). First, we

must compute the size of each function, then order
them in decreasing order of their sizes, and finally
choose the top five. To be able to order the func-
tions, we need to explicitly store the size associated
with each function. This should be done by extending
the class schema associated with FUNCTION with a
new atiribute, say, func.size. For each function, the
value of this new attribute is given by end_line minus
siari line.

Currently, the only way to add a new attribute o
a class schema is by explicitly compiling a new at-
tribute. During query execution, the need to generate
new attributes may arise naturally and each time, the
query processor must suspend execuilon, re-compile
the class definition with a new altribute, compute the
value of the new attribute for each class member, and
then resume guery processing.

A simple class extension feature can solve this prob-
lem. In SCA, we have defined an extend operator,
whose very purpose is to add new attribuies to ob-
ieets and compute them on-the-fiy, The syntax of the
operator is:

extendcairibute zezpressions (< objectcollection >)

6 Summary

In this paper, we have discussed the iden of provid-
ing an algebraic query language interface for REFINE
object bases. The idea is to provide a powerful, in-
teractive query language for souree code analysis and
program comprehension, which also lends itgell well to
opiimization, 5CA is an object algebra suited $o this
purpose.

HEFINE is a powerful and widely-used object
oriented database for programs. We have attempted
to identify object-oriented modeling features that are
importiant for querying on source code, but are cur-
rently lacking in REFINE. The three features we iden-
tify are support for collections as classes, attribute hi-
erarchies, and support for dynamic class extension,
Some general-purpose object-oriented databases such
as GEMSTONE [4] currently do support some of these
features, but they lack REFINE’s specialized support
for tasks such as parsing, program transformation,
code pattern matching, ete., making them difficuli to
use for analyzing programs. We have shown that the
inclusion of the above features is desirable in object-
oriented database systems used for representing and
analyzing programs In order to efficiently implement
powerful languages for making queries on source code.

References

(1

{13]

R. Al-Zoubi and A. Prakash. Software Change Anal-
ysis via Attributed Dependency Graphs. Technical
Repori OSE-TR-95-81, Dept. of EECS, University of
Michkigan, May 1991.

R. Brocks. Towards a Theory of Comprehension of
Computer Programs. J{niernationa! Journs! of Man
Machine Studies, 18:543-554, 1983,

E. Buss and 1. Henshaw. A Soltware Reverse Fngi-
acering Experience. In Proc. of the CAS Conference.
IBM Canada Lid. Laboratory, Centre for Advanced
Studies, 1991,

P. Butterwortk, A, Ouis, and 1. Stein. The Gensions
Object Database Management Sysiem. Communica-
tions of the ACM, 34{10):50-77, October 1991,

Y, Chen, M.Y. Nishimoto, and V. Ramamoor-
thy, The O Information Abstraciion System. [EEE
Transactions on Software Enginesning, 16{31:325-334,
Mazrch 1999,

E¥. Codd. A relational model for large shared data
banks. Communications of the ACM, 13{(6):377-387,
1970,

C.J. Date. An Introduction to Database Systems.
Addison-Wesley, 1988,

J.E. Grass. Object-Orientad Design Archaeology with
ClA++. Computing Systems: The Journsgl of the
USENIX Associnbion, 5{1):5-67, Winter 1992,

W. Kozaczynsky, 1. Ning, and A. Engberta. Program
Concept Recognition and Tramlormation. [EEE
Transactions on Software Engineering, 18{121:1665—
1675, December 1852,

H.A. Muller, M.A QOrgun, 5.R. Tiley, and 1.5 UhL
A Reerse Enginsering Approach te Subsystem Struc-
ture Identification. Software Mainlenancs: Bessarch
and Proctice, 5{41:181~-204, December 1993,

J. Mylopoulos, A. Borgida, M. larke,
and M. Koubaralds. Telos: Representing Knowledge
about Information Systems, ACM Transaclions on
Information Systems, B(4):325-352, Ociober 1590.

5. Paul and A. Prakash. A Framework for Searce
Code Search Using Program Patterns. [FEE Trans-
actions on Softwsre Engineering, pages 463-475, June
15584,

S. Paul and A, Prakash. Supporting (QQueries on Scurce
Code: A Formal Framework, Inlernational Journal
of Software Engineering and Anowledge Engineering,
September 1994, Special Issue on Reverse Engineer-
ing.

Reasoning Systems, Palo Allo, CA. REFINE User’s
Guide, 1989,

“L.M. Wills, Automaled Program Recognition by groph

paraing. PhD thesis, MIT, 1992,

Determining the Usefulness of Colour and Founts
in a Programming Task

Riston Tapp

Department of Computer Science
University of Waterioo
Waterloo, ON, Canada N2I, 3G1

ritapp@watcgluwaterloo.ca

Abstract

This paper veports on the resulis of an experiment
that was run in order to help determine if colour or
font size was more wseful for displaying code in «
programmang fosk, end if se, which was more useful.
The null hypoihesis of the experiment was that neither
colour nor font size were of any benefit to users in pro-
gramming tasks. The null hypothesis was refuted. [t
was determined that the colour display mechanism both

I(“;‘ié’

ped the fime faken fo perform e code oplimization
task, and was preferved by subjects. The use of the font
siz¢ display mechenism showed no significant benefits,

1 Introduction

Throughout the history of computer programming
there has been the desire io make programs as easy io
understand ns possible. High lovel languages, strue-
tured programuming and even the proper naming of
variables have all been developed for this purpose.
With the development of laser printing and terminals
capable of displaying code and graphics in various sizes
and colours, new media through which to display com-
puter programs are avallable. No longer is program
display limited to line-oriented textual displays or line
printer onlput. Of course, with these new media come
new problems: with all of these new sizes, shapes and
colours with which to play, how can these abilities be
used to maximum effect?

There have been two techniques which have uii-
lized the powers of graphical display. One technique
is to present information to the user which is addi-
tional io, or different from the code being displayed.
For instance, graphical overviews of a program can be
displayed in addition te the program ecode itself, The

0-8186-56847-6/84 $04.00 © 1984 IEEE

154

Rick Kazman

Department of Computer Seience
University of Waterloo
Waterloo, ON, Canada N2L 3G1

rnkazman@watcghuwaterloo.ca

other technigue is fo present additional Information
about the code artifuct to the vser as part of the dis-
played code. A simple forerunner of this technigue
15 eode formatting (as exemphified by the wgrind and
lyrind systems in Unix).

This paper is concerned with the second technique
of program presentation. Specifically, we are inter-
esied in the use of colour and font size for the display of
compuier program code. Both colour and font size are
tools that conld net be widely used untid improved dis-
play mechanisis became cominon. Both colour and
font seem o be potentially useful devices with which
to mprove code display. But are they really?

The subject of this paper s an experiment that was
developed in order to help answer just this guestion.
A 5x2 factorial experlment was run, with 3 different
methods of displaying code and 2 different program-
ming tasks used, One of the display methods used
colour, another used font size, and the last used no
special display tool (in order to obtain the effecis due
to colour, font size, and as a control case, respectively),
The programming tasks included a code coverage task
{a task ensuring thai every line of given code was ex-
ccuted} and a vode optimization task (a task to make
given rode tun as fast as possibie},

There have been other papers in which code dis-
play using wmultiple colours and font sizes has been
discussed. However, whenever differing font sizes or
colours have been used in code presentation, either
the testing performed was not done in a manner by
which the individual influences of colour and/or font
size could be obtained, or no experimentation was even
performed to begin with. This paper attempts to rem-
edy these oversights. Indeed, the null hypothesis of
the experiment discussed in this paper is that colour
and font size in code display make no difference in
programming tasks. Through the exploration of this

hypothesis, this paper will help to determine which of
colour or font size is more important for code display,
if either of these display methods are of benefit at all,

2 Background

~Aheprevions papers.onthe subjecl of giving additional .

information to the user via changes to the program
cade shall be reviewed. To begin, the idea of using
changes in the code itself to signify meaning has three
basic stages of growth. These stages include: code
formatting, using colour, and visual coding.

Omne of the first methods of improving upon the
look of code was the formatting of cade. Many stud-
ies have been done on this subject. For instance, Love
[8] determined that paragraphing of source code had
no vifect on subjecis, Miara, Musselman, Navarre and

Shneiderman [6], meanwhile, showed that certain lev-

L4
¢ls of program indentation aided in program compre-
Lhension and user satisfaction. Even the use of capital-
ization was deemed useful, as Payne, Sime and Green
[10] experimented by making the aperation codes of a
simple command language be in upper case, thereby
gaining o deecrease in operational errors. Perhaps the
efforts of code formatting can best be summed up by
citing the work of Oman and Cook (8], however. In
their study they included the aspect of commenting
code with certain elements of source code formatiing
in order to derive a book format paradigm of code
formatting. Through their use of this paradigm in
four separate experiments, they were able to show sig-
nificant uprovement to both program comprehension
and mwainfenance efforts.

Az soon as the capability of using colour arose,
there were those who rushed to use il. Examples of
the early use of colour as an aid in coding occur in the
field of error reporting. Both the work of Reynolds
[12] and of Oberg and Notkin [7] used colour to report
erTors to users in a method akin to pretiyprinting. In
addition to using sound and regular error messages,
when users eniered syniaciically correct but semanti-
cally incorrect inputl inte the Reynolds system, they
were able to see this error by the colour of the input be-
ing different to what it should have been (since certain
types of input would be mapped to certain colours).
The Oberg and Notkin system, however, used a type of
lazy evaluation of code as it was typed into the editor,
allowing errors to gradually change in colour accord-
ing to the age of the error. The user could then fix the
errors according to personal preference, without fore-
ing the user to correct the mistakes in the middle of a

task. Unfortunately, however, neither of the Reynoelds
or Oberg and Notkin studies produced statistical evi-
dence of the benefits of their methods.

Visual coding deals with the act of adjusting the
leok and feel of code. It involves the use of colour and
font styles and sizes along with code formatting in or-

~derto.present codedn.z meaningful.way.. Practitioners ..

of this method of using the code itself to impart the

meaning-ofa pregramancade-Zellenbesk-and -Gook [41s
and Baecker and Mareus 3. Cel-
lenbeck and Cook investigated the effectiveness of in-
cluding module hender comments znd maemonic maod-

and Baecker

ule names, along with the use of a larger font size
for the module headers, in code. The presence of all
three factors aided program comprehension, hut the
addition of larger foni sizes for the headers was only
a very modest part. Baecker and Marcus developed a
methodology for the use of visual coding. Indeed, they
utihiged every aspect of visual coding; however, they
did not provide any statistical evidence of the effects
of using their systens, Furthermore, determining what
detatl of the visual coding causes which result in their
system would be difficelt. Both the Gellenbeck and
Cock and the Baecker and Marcus studies are good
beginnings, however, into the realin of visual coding.

3 Method

A between-subject, 3x2 faclorial experiment was
run. 39 subject had to perform two separate program-
ming tasks on a computer and then ill out a question-
naire about the experiment. One task was 1o ensure
the execution of every line {i.e., ensure code coverage)
of a 250-line program via a test suite, The other task
was to oplimize a 548-line program with respect to
speed. The guestionnaire’s funciion was to get the
subjects to rate their experiences of the experiment.
The null hypothesis of the experiment was thal nei-
ther colour nor font size would be of apy significant
value for displaying code in a programming task.

The source code for hoth tasks was to be presented
to each subject in one of three ways. One way was to
display the code as it would normally be displayed, in
the text editor of choice for the specific subject. An-
other way was to use varying lont sizes for the code
when it was to be displayed. For instance, if the task
being performed was the coverage task, the subject
would get to see the code displayed in iwo different
font sizes—a large font size for lines of code that had
been covered by their test suite, and a small font size
for code that had not. If the task being performed
was instead the optimization iask, the code would be

displayed to the subject in font sizes ranging from =
very small font size for lines of code that had been
executed very few tlmes fo a very large font size for
lines of code that had been executed many times. The
third way in which code was to be displayed to a sub-
jeci was to use multiple colours. Just as for the font
size display method, if the subject was performing the
coverage task, code would be displayed to the subject

intwo different colours=<blue for lnes of code that had:

been covered and geld for lines of code that had not.
Por the optimization task, the colours of the different
lines of code would range from light blue for code that
had been execuied only a few times, through purple
and on to red fur lnes of code that had been execuied
frequently,

Thus the experiment was set up to compare and
contrast the use of colour versus font size versus the
normal display method for code. Both the use of
colour and the use of font size imparted extra informa-
tion to a subject than without their use. Whether or
not this extra information was successfully conveyed
remained to be seen. To aid in this decision, the fol-
lowing measurements were taken. For the code cov-
erage task measurements where taken {o record: {a)
the time taken to complete the task, (b) the accuracy
with which coverage was obtained, and {¢} the number
of times the code was displayed. For the optimization
task the same measurements were also taken, except
that measurement {b} was instead 2 mensurement of
the speed of the optunized code. Through analysis of
the resulis of these measurements, some determination
of the usefulness of the display tools was possible.
3.1 Subjects

Thirty nine experienced C programiners at the Uni-
versity of Waterloo served as subjects. Most were
gradnate students, and all were at least in the third
yvenr of an undergraduate university program. Sub-
jecis were paid for their participation.

3.2 Materials

Preparation of the maiterials used in the experiment
involved four main duties. They were: (2] preparation
of the source code for the coverage task, {b) prepara-
tion of the spurce code for the oplimization task, {c)
preparation of the code display mechanism, and (d)
preparation of the guestionnaire.

The code for which the subjects were to provide
code coverage was a simple triangle classification pro-
gramm. The user of the program would enter three
numbers which were interpreted as the three sides of

156

a triangle. The program would classify the triangle
as equilateral, isosceles or scalene. The program was
written in C and consisted of 2539 lines of code and
comments in five routines,

The code which the subjects were to optinuze was
an implementation of a KWIC Index Production Sys-
tem {9]. 1t was also written in C and consisted of 549
lines of code and comments in eleven routines. A sep-
arnte input file was also created {unlike the inpul file
for the coverage task, input for this task was static).

Because the code was to be optinuzed with respect
to speed, it was deliberately written so as to perform
poorly with respect to runtime efficiency. Indesd, the
program was intentionally written with many inefi-
clencles. The reason for this design was that i was
desired for the vode optimization task to be task in-
tensive rather than search or compilation intensive,
In other words, it was desired that the subjects spend
their time actually improving the code rather than
searching for subtle mprovements to the code or try-
ing to get difficult improvements to compile.

To this end, a small palette of inefliciencies was
included tn the optimization task code.
efficiences included such things as poor orderings of
if/else consiructs, placing cede within loops which
should precede the Joops, choosing the wrong sorting

These in-

algorithim and using inefficient daia structures,

The preparation of the code display mechanism var-
ied slightly depending on whether the cade to be dis-
played was for the coverage task or for the optimiza-
tion task, and on whether the code was to be dis-
plaved as usunl, with varying foni sizes, or with vary-
ing colours. No maiter what the code was or how it
was to be displayed, however, it still basically involved
a {wo siep process.

The first step of the process was to obiain profile
the number of
times eack line of code had been executed during the

information of the code in guestion:

previous invocation of the compiled code. The special-
ized display mechanisms needed this information for
both tasks, and it is readily available using any code
profiler. In our case we used the Unix fcov comimand.

The next step of the display process differed slightly
depending on the purpose of the code and how it was
to be displayed. The step itself, however, involved only
a simple conversion of the profile information (along
with the original code) obtained from the firsi step,
into a tagged text file. This tagged text file was tagged
specifically for use by the text viewer lector {lector
[11] is an X11 application which displays tagged text,
ailowing text to be viewed in multiple foni sizes and
colours, among other things), so that lines of code

would be displayed in the proper font size or colour
corresponding to their profile information. Once this
conversion was performed, all that remained to do in
order to display the text was to run lector.
The only question that remained at this point was
the question of what font sizes and colours were de-
~sireds-For the code coverage lask-it-was decided-that
the small font size (uncovered) would be Helvetica-12

“grdethe lnrge-font size” (covered) would e Heélveticas

3. The corresponding colours were to be gold and
Bhie. The reason {or these choices was thal the dis-
parity between the two font sizes and the two colours
needed to be distinet and the choless made seemed
to meet this goal. For the cede optimization task,
the font sizes were chosen to range from Helvetica-8
to Helvetiea-34 and the corresponding colours ranged
from light blue through purple on to red. The main
goa! for deciding these ranges were to get a large
encugh range. For the font sizes, this was casy (there
were plenty from which 1o chose), It wasn’t as easy
for the colours. Originally it was desired to only use
one eolour and to range from light to dark, How-
ever, the cholces of shadings for one colour were not
distinet enough, so the multicolour range was chosen,
with aiiention paid to RGEB values and visual experi-
ence when making the choice,

‘Thus the process of converting the profiled code
inte lector tagged fext was a simple one. This pro-
filing, lector conversion and display process was aulo-
mated for user testing, and so was unseen by users.

For the purposes of onr experiments, we also in-
cluded, as & control group, the use of a standard dis-
play mechanism (the user’s favourite text editor). Nei-
ther the profile information neor the lector conversion
process was necessary for this display method,

The questionnaire was prepated in order to deter-
mne the subjects’ likes and dislikes of the the display
methods used, and of the experiment in general. Tt
consisted of 10 questions asking the subject to rate
{on an integer scale of 1 to 5, 1 being poor, § good)
their experiences with the experiment, and their abil-
ities with the tasks. The first eight questions deali
with rating the two new display methods introduced
in the experiment, four similar questions for each dis-
play method. The remaining two questions asked the
subjects to rate their abilities, one question per task.

3.3 Procedure

The procedure of the experiment consisted of four
parts. Theses parts were: (a) orienting the subject,
{b} the subject performing the first task, {¢) the sub-
Ject performing the second task, and (d) the subject

157

completing the questionnaire and being debriefed. An
experimenter was present during the experiments.
Once 2 subjecl asrrived, he or she read a cover let-
ter explaining in general terms what the experiment
was about. Then the subject was randomly assigned
a display method {either the normal display, font size
display, o1 colour-display Y foreach task The one stip-
ulation was that no one subject used the same display

“methiad for botlithe Coverage and optimizalion” tasks.

As well, approximately hall of the 58 subjects per-
formed the code coverage task first, and then the code
optimization task. The remaining sabjecis performed
the tasks in the reverse order.

As soon as a subject was ready to perform the first
task, Iie or she was given sheets of paper deseribing the
task in greater detail. {For the remainder of this sec-
tion, the frst task will refer 1o the code coverage task
and the second task to the code optimization task. Of
eotrse, this ordering was not always the case.}) After
reading these papers, the subject was zlowed to ask
guestions about any troubling points and was given
furiber oral advice. Then the first task was begun.

The time limit for the code coverage task was nomi-
nally set at 25 minuties. Subjects were allowed to finish
within this time limit, but not to go over it. The ac-
tual course of the task went as follows. The subject
was allowed two computer windows in which to oper-
afe. One window was fo be used to run the display
mechanism {or to view ithe code in a text editor of
ihe subject’s choice, il the display method randomly
picked was not the font size or colour method}. The
other window was to be used to create the input text
file containing the fest suite with which the subject
wus Lo obtain code coverage.

The actions of the subject for the first task were:
to {a} create a trial test suite, (b} run the display
mechanism {or simply run the compiled code if ikere
was no display mechanism to be used for this task},
{c) view the newly displayed code in the lector text
viewer {or view the cutput of the code coverage pro-
gram il no display mechanism was being used in the
trial), and {d} repeat this process if complete cover-
age was not cbtained. As soon as a subject felt that
he or she was finished the task, he or she notified the
experimenter and the appropriate measurenients were
taken. Throughout the task, the subjects were allowed
te ask questions of the experimenter, as long as these
questions were of a procedural nature.

At this point the subject was ready to perform the
second task. As with the first task, the subject was
given sheets of paper explaining the task in greater
detail than the cover sheet previously read. Questions

were allowed, and further oral advice was given,

The time hmit for the code optimization task was
50 minutes {the whole experiment had a time limi¢
of an hour and a half). If subjects were not finished
at the end of this time, they were allowed exira time
to make sure thai their code was able to be compiled

{without compilation there wounld be no way in which-

to determine how fast the oplimized code ran).

Once the subject way feady to beégin, the following

procedure was followed, Again there were two win-
dows allowed the subject, ane window in which io op-
timize the code, the other window Iz which to run the
display mechanisin {or run the compiled code if no
special display was allowed). The subject would then:
{a) run the display mechanism {or run the code}, 1)
view the newly displayed code in the
{or view the output of the KWIC Index program), {¢)
make changes to the code in order to optimize it with
respect to speed, and (d) repeat this process if the sub-
ject felt that the cods could be further opiimized. As
soon as the subject felt thati the task was finished, ke
or she notified the experimenter and the appropriate
measurements were taken. As with the first task, the

lecior text viewsr

subjects were allowed to ask questions of the experi-
menter throughout the second task, this time ofbotha
procedural and a code comprehensive nature, {14 was
desired that the subjects understand as quickly as pos-
sible the workings of the rode, to make sure that the
aser spent his or her thme on the oplimization task,
rather than on program comprehension.)

Onee both tasks were finished, subjects filled out
the gaestionnaire and were debriefed. Once the gues.
tionnalre was completed, the subjects were paid and
any remaining guesilons about the experiment were
answared, Subjects were promised a synopsis of the
experiinent if they so desired,

4 Results

This section is divided into three parts. First, re-
sults of the data coliected from the code coverage task
experiment are given. Nexti, resulis of the data colb-
lected from the code optimization task are reported.
Last, resulis of the gquestionnaire are presented. All of
the resulis will be discussed in Section 5.

4.1 Code coverage task

Three dependent variables were measured for each
of the subjects during the code coverage experiment.
These variables were the time taken io complete the

158

‘ Colour | Font Size | No Format |
© Time taken 14167 FA.017 16

| Lines missed | 0,833 0.583 0.769

; {terations 5.5 5 2,769

Table 1: Result means for the code coverage ex-

periment

task {in minutes}, the accuracy of the subject in com-
pleting the task (determined by the number of lines
of code not covered), and the number of times that
the code was viewed {or tun) in completing the 1ask.
The resull means as grouped by viewing methad can
be seen in Table |

Al of the subjects finlshed the code covernge task
within the sllotted time of 25 minutes. Two results
{one each from of the colour display method and the
font size method) were discarded due to fatlure of the
subjects invelved to understand the task correctly. For
the remaining results, analysis of variance tests were
performed across the display method types,

There were no statistically significant differences
between the display methods for the first two measure-
ments. Compoering the average time taken to finish the
) = 087, p = .05, Indeed,
the average times taken to finish the task were very

task gave a resell of M2,

similar, Comparing the accuracy of the various dis-
play methods, meanwhile, gave a result of F{2,34) =
§.24, p » 0.05. The average accuracy of the subiects
using the eolour display method could be improved
{to 0.3 lines missed] by removing two outlier resulis,
but even so, this improvement still did not give signif-
tcant differences. Varlance between subjects within a
display method was just too high,

For the measurement of the npumber of terations of
viewing code, however, the availahility of a new dis-
play methods did result in an increase of their nse
The result of this analysis of varinnce was F{2,54) =
3.48, p « D.05. The lteration process [create data,
run, display} for subjecis using the coleur or font size
display methods was performed significantly more of-
ten than the corresponding process (create data, run)
for subjects using no specinbized code viewer {almost
twice as often).

4.2 Code optimization task

As with the cede coverage task experiment, three
dependent variables were measured for each subject in
the code optimization task experiment. The only difs
ference in variables mensured from the previous task

Colour | Foni Size | No Format
Time taken 41.083 49,615 54.077
Speed increase | G09.3 495.538 543.333
Iterations 6.333 9.077 11

ahle 2 Reduld dieans for the code optimization

experiment

to this task was that, instead of accuracy being mes-
sured, the speed increase of the oplimized code (in
psee} was measured in its place. The result means
cun be seen in Table 2,

For this task, 22 out of the 3% subjects took longer
than the allotted 50 minutes. All subjects were warned
when their time was nearing its end, and, if they were
not finished at the end of BD minntes extra time was
given to allow the subjects to obtain compilable code.
Fven so, 4 results were discarded due to code not com-
piling when speed testing was performed, three for
the colour display method and oune for the text edi-
tor display method. Analysis of varianee tests were
performed on the remasining results,

Unlike the code coverage task, the code optimiza-
tion {ask showed significant differences when the av-
erage times taken viz display method to complete the
task were compared. Analysis of varianee for this mea-
surement gave a result of F(2,35) = 4.87, p « 0.05.
As can be seen from Table 2, those subjects Lthat used
the colour display method finished the task noticeably
faster than subjects using either of the other two dis-
play rethods (17 percent faster than those using the
font size method, 25 percent fasier than those using
the test editor method}.

Comparing the average speed gained by the opti-
mized code, however, showed no significant difference
between display methods, F(2,32) = 0.77, p > 0.05.
The variance in the speeds obtained by subjecis for
ench display method were very high, thus hampering
any possible significance,

As for the previous task, the comparison of the
number of code viewing iterations between subjeets
utilizing the different viewing methods showed signif-
icant differences. This time the results were FI2,35)
= 2.97, p <« (.10, and those subjects who used the
specialized display methods (especially the colour dis-
play method} performed the iteration process less of-
ten than their text editor counterparts.

Colour | Font Size
Like using 4.23 3.76
Aid in task 4.08 3.85
Ease of use 4.306 4.24
Use again 4.36 3.71

Table 3: Result means for the guestionnaire dis-

158

play method questions

4.3 Questionuaire

The four display method questions presented in the
gquestionnaire asked the subjects to rate the following
areas: (a) how much they liked using a particular dis-
play methed; (b} how much the display method aided
in the task; {¢} how easy 1t was o use and under-
siand the display method: and {d) whether or not the
subject would use the display melhad again if possi-
Ble. The mean results of the questionnaire experience
rating questions can be seen in Table 3

Tn ull cases, the average raling for the colour dis-
play method is bigher than {or the font size method.
However, the difference in ratings is statistically sig-
nificant only for the first and lourth questions. Anal
vsis of variance for the first question Jdifferences gives
F{1,49) == 3.60, p < (.10, while for the fourth ques-
tion F{1,47) = 6.07, p = 4,025, Subjects enjoyed using
the colour method and would like to use it again, even
though there were no statistical differences in terms of
the percelved benefils of the method, as delermined by
the other two questions.

As far as the subjects’ skill ratings are concernad,
not much mformation was oblained. Scatterplot di-
agrams relaling the subjects’ skill ratings o actual
performance showed no discernable patterns. In fact
it was often the case that 2 subject with a poor rating
would outperform more highly rated subjects. The
mean skill rating for the code coverage task was 3.64,
o = 0.81, while the mean skill rating for the code op-
timization task was 3.09, o = 1.05.

5 Discussion

The results were not exactly as expected {or the
code coverage experimment. Although no difference be-
tween the specialized display methods was expected,
it was thought that the use of cither of the colour or
font size display would improve on the time taken to
complete the task. This result did not cceur. Per-
haps the task itsell was too easy. Indeed, some of the

subjects obtained code coverage through an element
of chance, happening to use the corzect input without
realizing why it was correct. (For example, there was
one line of code for which it was necessary to use a zero
as input, rather than a negative number, even though
the code appeared to accept either. Many subjecis
first tried negative inpui, only to have to backtrack
through the code fo determine why a zero had to bhe

used. The fortunate subjects.wers those that. hap-.

pened to use zero first.} Even so, there was evidence
of the specialized display methods being used te ad-
vantage. Indeed, both the colour display and the font
size display resulied in approximately twice as many
iterations (create data, run, display) as compared with
the ordinary text editor display method {create data,
rund, This resuli, coupled with the statistically equal
results of acouracy and time taken between display
methods, seems to show that the use of the display

tools replaced, io some exient, thinking on the sub-
Jeets” part. The subjects using the enhanced displays
obtained the same results as their text editor counter-
paris, but with greater relinnee on the computer,

Much as for the code coverage resulis, the resulis
for the code optimization task were also opposiie fo
what was expecied. For this task it was {vli that the
font size display method would be the most useful,
since the differences in code execution speed translated
very naturally into code font size differences {large
lines were frequently executed, tiny lines were seldom

execuied}). However, it appears that the colour range

chosen, from blue lo red, alse iranslated guile read-
iy to the optimization problem. In fact, it seemed 1o
translate more readily than the font size method, given
its superior results in the time taken to finish the task.
{Perhaps the unusual use of screen renbesinte by the
font size display explains this difference. Many sub-
jects stated that they found the varying lne sizes io
cause a pecullar {and distracting) arrangement of the
copde in the display window., Whether or not this un-
ordinary sizing scheme is something to which it simply
takes fime to gel secustomed is not known.)

As far as the speed oplimizalions are concerned, it
seems that all subjects performed the same optimiza-
tions no matier what the display method used. This
shservation would explain the similarities in the speed
increases obtained. Perhaps this result 1s due o the
commonality of the artificially induced inefficiencies
in the code. All subjects were able to remove these
ineficiencies, but those who used the colour display
method did so faster.

The resulis for the wse of the visnalization tools
showed the special display tools {in particular the

colour display tool) to have been used less often than
code was run when using no special display method
for the optimization task. This result Is opposite to
the corresponding resalt for the code coverage task.
The reason for the decreased number of iterations of
viewing the specialized displays when compared to
the number of iterations of running the code for this
task, however, could be the same as for their increased

-numbers o the code coverage tasks As opposed te

166

having to scan code sequentially and improve upon
code s one sees inefficiencies, subjects who used the
colour display method could gravitate immediately to
the inefficiency ‘hot spots’ and ignore other, possibly
less important ones. Using this methodology, subjects
would Indeed need io view the code less often than

3

they wounld normally, Therefore, just as for the code

coverage task, the specialized display tools again re-
placed human effort,

The purpese of the questionnaire was Lo i1y to de-
termine subject response to the different display meth-
ods introduced in the experiment. As such, the anal
vsis of the questionnaire results showed that the sub-
jects felt that there was no difference between the
colour or font size display methods as far as the ease

of their use or in the ald they provided to the subject

in completing their tasks, Interestingly, however, sub-

goots did feel that they liked using the colonr method
more than the foni size method, and they said that
they would enjoy using i again. Even without any
performance reasons Lo use colour, 1t would seern thas

there 1s o reason to do so in terms of user prelerenves.

68 Couclusions

The purpose of the experiment was to determine
whether or not using eolour or font sizes for code
display was of any benefit to a programmer, and if
so, which one was better. As such, the findings of
the code display experiment refuie the null hypoth-
esis that colour and font size make no difference in

code dispiny, Indeed, the results seem to show that

the use of colour i ihe more effective tool for pro-
moling greater undersianding of code to a user, and
that indeed, using different font sizes is of unceriain
advantage. This result must be understood within a
context, however. 1t has not been shown that the use
of varying font sizes is of no value—what has been
shown is that the use of colour does make a significant
difference in a real programuming task, Tt is entirely
possible that, under different assumptions, foni size
could alse have been effective, or that colour vould
have been even more effective,

The statistical results garnered from the experi-
ment show that the use of colour adds to both user
performance and user satisfaction. Although subjects
did not perform appreciably better for the code cover-
age task, they did spend less time in finishing the op-
timization task, and for both tasks subjects expressed
their liking of the colour displays..

Subjecis expressed iheir fondness for the font size
“displays as - well - However colour was distinctiy pres
ferred, and the performance results for subjects using
the font size display were generally not any different
than for those subjecis using no specinlized display,
Subjects did not seem fo adjust to the font size dis-
plays as guickly as fo the colour ones, with many sub-
Jeet cxpressing a dishke of the spatial changes of the
Perhaps the
font size mechanism was more suited {o the code cov-
erage task than for the optimization task {due to the

code caused by the varyving font sizes.

less size varialion involved}), but for this task too there
was o problem with subjects missing uncovered code.

In the final analysis, 1t would seem that using foni
size to express extrs information in code is of ques-
tionable value, an ouicome with which the findings of
Gellenbeck and Cook [4] agree.

It 15 recommended that lurther research he per-
formed into using colour in the display of code. In
particular, study needs to be done into using colour in
tasks other than the ones used in this experiment, as
well s into determining which eolours work best for
a speeific task. The colour schemes used for the two
tasks in this experiment seemed to work well, and per-
haps they are as good as any other schemes. However,
it needs Lo be known what colour schemes work best,
and if different tasks require different colour schemes,
it needs to be known which schemes fit which fasks.

‘The notion of using typographical aids to improve
upon code appears to be a good one. The experi-
mental results discussed in this paper would suggest
that colour be one of these alds. More work needs to
he done in each of the separate sections of this field,
however, before all of the tools can be unified into one
pervasive method of displaying code.

References

1] R. Baecker. Enhaneing Program Readability and
Comprehensibility with Tools for Program Visu-
alization. In Proceedings of the 10th Internafional
Conference on Software Engineering (Raffles City,
Singapore, April 11-15} ACM/SIGSOFT and
IEEE/CS, New York, 1988, pp. 386-366.

13

161

I B, Baecker and A. Marcus. Design Principles for
the Erhanced Presentation of Computer Program
Source Text. In M, Mantei and P. Qrbeton, editors,
Human Factors in Computing Systems-JII North-
Holland, Amsterdam, 1986, pp. 5158,

R. M. Baecker and A. Marcus, Human Factors and
Typography for More Rewdable Programas. ACM
cobress, Reading, Massachusetts, 1940,

[4) B, M. Gellenbeck and €. R. Cock. Does Signal-
ing Help Professionsl Programmers Read and Un-
desstand Computer Programs?, In J. Koenemann-
Hellivean, T, G. Moher and 8. P, Eobertson, ed-
ttars, Emprical Siudies of Progremumers; Fourlh
Workshop, Ablex Publishing Corporation, Nore
woad, New Jersey, 1091, pp. 82-88,

Effect of Program Structure on Program Under-

standing, In ACM Sigplan Netices, 12{3}, 105-113,

1977,

Love. An Experimental Investigation of the

6 R
B, Shoaderman. Program Indentation and Come-
prehensibility. In Ceommunicafions of the ACM,
November 1983, Volume 26, Number 11, pp. 861~
367,

J. Miara, J. A, Musselinan, J. AL Navarro and

-3

{ B, Oberg and D Notkin. Error Reporting with
Graduated Color. In JEEE Software, 9{8)}, 33-385,
§907,

8] P, W, Oman and . R. Cook. Typographic Style
ts More than Cosmetic. In Communications of the
ACM, May 1990, Velume 33, Number 3, pp. 586-
520.

99 D. L. Parnas. On the Criteria To Be Used in De-
composing Systems into Moduoles. In Communi.
cations of the ACM, December 1872, Velume 15,
Number 12, pp. 98-103.

[16] S, J. Payne, M. E. Sime and T. R. G. Green,
Perceptual structure cueing in a simple command
language. In Int. J. Man-Machine Studies (1984},
21, 19-24,

11} D. R. Raymond. lector— An Interactive Format-
ter for Tagged Text. UW Centre for the New Ox-
ford Englsh Dictionary and Text Research, Wa-
terloo, Ont., 1990.

[12] C. T. Reynolds. The Use of Colour in Language
Syntax Analysis. In Sofiware——FPractice and Erpe-
rience, Voi. 17{8), 513-519 (August 1987).

SIFAC, a Tool for Program Comprehension by Specialization

Sandrine Blazy, Philippe Facon
CEDRICIIE
o8 allée Jeun Rosuind”
91025 Evry Cedex, France
{blazy, facon}@iic.cnam.fr

Abstract

This paper describes a ool for fucilitating the
comprehension of gengral progroims using automatic
speciatization, The goat of this approach was 1o assist in
the maintenance of old programs, which have become very
complexs due to numerous extensions.

This paper explaing wity thiy approach was chosen,
how the tool's architecture was set wp, and how the
correctness of the specialization has been proved. Then, we
discuss the results obiained by using this toof, and the
Juinre evolutions.

1. Intreduction

In {2}, we have presenied a now approach 10 assist in the
comprehension ol general programs, based on partial
evaluntion technigques 10 analyze the behaviour of source
code. Here, after 2 brief rocall of that work, we will first
discuss the use of the o], sccondly we will show how it
has been proved with respect 1o dynamic semantics, and
thirdly we will present the evolutions we are working on.

It 1 well-known that program comprehension is a
wedious and time consuming phase of soltware
mainienance. This 15 particularly true when mainiaining
scientific application programs that have boen writien for
decades, such as those developped al EDF. Electricité de
France (EDF) 15 the natonal Fronch company that
produces, distributes and provides cleciricity 1o the whole
country. As such, EDF has o deal with an extensible
amount of computerized scientific applications, These
application programs are mainly implemented in Fortran,
which is an old-fashioned language, but which is sull
witlely used in industry. The reduction of a program when

some of its inpud variables are known was the main wish of

EDF scientisis and programmers. These people were faced

0-8186-5647-6/94 $04.00 © 1994 IEEE

with so general applicaton programs thal existing market
ol could not help them o understand their application
programs, Thus, we have developped a technigue for
specializing programs by showing several views, a view
representing g program functonality or a specific context,

This approach is complementary o classical techniques
of representing programs ot higher level of abstractons
(reverse engineering lechniques). Program speciatization
has been seldom used for program comprehension.
Automatc program specialization has been used (as partial
evaluation) m compilation to oplimize programs or 10
gencrate compilers from interpreters by partially
cvaluptag the interpreter Tor 4 given program) (13

I {21, we have described our wehnique for restricting
the behoviowr of g program o specific values of s input
varhles, We have shown uan example of program
reduction and we have formaliy specified the two main
nsks of our specialization process by means of inference
rules, The aim of this new paper s threefold: first 1o expiain
how cur lool, SFAC (Specializaton of Forran programs as
arr Ald 10 their Comprehension) s used, and second 1o
show hiow we have proved the completeness and soundness
ol the specialization rules we had previously presented. At
Izast, we present the evelutions of our tool.

We focus on general purpose programs that are large
and complex and whose application domain models
cacapsulatie several models. This gencrality i3
implemented by Foruan input variables whose value does
notl vary in the context of the given application. We have
distinguished two classes of such variables:
= data about geometry, which describe the modelicd

domain. They appear most frequently in assignment

statements {equations that model the problem).
= controd dara. These are cither filters necessary 1o switch
the computation in torms of the context {modelled

domain), or tags allowing o minimize risks due 1o

precision orror inthe output values, Control daw 1ake a

finite number of values; they appear in particular in
conditions ol aliernatives or loops.

As an example fllustrated in Figure 1, consider the
modelization of a liguid flow along the surlace of a nuclear
power plant component. That volume is partitioned along
the three axes, with a number of partitions of respectively

TIM, IM and KM Moreover, the surlaee being porous, ona™

__regular basis, IPOR is the relative side length of the solid
“part for each elementary cubic partition. Thus TN, ITM KM 77

and [POR are data about gecometry, Now we have a [iler,
THERMODYNAMICAL MODEL, which is the name of
the law that characterizes the liguid. We have also a wg,
PRESSURE, with integer values that correspond, by a
table, 1o real pregsure values, each one with a specific
numerical precision.

DATA ABOUT GE
KM =3

4

IM = 1
| - IPOR = 0.5
IM =3

THERMODYNAMICAL _MODEL

! 2 3

1.22 | 4178 | 12

Fig. 1. Data about geomeltry and conirol data

O approach aims at highlighting such input variables
in ald programs, that have become very complex duc o
extensive modifications. It led us to develop a technique for
program specialization according 1o specific values of such
variagbles (for instance, the speciabizaiion of a 3D-
application into a 2D-one by fixing the value of a co-
ordinate). This technique simplifies programs ﬁmt arc thus
shorter and easicr 10 understand.

What means 1o simplify a program in that contex1? We
believe that to remove useless code is always benelicial 1o
program understanding. In that case the objective is
compatible with that of program optimization (dead code
elimination}, but this is certainly not the casc in gencral. On
the other hand, the replacement of {occurcnces o)
variables by their values is nol so obvious. The henclit
depends on what these variables mean for the user

163

variables like PI, TAX_RATE, etc. are likely 10 be keptin
the code: on the contrary, imtermedisie variables used oaly
(o decompose some computations may be not so meanigful
for the user, and he may prefer to have them removed.
Replacing variables by their values may lead 1o dead
codc (by making 1hc a‘;sig:nmcnm to Lhese, vuriables

Huww'.r lhlS is ccrmmly nol a S‘iIfflCECﬁl reason 1o d(}___ B
systematic replacement. OF course, even when there is no

replacement, the known value of a varishle is kept in the
environment of our simplification rules, as it can give
opportunitics o remove useless code, for insiance if the
condition of an alternative may be evalusted thanks 1o that
knowledge (and thus a branch may be removed),

The benelitof replacement depends not only on the kind
of variuble but also on the kind of user: a user who knows
the application program well may prefer 1o keep the
variables the meaning of which is already known o him; a
user rying o understand an application program he does
not know at all may preler 10 see as few variables as
possible. In fact, our experiments have shown that the ool
must be very Hexible in that respect. Thus, our ool works
as follows, There are three options: no replacement,
systematic replucement, and cach replacement depending
on the user,

The remuinder of this paper is organized as follows. In
section 2, we recall briefly how we have specified the
speciatization process, Then, we detail in section 3 how we
have implemented our methed for specializing Fortran
programs, Section 4 explaing how (o prove the soundness
and completeness of the specialization with respect o the
dynamic semantics of Forran, Examples of proofs for
some Fortran siatements are given in appendix. Scction 3
presents conclusions and future work,

2, Specification of the Specialization

To specify the automatic program specialization, we
have used inference rules operating on the Foriran abstracs
syntax and expressed in the natwral semantics formalism,
asgmented with some VDM {91 operators. Natural
semuntics [11] has its origin in the work of G.Plotkin {[8],
[14]). Under the name “structured operational semantics”,
he gives inference rules as a direct formalization of an
intuitive operational semantics: his rules define inductively
the transitions of an abstract interpreter. Natural semantics
extends that work by applying the same idea (use of a
formal sysiem) to different kinds of semantic analysis (not
only inlerpretation, but also typing, wanslation, etc.),

For every Fortran stalement, we have wrillen rules that
define inductively the automatic program specialization
[51. Figure 2 gives two examples of these specialization

for an essignment whose
mericel constent M

g

H is the environment
associating values 1o 77
variables whose values
are knpwn before
exeputing the current
statement (Xe=E (1),

i Cthen I else 12 1 (b))

=N, Hi{X—N]

VDM map overrlde operator, H“‘"{X@N] is H in which the
value of X is N whether X had already a value m Hornot...

simplificd statement under the hypothesis H
L { Fortran smiement mprux,ci ina

% lincar form of the Fortran abstract syntax

specialization rule for the then-branch

HE C—bool (rue) HE 1 — T

(b}

H b it Cthen Iy else Iy fi —a= 'y, Y

“.. specialization relation

Fig. 2. Examples of specialization rules

rules. Rule (@) cxpresses the speciplization of an Fortran, o build our automatic speciatizer. From Centaurf
assignment whose condition evaluaes 0 o rumerical Forvan, we have implemented an environment for
constant and rule {b) expresses the specialization of an awomatic specialization of general Fortran proprams,
abicraative whose condition ovaluaies o true. Figure 3 shows the overall architeciure of our sysiem. In
this Figure, Centaur/Fortran is represenied by the grey partl.
3. The Specializer (SFAD) ftconsisis ol
= o Forran parser and a tree builder, that have been
We have implemented our method for automatic generated by Centaur from g concrele syniax and an
speciatization of gencrad programs by using the Centaur abstract synlax of Foriran
system {3 @ gengric programming envicpnmen » a Foriran preity-printer that displays Fortran ahstracs
parametrized by the syntax and scmantics of programming symlax trees as Forran texts, Their layout may be
languages, This sectlon deseribes the everall arehiteciure customized.

of our tool, SFAC. Then, it gives some quantilative results. A language for specifying the semantic aspects of
languages called Typol is included in Centaur, so that the
A4 Architecture of SFAC sysiem s not restricled to manipulations that are based
solely on syniax. Typol is an implementation of natural
semantics. [can be used o specify and implement siatic
semantics, dynamic semantics and translations, Typol
specifications operale on abstract syniax trees; they are
specilic o that language. The resulling environment compiled into Prolog code. When executing these
consists of a structured editor, an interpreter/debugger and specifications, Prolog is used as the engine of the deductive
other tools, together with an uniform graphical inerface, In system. A Typol program is roughly an unordered
Centaur, program lexts are represented by abstract syntax cotlection of axioms and inference rules. We have written
trees. The textual (or graphical) representation of abstract Typol rules that implement the automatic specialization.
symax trees nodes may be specilied by prewy-printing These rules are very close 1o the ones we have formally
rules. Centaur provides however a default representation. specificd.

When provided with the description of a particular
programming language, including i1s abstract and concrote
synizxes and semantics, Centaur produces an environment

We have used such a resulting environment, Contaur/ Given a Fortran program or subroutine and some

164

congrete

on inpat

variables \

& and

taxes -

FORTRAN |
pArsers+
tree builders

v

Initial
FORTRAN
prograr SEhEnI
Typol
programs

Constraints KFORTRAN éﬁ_ﬁfré:ét:.":"-"":'

tree manipulation
tools

spccéaﬁz?d program
{FORTRAN)

Fig. 3. The Centaur/FORTRAN environment

constraints on input variables {cxpressed as a list of
equalitics between varables and constants), the
corresponding residual program is obtained by ¢licking in
the window containing the Fortran code. The ool may be
used inlwo ways: by visual display of the residual program
as a part of the initial program (for documentation or for
debugging) or by gencrating this residual program as an
independent {compilable) program,

Note that some vsers found our ool interesting also for
global program comprehension: in that special case they
have notin advance known input variables, but they ask for
interesting variables for specialization, Thus, we aim at
providing such variables. A set of variables is interesting
for specialization specially if their values at the program
entry determings the value (true or false) of the conditions
of somes alternatives. To detect such variables, we will
perform backwards analysis, very close to those performed
in program slicing [7}. We will also take into account the
importance of the aliematives (number of siatements in
each branch).

3.2. Quantitative results

We have written abowt 200 Typol rules 1o implement
our specializer. 10 rules express how to reach abstract
syntax nodes representing simplifiable staterents. 90 rules
perform the normalization of expressions (this
normalization allows to propagate constant values).
Armong the 100 rules for simplification, 60 rules implement

the simpfification of expressions. The 40 other rules
implement the statements simplification, We have written
about 25 Prolog predicates 1o implement the VDM
operators we have used to specily the simplification. Thus,
lhese operators are used in Typol rules as in the formal
specification of the simplification.

The specializer may analyze any Fortran program, but it
specializes only a subset of Fortran 77 (for large scientific
applications at EDF, Fortran 77 is used exclusively
guaraniee the portability of the applications programs
between different machines). This subset is a recommended
standard at EDF. For instance, it does not analyze any goto
statement (they are not recommended at EDF), but only
£oto statements that implement specific control structures
{e.g. a while-foop).

The average initial length of programs or subroutines we
have analyzed is 100 lines of FORTRAN code, which is
lengihier than the recommended length at EDF (60-70
lines}. The reduction rate amounts from 25% 10 80% of
lines of code. This reduction is specially important when
there is a large number of assignments and conditionals.
This is the case for most subroutines implementing
mathematical algosithms. For subroutines whose main
purpase is editing results or calling other subroutines, the
reduction is generally not so important,

165

4. Proof of Soundness and Completeness of the
Specialization

For a tool like SFAC, it is essential to be sure about the
correctness of the specialization, specially if it is used for
generating independent (compilable) programs. Our aim in
this section is to show how o prove that the specialization
we have specified is corrett, with respect 10 the dyaamic
semantics of Forran, given in the natwral scmantics

formalism. Recall that partial evaluation of a program P

with respect 1o input variables xy, .., X, ¥y, . ¥, {01 the
values Xy €y, ., X O, must give a residual program P,
whose input variahlcs‘ are ¥y, .., ¥, and the executions of
PLoy, oo Y1 e Y and Py, oyt produce exactly the
samie results,

We will show that this 3 expressed by wwo inforence
rules, one expressing soundness {each result of P is corregt
with respect 1o Py and one exprossing compleieness {each
correct rosult ig compuled by P otoo) As Poand P oare
deterministic, we could have only one rule using equality,
but the demonstration of our two rules 15 not more
complicated and is more general (being also applicable for
non-delerministic programs).

To prave the specinlivation, we need a formal dynamig
semantics of Fortran and we must prove the soundness and
completeness of the specialization rules with respect 1o that
dynamic semantics. To express the dynamic semantics of
Foriran, we use the same formalism (natral semantics) as
for specialivation. Thus, the semantic rules we give have o
generaie theorems of the form

Sem
HE L

meaning that in environment M, the execution of
statement Tleads o the envirpnment F {or the evaluation
of expression | gives vatue H') These rules are themselves
not proved: they are supposed 1o define ox nihilo the
scmantics of Fortran, as G.Plotkin {14] and G. Kahn {11}
did for other languages like ML,

To prove these rufes would mean 1o have an other
formal semantics {e.g. a denotational one) and prove that
the rules are sound and complete with respect o L But
there is no such official semantics for Foruan, Thas that
proof would rather be a proof of consisiency between two

dynamic semantics we give. That is outside the scope of

our work: we wanl 10 prove consisichcy between
simplification and dynamic semantics, notl between two
dynamic semantics,

Now how can we prove that the specialization system is
sound and complele with respect to the dynamic semantics
system? Instead of the usual siwation, that is a lormal
system and an intended model, we have two formal
sysiems: the specialization system and the dynamic

186

semantics sysiem (noted sem). A program P is specialized
into P7 under hypothesis Hg on some input variables if and
only if

H{)}- P P
is a theorem of the specialization system,

Lot us call H the environment containing the values of
the remaining inpul varfiables. Thus, Hy U H is the
environment containing the values of all input variables,
Wil 1liat initial eavironment, P (respectively PY evaluates
to M if and if

RE o]

Hou HE pr o

is o theorem of the

Serd
{respectively How HE Py
dynamic semantics {sem) system,

Now, soundness ol specialization with respect w
dynamic semantics means that cach result compuied by the
residual program is computed by the initial program. That
ts, for cach B, P, Hp, H, 0 P is speciaized into P under
hypothesis Hy and P7oexecules 10 HY under hypothesis
Hywo H, then P oexecutes to Hunder hypothesis Hy o H
Thus soundness of specialization with respect to dynamic
wimaniics is formally expressed by the first rule of Figure
4,

Completeness of specialization with respect to dynamic
semantics means that each result computed by the initial
program P s computed by the residusl program P, Thus, it
is oxpressed by the second inference rule of Figure 4. In
fact, our approach o prove specialization is very ¢lose 1o
the approach of |31 10 prove the correciness of wanslators:
inn that paper, dynamic semantics and transiation are both
given by lormal systems and the corrcotness of the
translaton with respect 1o dynamic semantics of source and
object langunges is also formalized by Inference rules {that
are proved by induction on the length of the proof; here we
will use rule induction instead),

Note that both reles are not the most restricting rules {for
instance their nitial environment is Ho o H and not only
H, 10 allow partial simplification),

senm
Mo H!" P

£

” s (SoundnRess)
How Hi_ P H(completeness)

Hob p s P’

To

3
ok £54

Hol p — p’ HouHf P:H’

FEm

HouHf P H’

Fig. 4. Soundness and completeness of the
program specialization

The proof that both rules hold is given in [11.

5. Conclusion

Specialization has given satisfactory resubts far

~facilitating program comprehension. Our tool, SFAC has .

performed important reductions by specialization of

proved by rule induction given the dynamic semantics of
Foriran,

An industrialization of our ool is planned i the
framework of a cooperation beiween EDF, CEDRIC HE
and Stmulog, a company that provided us with some basic
tools including Centaur/Fortran. Te obtain an insdustrial
tool from SFAC, we have to extend the Iatler in four main
Ways:

« to perform interprocedural analysis,

= 1o take into account some new operators of Fortan 90,

« to accept as specialization criteriy more general
constraints than only equailities between vanables and
constant values. Thus, the ool will propagate relational
expressions, such as y =z and a> 7*b+3.

» to suggest pertinent varnables for specialization, as
explained previously (page 4).

For performance reasons, the industrial tool will not be
based on Prolog operating on anstract syntax trees, but in
Lisp operating on graphs represeating control and data
flow information. Gur specialization rules are taken as
specification by the team that will do the indusirial
implementation.

References

{1] S.Blazy La spécialisation de programmes pour Paide i la
maintenance ‘du logiciel, PhD. Thesis, CNAM, Paris,

December 1993,

- Forlran: programs -and .subroutines. . :That- 1ool -has. been. .

167

S.Biazy, P.Facon, Partial evaluation as an aid lo the
comprehension of Fortran programs 1EEE Workshop on
Program Comprehension, Capri, July 1993, 46-54,
Centaur 1.1 documentation. INRIA, January 1990,

P.D.Coward, Symbolic execution systems - a review.

Solfware.. Engineering . Joumnal, . November 1988, pp.229-

239

sul Despevrouxs Proofeof-translation-insnatural-semantioye s

Symposium on Logic in Computer Science, Cambridge
LISA, Junc 86.
C.Consel, S.C.Khoo, Parametrized partial evaluation.
ACM TOPLAS, 15(3), July 1993, pp.463-493,
K.B.Galiagher, LR.Lyle, Using program slicing in software
maitenance, JEEE TOSE, 17(8}, August 1991, pp751-
761,
M Hennessy, The semamtics of programming languages.
Viley eds., 1990
C.BJones, Systematic software development uving VDM,
Preatiwe-Hall, 2nd eds,, 1990,
N.DJones, P.Sestoft, H.Sondergaard, MIX: a self-
applicable partial evaluator for experiments in compiler
generation. Lisp and Symbolic Computation 2, 1989, pp.9-
A
G Kuahn, Natural semarsics. Proceedings of STACS™87,
Lectare Notes in Computter Seience, vol.247, March 1987,
R.Kemmerer, S.Eckmann, UNISEX: a UNIX-based
Symbolic Executor for Pascal. Soltware Practice and
Experience, 15{3}, 1983, pp.429-457.
UMeyer, Technigues for evaluation of imperative
languages. ACM SIGSOFT, March 1991, pp.94-105.
G. Plotkin, A structural approach to operational semantics.
Report DAIMI FN-19, University of Aarhus, 1981,

Theory and Practice of Middle-Out Programming to support
Program Understanding

K.H. Bennett

Department of Computer Science
University of Durham

Durham DHI 3LE, UK

Abstract

Theories of top-down and boitem-up program com-
prehension hove existed for several years, bul it has
beens recogrised thal undersionding rarely happens in
practice in surh a well-ordered way, The poper de-
seribes recent work and results of Durham on what
5 fermed middle-out programming. The objective
ts to avoid the problemns of top-down and botfom-up
apprecches, by designing a very high level language
spectfic to the applicalion domain. Domain knowledge
is captured in the design of this language, which retains
a sirong formal basis. This poper takes the view that
software engineering will berome strangly opplication
domain based, and that knowledge representation of
the domamn will be o cruciel faclor in supporting pro-
gram comprehension.

An ezample of using this approach tn the design
of ¢ lorge software systern 15 presented. The main
gain achieved in comprehension s through o large

reduelion in system size, and through o domain sperific
i o

anguage. This separates the comprehension problem

@ twor understanding the requirements definition in
& very high level domain langunge; ond understanding
the implemeniation of the language. The main novel
features of our approach are: the use of domain specific
very high level representations o aveid fop-down and
bottorm-up problems; program comprehension bused on
a formal language approach; ithe ability to provide
a theoretical busis for user-enhanceable systems; the
stmplification of the capture of domain knowledge; and
the concurrent engineering of the development and
requirernents stages,

1 Introduction

Most of the problems concerned with program com-
prehension derive from undersianding large systems
{sce [1} for a useful review). Small scale or toy

problems are generally uninteresting and any general

0-8188-5647-6/94 $04.00 © 1994 1EER

168

M.P. Ward

Department of Computer Sclence
University of Durham
Durham DHI 3LE, UK

solution to program comprehension must address the
issue of scale. Brooks has observed [2] thai there are
four key properties of large software systems which
distinguish them from small systems. First of all, large
systems are complex, and this is an essential property
in that it cannot be absiracied away from. This leads
to communication problems amongsi developers, to
encrmously complicated state explosions, and to the
lack of & coherent overview of the system, so that
maintaining conceptual integrity becomes increasingly
difficult. Large scale systems must also conform to
complex human institutions as for example in the
antomation of the tax system.

Any useful large scale system will alse be subject
io constani change as i is used, this belng generally
referred to as software maintenance. Almost all soft-
ware maintenance is currently carried out at the source
code level. Finally, unlike mapy other engineering
artifacts, there is ne geomelric or other representation
of the abstract artifact of software. There are several
distinct but interacting graphs of links betwesn paris
of the system to be considered including, for example,
control flow, data flow dependency, time seguence elc,
One way to simphfy these in an attempt to contrel
the complexity and make the program, understandable
is to cut links until the graphs become hierarchical
structures (13

One of the major problems in developing large
scale systems is thal there is often a thin spread
of domain knowledge among sofiware developers in
many projects (4], Often, customer requirements are
extremely volatile too, 50 that encapsulating the exact
requirements s extremely difficult. There is some
cvidence that the generic approach which has char-
acterised much of sofiware engineering to the present
date s being recognised as infeasible, and software
engineering will increasingly take a domain orientated
point of view. This paper supports that view. The
key issue is then the capture of domain knowledge, and

the approach presented in this paper takes the starting
point of a formally specified, domain orientated, very
high level programming language. Our thesis is that
a suitable language is a pood way to make domain
knowledge available, and the effect of developing in
such a language s dramatically fo reduce the develop-

~ment effort required while increasing maintainability,

enabling reuse, and more generally enhancing program

~.understanding to those.who are expert in the. domain.........

2 Middle-Out Programming

In the history of Computer Science, the greatest
single gain in software productivity has been achieved
through the development of high level languages with
suitable compilers and interpreters. The use of 2 high
level language often allows a program to be imple-
mented with an order of magnitude fewer lines of
code than if everything were written in assembler. In
addition, these lines of code will typically be easier to
read, analyse, understand and modify, because they
are “nearer” to the apphcation, and further from the
machine. In addition to the benefits of smaller code
size and increased reliability, a major benefit of high
level languages is that they encapsulate a great deal
of programming knowledge in an easily usable form.
For example, the compiler deals with the complexity
of procedure calls and return mechanisms, recursion,
oplimisations ete.

In middie out programming, the first stage is to
design a very high level, domain based language. This
ianguage includes operations, objects and represent-
ations characteristic of the application, and aims to
capture knowledge of the application in the design of
these lanpuage aspects. It is different to the provision
of a library of useful operations as an addition te a con-
ventional language, and to a standard package where
application differences are coded via parameterisation.

The second step is to write the application in this
language (using rapid prototyping if needed). In par-
allel, the language will be implemented.

The aim of our middle out programming approach
15 twofold, Firstly, by using a suitable very high
level domain orientated language, the total code size
should be considerably reduced, and its comprehens.
ibility increased. Secondly, the design of the language
itself forms a repository of domain knowledge in a
form which is readily understandable and reusable by
programmers working in that domain. This approach
may be contrasted to the IKBS mechanism of repres-
enting domain knowledge in the form of e.g. rule based
system. With rule based systems, the first problem
is that the knowledge must be elicited, transferring

knowledge from domain experts to a set of rules.
Secondly, programmers must be able to extract and
make use of information in the repository. This has
worked well in some application domains, but seems
difficult to generalise.

In contrast, the basic approach in our middle out

.programming is a language design providing a formal

‘syntax and formal semantics for the language. Any

169

gether with lanpguaspe construcis and specialised abe
stract data types. Language design is a highly skilled
task, which requires an expert in both the application
domain and in Computer Science. This approach has
been used in Chief Programmer teams. However, once
completed, the expertise may be reused by subsequent
prograrers in the language. Hence, in middle out
programming, subsequent development of the system
may take place concurrently. This involves two steps,
of implementing the software system in a new lan-
guage, and then implementing the language in some
existing computer language, for example by writing a
compiler or interpreter. It is crucial to our approach
that the middle level language should be formally spe-
cified. The benefits of precision, economy and clarity
of a formal approach is considered very important, and -
contrasts with “line and bubble diagram” design meth-
ods in CASE tools, which have very weak semantics.

3 Comparison with Other Methods of
Understanding

3.1 Top Down Development

Top down program development methods have been
advocated by many people over a period of 30 years as
a way of mastering the complexity of large programs
by constructing them according te rigid hicrarchical
structures. The method typically starts with a high
level definition of the systems to be developed, which
may be an informal or a formal specification. The
specification is refined into an archifectural design,
and this in turn is refined until an executable form is
reached. Central to this approach is the use of divide
and conquer, so that only a small part of the overall
system is worked on at each stage, and the comprehen-
sion problem focuses on the current component being
addressed. Many approaches to the formal refinement
of mathematical specifications are based on this ap-
proach. It has certainly been shown to work well for
small programs and well understood problems (see for
example, Morgan's refinement Calculus [11,12,12].

The major difficulty is that the method itself
provides no clue as to what the top level structure

should look like in a particular case. This is not a
problem for Loy programs, or for very well understood
domains such a compilers. However, for large pro-
grams, choosing the wrong structures in the initial
stages can have serious repercussions which can only
be uncovered much later in the development. If a
serious error is then realised, much of the development
will have to be discarded and repeated. Often, success-
ful top down design relies on using very experienced
system designers, who have a good feel for simultan-
eous low level details. Even experienced designers may
have problern in deciding how to decompose complex
high level requirements. The system may be so large,
that i is very difficult for a simple coherent top level
specification to be produced. These problems also
apply to obiect oriented design, which explains why
it is difficult to achieve good chiect oriented desipn
structures.

3.2 Boitom Up Development

In bottom up development, the programmer starts
by implementing the lowest level general purpose
utility routines. These are used as operations in a
slightly higher level language to implement higher fove!
routines, abstract data types and so on, Dveniu-
ally, the top level structure of the pregram can be
implemented. Compared io top down approaches,
Lhis allows early unit festing and integration testing.
Unforiunately, it is also very difficult to deeide what
constitutes good low level design, and whal the paxt
level in the design shonld be in order io constitute
progress. Design approaches may end in fruitlsss blind
alleys, and much developmeni work may have to be
retraced. This is particularly 2 problem if the applic
ation is novel, and there 15 litile previous cxpericnce
of what high level routines would be nseful,

3.3 Outside In development

Both of the above approaches have deficiencies
which have long been recognised, and in practice,
systems bave been developed using a combination of
the two. This reflects the praciical difficulties in un-
derstanding how to build large systems in a strict top
down or boltem up way. When the system is passed
to maintenance, the only reliable source of informa-
tion is typically the source code. Thus higher level
abstractions must be constructed. Again this is often
achieved (see Gilmore[6]} by establishing hypotheses,
and then examining the system to confirm or refute
therr. This process too can work in top down, bottom
up, or more typically a combination of the two.

176

4 Rapid Prototyping

A further major difficulty in large scale systems
design is the inability to determine accurately the sys-
tem requirements. As Lehman and olhers have poin-
ted out, the users may not {ully understand what they
require anyhow, and the avallability of the complete
software system will probably modify what nebulous
ideas ihey had of the original requirements. There-
fore the rapid protolyping approach to requirements
elicitation and to software development provides an
attractive approach. It is t¥pically much easier io
design a larger complex system if one has already
built a similar system in the past, by reusing the
designer’s previous experience. More fundamentally,
users often have difficullies in articulating their precise
requirements, but if they are presented with a system
which does not do what they want, they will guickly
find this cut. Therefore, we argue that any reasonable
approach to systermn undersianding must include the
understanding of the reguirements of the user that can
be provided by rapid prototyping. In our approach, a
requirement can be expressed quickly in the very high
level domain-oriented Janguage; for sophisticated users
this may be sufficient, but for others, interpretation
can provide animation. Requirements are typically
expressed in terms of domain concepis, rather than
general programming concepts, so 2 domain-eriented
innguage is a great help in assisiing users formulate
reguirements.

=4

5 Understanding
Middle Out Programming

Understanding engineered sofiware involves the un-
derstanding of both the process and the life cyele
products. Understanding is important during the ini-
tial development phase, particularly for the lurge scale
software developed by a team. 14 is crucial during sub-
seguent software maintenance, when understanding of
the seftware is 2 prerequisite to making alleralions
to it. This Invelves studying both life cycle products
such as dorumentation, designs and the software itself|
and alse having understanding of the processes by
which this is produced. We have argued that both top
down and boltom up programming have apparently
clear but actually infeasible processes, The life cycle
products are often only clear in retrospect, when the
design has been completed.

Unfortunately, both the above approaches do not
readily incorporate rapid prototyping, and typically
do not permit a useful representation of domain know-
ledge. They are good for generic software engineering

approaches, but less satisfactory for domain specific or
user specific approaches. Middle out programming is
a process and we shall argue that it provides life cycle
products which are more appropriate for program un-
derstanding. It allows earlier representation of domain
knowledge, encouraging concurrent engineering during
initial development, and has a better representation

.. devel of absiraction than code}. . It also.is compat- s

“ible with a formal metheds approack without the

disadvantage of the strictly top down view which is
often required for formal refinement of mathematical
specifications.

Of course, when the design has heen completed,
and the trace from a specification to executable code
has been complsted, it does not matter how this has
actually been gererated. We argue that such a design
history in not well suited to system comprehension,
and has difficulties in keeping the various represent-
ations consistent, With top down approaches, the
designers do not understand the software engineering
issues and detailed implementation aspects. In bottom
up analysis the designers do not have the understand-
ing of the application domain which results in goed
design.

Our cbjective therefore 15 to study a middle out
approach, which attempts to overcorme the objections
of these above approaches. Top down decomposition
does not work well until the analyst has an almost
complete concept of the systemn which may be very
hard in a very big system. Bottom up development is
unlikely to be successful if it is not possible to see how
tactical developments fit into the big picture.

6 Middle Out Languages

The basis of middle out programming is the design
of the formal, application domain based language. In
our experience, the design of the language nesds to
be undertaken by a highly skilied application domain
expert, who is also a highly able software engineer well
versed in formal fanpuage theory. The design of any
language 1s challenging, and cannot be undertaken by
other than top grade staff. The language will con-
tain application domain cbjects and operations which
simplify and clarify the capture of domain knowledge.
The use of a formally defined language permits preci-
sion and lack of ambiguity which simplifies its imple-
mentation. Once a language has been designed, its use
and its implementation can proceed in parallel. The
use of very high level languages has been advocated
previously in software engineering. We claim that the
novel results of the present research are as follows:

1. The language is highly application domain specific,
and supports our view that software engineering
will increasingly be less generic and more applic-
ations specific.

e

. The approach is designed specifically to assist sys-
tem understanding, particularly by encouraging

ST L : oo rapide prototyping,-and -the -production-of highl
for subsequent maintenance (in particular, at a higher rapiarprolotyping,ma N Y

maintainable systems which are portable.

scale.

4. A design framework for user enhanceable systems
is established (see below).

5. During initial development, concurrent engineering
can be introduced o the process.

A language based approach 15 a step away from
current trends in software engineering, which has fa-
voured CASE tools in conjunction with methods based
on “boxes and lines”. Of course, key techniques such
as configuration management continue to be necessary.
A conventional waterfall type life evele model invelves
many different representations and a key problem
during maintenance is maintaining the consistency of
these. Middle out programming is designed to encour-
age maintenance at the highest level of abstraction,
and support automation in the generation of execut-
able code. It is essential that a middle level language
should be formally specified as it 1s the avalability of
the formal specification which will allow the system de-
velopment and language implementation to be carried
out independently. It is alsc important the language
should be conceptually simple, easy to parse by both
humans and computers, and should benefit from the
jatest development in programming language design
and implementation.

7 A Case Study—Ferm#Tl

FermaT is a program transformation sysiem based
on the theory of program refinement and equivalence
developed in [15,17] and applied to software develop-
ment in {14,16] and to reverse engineering in [18,18].
The transformation system is intended as a practical
tool for software maintenance, program comprehen-
sion, reverse engineering and program development.
The system in based on semantic preserving trans-
formations which are expressed in a wide spectrum
language called WSL. The language includes- both
low level programming constructs and high level non-
executable specifications. This means that refinement
from a specification to an implementation, and reverse
engineering to determine the behaviour of an existing

3. The appréac}i specifically addresses the.p.réB'lex.ﬁ'.o'f

program can both be carried out by means of semantic
preserving transformations within a single language.

In this paper we shall concentrate on the construc-
tion of the FermaT tool using the middle out pro-
gramming approach. The original version of Fermal
was written in LISP and C, and comprised of over
§0,000 lines of source code. It exhibited the cdlassic
problems of a large, incomprehensible and difficult to
maintain sysiem. Much of the code is concerned with
purforming operations on programs and in particular
writing program transformations. Therefore, in broad
terms, the middle level language had to address the
writing of program transformations. This included the
nead for abstract data types for representing programs
as bree sbructures and constructs for patiern maiching,
pattern filling and Herating over components of the
program sbruciure. These are very typical high level
operations in a program transformation system. Full
details of WSL and MeTAWSL can be found in [17],

it was realised that the wide spectrum language
WEL itself formed a very high level language in which
transformations could be expressed. It was also lan-
guage which had been very carefully formally defined
both syntactically and semantically, in order to allow
the expression of program transformations. Our ap-
proach was therefore to extend the WSL to a language
termed MeTAWSLL

As an cxample, one of the simplest transformations
i our system permits the merging of two contigu-
Such a
transformation is expressed in WEL. To cxpress the
implementation of the transformation, additional work
in npecessary such as checking for side effects, and
also manipulating a program in internal iree form.
Wal was extended fo AMeTAWSL to incorporate the
Iatter type of feature. Thus Az7AWEL i 2 language
which is directly designed for the application domain
of writing transformation systems. It is aciaally im-
plemented by writing s translator from meta WSL
to LIZP, adding & small LISP run time library, and
executing the LISP. Although ithe two versions of
the system are not directly comparable, the prototype
version required some 42,000 lines of LISP in the key
transformation engine. In the middle out program ap-
proach, this was reduced to approximately 5,000 lines
of AMeTAWSL. In addition, the AeTAWSL involves
much smaller procedures and data types, suggesting
that it is easier to understand too, Me7TAWSL eacap-
sulates much of the expertise developed over the past
10 years research in Durkam in program transforma-
tion theory and transformation systems. As a result,
this expertise i1s readily available to programmers,
some of whom have only recently joined the project.

ous assignments into a single assignment.

Working in meta WSIL it only takes a small amouni
of training before new programmers become effective
at implementing transformations, and enhancing the
functionalify of existing transformations.

& Examples of
Middle Out Programming

Althongh we have described middle out program-
ming as a novel approack, we can find examples of
several successful large scale software development
projects which use @ middle level language layer.
These were not necessarily developed in middle ont
order by design and language first, and do not all
provide formal specifications of the middie language.

One of the first areas where the value of domain
specific languages, especially languapes with domain
specific constructs, was Monte Carlo simulations. A
systemn called MONTECODE [7] is an inlerpreted
language writien for writing Monie Carle simulations.
Its constructs include random sampling from distribu-
lions, management of queues, building histograms and
event Lo event scanning.

CSL (Conirol Simulation Language [3]) was de-
signed for nse in the field of complex logical problems.
It uses sei operations and specialised constructs, in-
cluding iteration of the clemenis of the set and finding
an element in a set which meets various criterion. O8SL
s translated nto FORTRAN, with a ratio of CSL te
FORTRAN statements of the order of 1:5. It was
reported that ratio of time writing similar programs
in USL and 1n FORTRAN was also of the same order.

Krnuth’s TpX typeseliing program {8] was wiiiien
in the WEDB literate programming language [8] whose
alm was to temove some of the deficlencies of Pas-
cal and allows source code and documentation to be
intertwined in the same soarce file. "TpX iiself is
implemented as small set of primitive iype setbing
operations together with a macro processor. The plain
set of text macros were designed by Knuth to form a
basic type setting package. A more extensive set of
macros forms the basis of the I#TpX [10] and these
allow the user to concentraie on the struciure of the
text rather than on formatting commands. In effect
BTpX implements a structured type seiting language
which the anthor uses to implement a document. The
IXTEX3 project, which is currently developing the new
version of IWTEX is planning yet another language level
butlt on top of the TEX macro language.

The *“MAKE" system [5] represents another domain
based language for configuration and version manage-
ment.

Nygaard’s SIMULA 67 was designed after it was
found that the contrel and data structures of then-
current hiph level lanpuages could not support the
modelling of simulations, in particular the way that
simulated objects interacted. This demonstrates that
a high level language cannot be constructed out of a

low level one by adding library functions.

9. User Enhancable Systems ..o

The term user enhanceable system refers to the
development of programming systems in which the
user takes responsibility for writing and (especially)
maintaining applications in a very high level system.
Often, as in word processors this does nobt take the
form of a conventional language at ali. This approach
has been advocated as a solution to increasing sofiware
productivity without suffering the drawbacks of nigid
packaged software. An excellent example of such a
user enhanceable system is the conventional spread-
sheet. The spreadsheet product provides a very high
level of application domain language to allow the non
specialist user to write financial applications. Ease of
use is enhanced by extensive graphics presentational
devices. Thus the end user does not have to program
in a conventional sense but simply enter figures into
colemns and apply simple functions to them, typically
using the rmouse to assist.

Spreadsheets do however readily exemplify the
danger of inappropriate very high level languages.
Spreadsheets are all too often used for applications
far removed from simple financial computations. In
typical modern spreadsheet systems, multiple spread-
sheets may be linked, complex formula involving mac-
ros and procedures may be defined ete. The net result
is a system which is totally incomprehensible, and
all to often contains many errcrs. Modifications to
the spreadsheet have to be made at the cell level by
imposing a new structure and trying to remember the
original structure. All the original structure, which
indicates which cell belonged together and how groups
of cells were related to each other has been lost. The
effect 1s as if the wuser had entered a program in a
high level language which the system then imumedi-
ately translates into the low level language of cells and
contents, throwing away the source code. All changes
have to be made by patching the object code rather
than by updating the source code and recompiling,.

There is thus a need for one or more domain specific
very high level languages which are higher than the
original typical spreadsheet. For example a language
is required for defining financial models. A typical
program in this language would take the raw accounts

173

data and produce cash flow forecasts, balance sheet
rejections etc.

Many other examples of user enhanceable systems
exist e.g. in CAD systems, electronic instrumentation
efc.

Middle out programming provides a way of address-
ing these systems, by stating the problem as one of

“language dedign at the appropriate level of dBstTaction.

1() N Advéﬁtages Of
Middle Out Programining

10.1 Separation of Concerns

In our experiences with the FermaD system, the
middle out programming method using a formally
defined middle language provides the complete separ-
ation of concerns of design issues, whick are addressed
in a domain specific language, and implementation
issues, which are addressed in the implementation of
the language. This is a very important result for
program comprehension.

10.2 High Development Productivity

We have found that the approach reduces the size of
the system, and a few lines of code are often sufficient
io implement highly complex functions. The imple-
mentation of the language is often kept small since
only those features are relevant to a particular problem
domain need to implemented. The major success of
this approach, compared {for example) with 4 Gls is
that the languape is restricted to highly specialised
domains.

10.3 Highly Maintainable Design

The reduced size of the software alone indicates
that maintaining it will require considerably less effort.
Typically, we have found that major functions of the
system are implemented very compactly in a few lines
of code. We have found that bug fixing and making
enhancements is relatively easy and there is a reduced
chance of unexpected side effects. Some of the advant-
ages have much in common with modular design and
object orientated systems in trying to localise and hide
implementation decisions. Some fundamental designs
decisions can not always be captured in a module. In
our very high level language approach this is facilitated
by permitting constructs to be used anywhere in the
code.

10.4 Portability

Porting the very high level language 15 a con-
cern only of the implementalion; the application level
design is unaffected. In Fermal, poriing the system
from LISP to € only required rewriting the bottom
level translator | and this was a comparatively small
task occupying a small number of days.

10.5 OCpportunities for Reuse

The major benefit we have found in the approach
iz the ability to cocapsulate a great deal of domain
knowledge, including knowledge of which data types,
speralions and execubtion methods are important in
the demain, and what are the best ways Lo implement
them. This kind of knowledge is extremely useful for
requirements elicltation for new systems in the same
application domain, and program comprehension of
the existing system. One of the main advantages
of a well designed domain specific language is the
new programming consiructs which can be combined,
approximately orthogonally in various ways. This is
much more powerful than for example trying to write
a C program in assembler, where the C compiler has
been replaced by a large library of assembler routines,
In the Draco project reuse of design information was
cncouraged by the use of specific domain languages
together with the recorded reaults of domain analysis.
The system under development is writien in a number
of many different domain langnages and these pro-
grams are refined into the languages of other domains
and ultimately into executable code. Our approach
uses 2 single domaln for several related davelopment
projects rather than several small domains for each
project, {Dur contention is thal the best representation
of domain knowiedge is the design and implementation
of & domain specific programming langnage. Since our
domain languages are implemented programming lan-
guages, there is no need for refinement {o an existing
programming language.
11 Conclusions
A combination of rapid prototyping with middle out
developinent of each prototype would appear to be a
good development approach for many large scale soft-
ware development projects. The middle out approach
provides a way of addressing the problems of scale.
This is achieved by reducing the total size of a large
system by expressing it in a very high level language.
In our experience, program coemprehension is consid-
erably improved by using the language oriented to the
need of the application specialist. In our approach, the

174

language 15 designed to be based on domain concepts
and objects, so the siructure of the code and each
operation closely malches the behaviour and effect of
thai operation. This contrasts with other approaches,
where the user is obliged to understand concepts ex-
pressed in programuming or sofiware engineering terms.

According to our original criteria, we find that
the complexity of systems is much reduced since the
system is divided into two independent sections; the
application domain using a very high level domain
orientated language, and a translator or interpreter for
the language. This reduction in complexity and separ-
ation of issues improves understanding of the sysiem
by the language implementor, and the understanding
of the requirements by the user,

We have also found that the improved comprehen-
sion assists in including integrity checks and consist-
ency tests, and perhaps most encouraging, we have
found ai that the sysiem is much more understandable
under software maintenance. For the future research,
we plan to extend our investigations o this appreach
for formal methods. In Fermdl, meta WSL is a
formal language defined on a foundation of denota-
tional semantics. Much of our research is focused on
the semantics of this language and iks suitability for
expressing program transformations. Thus mets WSL
appears Lo be a suitable languapge for mathemalically
rigorously defined specifications. This would seem
to have some abtractlons over the conventional fop
down refinement method advocated by many formal
methods,

Acknowledgements

This work was supported by the Science and Bne
gineering Hesearch Council {now the EPSRC) projec
“A Proof Theory for Pregram Refinement and Fgui-
valence, Extensions”.

Peferences

(1} K. H. Bennett, B. J. Corneliug, M, Munre & D. 1.
Hobson, “Approaches Lo Program Comprehension,” J.
Syst. and Soft. 14 {Feb., 1981}, 79-84.

. P. Brooks, “No Sllver Bullet,” IEEE Computer
{Apr., 1987).

[3] J. N. Buxton & J. G. Laski, “Control and Simnulation
Language,” Comput. J.5{1862), 194199,

B. Curtis, #. Krasner & N. Iscoe, *A Fleld Study of the

Software Design Process for Large Systems,” Comm.
ACM 31 (Nov., 1888}, 1268-1287.

2]

4

[5] 5. I. Feldman, "MAKE-~A Program for Maintaining
Computer Programs,” Software - Practice and Exper-
fence 9{1979), 255-265.

f6! D. J. Gilmore, "Models of Debugging,” Proceedings of
Fifth European Conference on Cognitive Ergonomies,
Urbine, Italy (Sept., 1990).

{71 D. H. Kelly & J. N. Buxten,
terpretive Program. for Moente Carla,
(1962), 88-93.

*Moentecode—an In-
Y..Comput...J.5.

" MA| 1984,

[8] D. E. Knuth, “Literate Programming,” The Computer
Journal 27 (1884}, 97-111.

| L. Lamport, BIEX A Document Preparation System,
Addison Wesley, RHeading, MA, 1986,

1 C. Morgan, Programming from Specifications, Pren-
tice-Hall, Englewood Chiffs, NJ, 1830

I €. ¢ Morgan, K. Rebinson & Paul Gardiner, “On the
Refinement Caleulus,” Oxford University, Technical
Monograph PHRG-75, Oct., 1988.

v 81D B Knuth - The TpXBook, Addison- Wesley; Readingrooe

{13} D. L. Parnas, “Designing Software,” IEEE Trans. Soft-
ware Eng. 5 (Mar., 1879).

H. A. Priestley & M. Ward, “A Multipurpose Back-
tracking Algorithm,” J. Symb. Comput. (1893), to ap-
pear.

(14]

[18] M. Ward, “Proving Program Refinements and Trans-

formations,” Oxford University, DPhil Thesis, 1989,

P"MoWard, “Derivation of Data Intensive Algorithms by
Formal Transformatlon,” Submztted to IEEE Trans
:Softwere:-Engi1992em: i
M. Ward, “Foundations for a Practical Theery of Pro-
gratn Reﬁnemcm and Transformation,” Submitted to
Formal Aspects of Computing, New Yorkaeidelbergm

Berlin {1983},

1 M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Hescarch and Practice 5 {June,
1993}, 101-122.

M. Ward & K. H. Bennett, “A Practical Program
Transformation System For Reverse Engineering,”
Working Conference on Reverse Engineering, May 21~
73, 1993, Baltimore MA {1993).

Author Index

Abbattista, P 62
Achee, B 4
Allison, W 136
Bennett, KH. o 168
Bhansali, S. oo, 130
Blazy, S i62
Canfora, G 30
Carrington, DL, 136
Carver, Dl e, 4
Cima, Mo 128
CImitile, Al e 12
CTOUIEOIS, Vo 20
Pavis, L i 39
e L, A e 30
P00, G A e 30
D Martino, Booo . 104
oran, J o, 46
Etzkorn, L H. o 34
Ewart, Goooeee e 34
Facon, P 162
Fasolino, AR 30
Fatong, GIVMLG. o, 6H2
Gregorl, W 128
Gudla, BTS, i 46
Hagemeister, LR i, 100
nnelle, G 108

178

Fackson, D 82
Jones, T, 136
Kazman, B oo eeeeeena o, 154
Kraemer, B oo 116
Lanubile, Foo s G2
Lnos, PR e 20
Livadas, PE. e 9
Loffredo, M. 128
MUnro, Mo e 12
Paul, S 145
Prakash, A e 145
Raghavendra, C.S. . 100
Railich, Vo 46
Rollins, Bl e 82
Signore, O 128
Sivaraman, oo, 100
Small, DT e .89
Staske, 1T e, t16
Tapp, R i54
Tomic, ML o, 54
Tortorell, Mo P2
Vans, AM. e 74
Visageio, Goo e 62
von MayrBauser, A 74
Ward, ML e 168

Notes

Here is your opportunity to get all of the
information you might have missed from the
last workshop — a valuable addition to any
library. Call and place your order today.

Catalog #4042-02U
ISBN 0-8186-4042-1

Member price $32.00
Nonmember price $64.00

B Ta @rder by phene |
1-806 CS BOOKS or 714-821 ~838@
To Grde?‘ by fax: 714 821 ~464‘i
' To mrder by e~maal cs bmks@computer erg

IEEE Computer Society Press Titles

AUTHOREDBOOKS

Advances in ISDN and Broadband 1SDN
Edited by William Stallings
(ISBN 0.8186-2797-2); 272 pages

Advances in Locel and Metropolitan Area Networks
Edited by William Stallings
{ISBN 0-8186-5042.7); 448 puges

Advances in Real-Time Systems
“Edited by John A Stankevic and Krithi Ramamritham oo
{ISBN 0-83186-3792-7}; 792 pages

" Architectural Alternativés for Exploiting Parallolism

Edited by David J. Lilja
{ISBN (-8186-2642-9); 464 pages

Artificial Neura! Networks —
Concepts and Conirel Applications
Edited by ¥. Raa Vemuri

{ISBN 0-8186-9069.0; 520 pages

Artificiz]l Neural Networksg .

Concepts and Theory

Edited by Pankaj Mehra and Banizmin Wah
{(ISHN 0-8186-B997-8); 630 pages

Artifieisl Neural Networkso-

Forecasting Time Sorics

Edited by V. Raw Vemuri and Reberlt D. Rogers
(ISBEN (-8186-5120-2); 220 pages

Artificial Neural Networks—

Oscillations, Chaos, and Sequence Processing
Edited by Lipo Wang and Daniel L. Alkon

(ISEN 0-5186-4470.2); 136 pages

Autonomeous Mobile Robots:

Perception, Mapping and Navigation — Volume 1
Edited by 8. 8. Iyengar and A Blfes

{ISEN 0-8186-0018-G); 425 pages

Autonomous Mobile Robots:

Control, Pianning, and Architecture — Volume 2
Edited by 8. 8, Iyengar nnd A. Elfes

{ISBN 6-8186-9116-6); 425 pages

Branch Strategy Taxonomy and Perfermance Models
Written by Harvey G, Cragen
{ISBN ¢-8186-8111-5}; 150 pages

Bridging Faults and IDDQ Testing
Edited by Yashwant K. Malaiva and Rochit Bajsuman
(ISBN (-8186-3215-1); 128 pages

Broadband Switehing:

Architeetures, Protocols, Design, and Analysis
Edited by C. Dhas, V. K. Kenangi, and M. Sreetharan
{ISBN 0-8186-8926-9); 528 pages

Cache Coherence Problem in Shared-Memory Multiprocessors:

Hardware Solutions
Edited by Milo Temazevic and Veljko Milutinovic
(ISBN 0-8186-4092-8}; 448 pages

Codes for Detecting and Correcting Unidirectional Errors
Edited by Mario Biaum
(ISBN 0-8186-4182-T); 224 pages

Communicatien and Computer Networks:
Modelling with Discrete Time Quenes
Written by Michael E. Woodward

(ISBN 0-7273-0410-0); 280 pages

Computer-Aided Software Enpgincering (CASE)
{Becond Edition)

Edited by Elliot Chikofsky

(ISBN 0-8186-3590-5); 184 pages

Readingsin
Computer-Generated Musie
Edited by Denis Baggi

(ISBN 0-8186-2747-6}; 232 pages

Computer Algorithms: K_e_y_S_e_arch Strutegies

“Edited by Jun-ichi Ags

{ISBN 0-8156-2123-0}; 154 pages

i omputer Arithmetic 1105

Edited by Earl E. Swartziander, Jr.
(ISBN 0-8188-8245-5}, 412 papes

Computer Communications:

Architectures, Protocols, and Standards (Third BEdition)
Edited by William Stallings

{ISBN 0-8188.2712.3}; 360 pages

Computer Graphics Hardwere:
Image Generation and Display

Edited by H. K. Reghbati and A Y. C. Lee
(ISBN 0-31B6-0753-X); 384 pages

Computer Graphics: Image Synthesis

Edited by Kenneth Joy, Nelsen Max, Charles Grant,
and Lansing Hatfield

{(ISBN 0-8186-8854-8); 380 pages

Computer Viston: Principles
Edited by Rangachar Kasturi and Ramesh Jain
(ISBN {-8186-9102-6}; 700 pages

Computer Vision: Advances and Applications
Edited by Hangachar Kasturi and Ramesh Jain
(ISBN 0-81868-9108-41, 720 pages

Current Research in Decision Support Technology (IS Series)
Edited by Robert W. Blanning and David B, King
{ISBN 0.8186-28B07-3); 256 pages

Decision Fusion
Written by Belur V. Dasarathy
{ISBN §-8186-4452-4}; 300 pages

Digital Image Warping
Written by George Wolberg
{ISBN 0-8186-8944.7); 340 pages

Readings in

Distributed Computing Systems

Edited by Thomas Casavant and Mukesh Singhal
(ISBN 0-8186-3032-9); 632 pages

Distributed Computing Systems:
Concepts and Structures

Edited by A. L. Ananda and B. Srinivasan
(ISBN 0-8186-8975-0); 418 pagss

Distributed Mutual Exclusion Algorithms
Edited by Pradip K. Srimani and Surnil R, Das
{JSBN 0-8186-3380-8); 168 pages

DMstributed Open Systems
Edited by Frances Brazier and Dag Johansen,
{ISBN 0-8156-4292-03; 192 pages

Digital Image Processing (Second Edition)
Edited by Rama Chellapps
{ISBN 0-8186-2362-4); B16 pages

For further information call toli-free 1-800-CS-BOOKS or write:

IEEE Computer Society Press, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamites, California $0720-1264, USA

IEEE Computer Society, 13, avenue de FAquilon,
B-1200 Brussels, BELGIUM

IEEE Computer Seciety, Ooshima Building, 2-19-1 Minami-Aoyama,
Minata-ku, Tokye 107, JAPAN

Domain Analysis and Software Systems Modeling
Edited by Ruben-Priete Diaz and Guillermno Arango
(ISEN 0.8186-8996.K); 312 pages

Expert Systoms:

A Boftware Methodology for Modern Applications
Edited by Peter (3, Hacth

(ISBN 0-8186-8504-8); 476 pages

Fault-Tolerant Seftware Systems:
Tochnigues and Applications
Edited by Hoang Pham

(18BN 0-8188-3210-03, 123 pages

Formal Verification of Hardwars Design
Ldited by Michael Yoeli
{1SHN 0-8146-0037-8% 348 pages

Geselis Algorithms
Edited by Bill P, Duckles and Frederick £, Patry
SBN 08186 %5, 130 pages

©lobal Bitates and Time in Distributed Systems
Fadited by Zhonghus Yang and T, Anthony Marsiand
HBHN 0-8186-5300-9); 188 pages

Groupwars: Boftware for Computer-Bupported
Coaperative Work

Editad by Thvid Marca and Geoflrey Bock

IEUN G-B180-2637-2 BU0 pages

implementing Configuration Management:
finrdware, Sefiware, and Flrmware
Weitten by Flsteher J, Buckley

{ISBN 0-7803-0435-73; 2536 pages

Information Systems and Declsion Processes (18 Serles)
Written by Edward A, Stohr and Benn R, Konsynski
{ISBN 0-8186-2802-2), 368 pages

Interconnection Networks for Multiprocessors
and Malticompulers: Theory and Practice
Bdiied by Anujan Varmo and C8. Raghavendra
(150N 5-8185457

72-23, 554 pages

Kanwledge-Based Systoms: Fundamentals and Tools
Edited by Oszar N. Gareta and Yi-Tzun Chien
(150N 0-8186-1924-41; 512 pages

Fultiduinbase Systems:

Advanged Bolution for Global Information Sharing
Falited by Al B, Hurson, 31 W, Bright, and 8, H. Pakaad
(ISBMN 0-8185-4422-23, 400 pages

Motwork Menagement
o by Willinm Stallings

465 pages

LB186-4142-4);

Noarest Neighbor Paitern Classifieation Technigues
fdited by Belur V. Dasarathy
{ISBN 0-8186-8930-7); 454 pages

Ohipct-Oriented Databases
Edited by Bz Nahouraii and Fred Petry
(15BN 0-8185-8925-33, 256 pages

Oiptic Flow Computation: A Unified Perspeetive
Written by Ajit Singh
{15BN 0-8186-2602-X), 206 pages

Readings in

Real-Time Systems

Edited by Yang-Hann Lee and O M. Krishna
{ISBN 0-B156-2597-5}), 256 pages

Heal-Time Systems Abstractions, Langusnges, and
Desipn Methodslogies

Edited by Krishna M. Kavi

(§5BN 0-8185-3152-X); 550 pages

Real-Time Systems Design and Analysis
Written by Phillip A. Laplante
(ISBN 0-7803-0402-0); 360 pages

Reduced lnstruction Set Computers (RISC) (Second Edition)
Edited by William Stallings
{1SBN 0-5186-8943-5); 448 pages

Simulation YValidation:

A Conlidence Assessment Methodology

Written by Peter L. Knepnell and Deberah C. Arangno
(ISBN 0-81856-3512-6); 168 pages

Software Engineering: A European Perspective
Edited by Richard H. Thayer and Andrew D, McGettrick
{ISBN §-B186-9117-4); 696 pages

Seftware Enginesring Project Management
Edited by Richard H. Thayer
(ISBN 0-8186-0751-3}, 512 pages

Software Management (Fourth Edition)
Edited by Denald J. Heifor
{I5BN 0-8185-3342-5}; 6558 pages

Software Metrics:

A Practitioner's Guide Lo Improved Product Development
Written by Dandeld. Paulish and Karl-Helnnzh Moller

(IBBN §-TRL0U-0444-83, 272 poages

Software Heengingering
Edited by Hobert 8, Arnalid
{18BN 0-8188-3272-01; 888 pages

Software Reuse - Bmerging Techanlogy
Edited by Wil Tragz
(ISBN 0-8186-0845-3), 4D0 pages

Software Bisk Management
Bdited by Barry W, Bochm
{ISBN 0-8188.8506-4); 508 pages

Standards, Guidelines and Examples on Bystem
and Software Reguirements Engineering
Edited by Merlin Dorfman and Richard H, Thayer
{ISBN 0-8186-8922.6); 626 pages

System and Software Hequirements Engineering
Edized by Richard ¥ Thayer and Meelin Dorfran
(ISBN 0-2185-5921-8y, 740 pogres

Hystems Melwork Architecture
Bdited by Edwin B, Ooover

{ISBN §-8186-2131-X1; 484 pages

Toest Access Port and Boundary-Sean Avchitecturs
Edited by Colin 3. Maunder and Rodham B, Tuilsss
SBN G-B188-B070-4 5 400 pogres

Yalidating and Verifying Knowledge-Rased Systems
Edited by Uma G. Gupin
{(ISBN 0-8186.80%5.1); 400 pages

Visual Cues: Praciieal Date Visuslization
Written by Peter B Kaller and Mary M. Keller
{ISBWN 0-8188-3102-3% 350 pages

Yisual Programming Bovirenments: Paradigms and Sysiems
Edited by Ephraim Glinert
(15BN G-B186-8973-0), 680 pages

Visunl Programming Environmenis: Applications and Issues
Edited by Ephraim Glinert
(ISHN D-8186.B974-8); 704 pages

Visualization in Scientific Computing
Edited by G. M. Nielson, B. Shriver, and L, Rosenbium
(ISBN 0-8186-8979-X}; 304 pages

VI.51 Algorithms and Architecture: Advanced Concepis
Edited by N. Banganathon
{ISBN 0-8186-4402-8); 320 pages

V181 Alporithms and Archifecture: Fundamentals
Edited by N. Ranganathan
(18BN 0-B186-4392-7}; 320 pages

Volume Visuslizetion
Edited by Arie Kaufman
{ISBN 0-5186.9020-8}; 4194 pages

.25 and Related Protocols
Written by Uyless Black
{ISBN 0-8186-B578-5), 304 pages

Other titles from
IEEE Computer Society Press

Multidatabase Systems:
__An Advanced Solution fcr Global information Sharing

- Begins wWith an introdiction defining miultidatbase systems apd. provides a hackground on their evolution.‘Subsequent chaplers examine the -
motivations for and major objectives of multidatabase systems, the environment and range of solugions for global information-sharing systems, the

issues specific to multidatabase systems, and different approaches 10 designing a multidatabase system. The book focuses on the application of
multidatabase systems 10 integrate data from preexisting, heterogeneous [ocal databases in a distributed caviroament. These applications present
global users with treasparent methods enabling them to use the total infermation in the system.

Sections: Introduction, Global Information-Sharing Environment, Multidatabase Issues, Multidatabase Design Choices, Multidatabase Projects, The
Fuure of Multidatabases.

400 pages. 1993, Hardcover, ISBN 0-81686-4422-2. Catalog # 4422-01 — $62.00 Members 350.00

The Cache Ccoherence Problem in Shared-Memory Multiprocessors: Hardware Solutions
edited by Milo Tomasevic and Veliko Milutinovic

Pravides insight inte the nature of the cache coberence problem and the wide variety of proposed hardware solutions available teday. The chapters
discuss the shared-memory muiliprecesser enviranment, the cache coherence problem and solutions, and directory cache coberence schemes. Other
chapters examine scalable schemes for large multipracessor systerss and evaluate different hardware coherence sofutions.

Sections: Introductory [ssues, Memory Reference Characteristics in Paralel Programs, Disectory Coche Coherence Protocols, Sacopy Cache-
Coherence Protocols, Coherence in Multileve) Cache Hierarchies, Cache Coherence Schemes in Large-Scale Multiprocessors, Evaluation of
Hardware Cache Coherence Schemes.

448 pages. 1993, Hardeover. ISBN 0-8186-4092-8. Catalog # 4092-01 — $62.00 Members 550,00

Codes for Detecting and Correcting Unidirectional Errors
edited by Mario Blaurn

Presents state-of-the-art theory and practice for codes that correct or detect unidirectional errors. The text begins with a selection ol four papers
providing an introduction 1o the fiekd, including applications. Its afso features key papers demonstrating the best resulls in each subject related to
unidirectional errors.

Sections: Unidirectional Errors, Codes for Detecting Unidisectional Errors, Cades for Correcting Unidirectional Errors, Codes for Cormrecting
-Symmetric Eerors and Detecting All Unidirectional Errors, Codes for Correcting and Detecting Combinations of Symmetric and Unidirectional
Errors, Codes for Detecting andfor Carrecting Unidirectional Burst Erroes, Cedes for Detecting and/or Correcting Unidirectional Byte Errors.

224 pages. 1993. Hardcover, ISBN 0-8186-4182-7. Calalog # 4182-03 — 544.00 Members $35.00

Decision Fusion
by Belur V. Dasarathy

Provides a historical sketch of sensor Fusion and presents new research carried out by the author i the past few years, The book begins with a brief
overview af sensor Tusion and delineates the rofe of decision fusion within this broader field. The subsequent chapters detail the advances made in
decision fusion. It discusses nearly 80 studies focusing on fusion a1 the decision Jevels. Following this are reprints of 25 papers considered
milestones in the development of this field. The book coneludes with a bibliography of more than 500 entries covering the field of sensor fusion.

Sections: Fusion Field Overview, Decision Fusion Under Parallel Configuration, Decision Fusion Under Seriaf Configuration, Decision Fusion Under
Parallel-Serial Configuration, Decision Fusion Survey, Selected Stwdies, Bibliography.

300 pages. 1993. Hardcover. ISBN 0-81868-4452-4. Catalog # 4452-01 — §55.00 Members $44.00

@ IEEECOMPUTER SOCIETY PRESS

v To order call toll-free: 1-800-CS-BOOKS V¥
¥ Fax:(714) 821-4641 v E-Mail: cs.books @computer.org V¥

10662 Los Vaqueros Circle l.os Alamitos, CA 90720-1264 Phone: (714) 821-8380

IEEE Computer Society Press

Press Actlvities Board

Vice President: Joseph Boykin, GTE Laboratories
Jon T, Butler, Naval Postgradunie School
Efliot J, Chikofsky, Northeastern University
James J. Farrell 13, VLSI Technology Ine.,

1. Mark Haas, Bell Northern Researeh, Ine.
Lansing Huotfield, Lawrence Livermore National Laboratory
Honald G. Hoeelzeman, University of Pittsburgh
Gene F. Hoffnagle, IBM Corporation
Jdohn R Nicsl, GTF Laboratories
Yalp N, Patt, University of Michigan
Banjamin W. Wah, University of [lincis

FPress Editorial Board
Advances in Computer Sclence and Enginsering

Editerin-Chicl: Jon T, Butler, Naval Postgraduate School

Assoe, EIT Acquisitions: Pradip K. Srimani, Colorads State University

Dhsrma P, Agrawal, North Caroling State University
Carl K. Chong, University of linsis
Vijay K. Jain, University of Seuth Flerida
Yutaka Banayama, Noval Postgraduate Sehaol
Gorald M. Massen, The Johns Hopkins University
Sudhn RHam, University of Arizena
David C. Rine, George Meson University
AR Bastry, Rockwell International Sciencs Conler
Abhijit Sengupta, University of Sonth Carsling
Mukesh Singhal, Ohic State University
Scott M. Stevens, Carnegle Mellsn University
Michee! Ray Willinms, The University of Calgary
Ronald I, Williams, University of Virginia

Press Stall

T. Bichacl Efiotl, Executive Director
H, True Sesborn, Publisher
Matihew 5. Loeh, Assistant Publisher
Catherine Harris, Managing 8ditor
Mary BE. Ka sgh, Production Editer
Lisa O'Cenner, Praduction Bditer
Eeging Spencer Sipple, Production Editer
Penny Btorms, Froduction Fditer
Edna & b, Praduction Fditor

. Production Bditor

Perri Cline, Blevtronic Publishing Manager
Frieda Kosester, Marketing/Sales Mannger

homas Fink, Advertising/Promstions Manager

I

1

Otfices of the IEEE Computer Society

Headquariers Office
1730 Massachusetts Avenue, NW.
Washington, DO 20038.1903
Fhone (202) 3710101 — Fax: (302; 728.9514
FPublications Office
P Box 3034
10662 Los Vaqueres Circle
Log Alamitos, CA 90720-1284
Membership and General Information: (714) 821-8180
Publicatipn Grders: (8003 272-8857 - Fax: (T14) 821.4010

Europsan Office
13, avenue de MAquilen
B-1200 Brussels, BELGIUM
Phone: 32-2-770-21.98 — Pax: 32.2.770-85.05
Asian Office
Cosghima Bullding
2-18-1 Minami-Acyama, Minato-ku
Tokyo 107, JAPAN
Phone: 81-3-408-3118 - Fax: 81-3-408-3553

IEEE Computer Society

IEEE Computer Society Press Publications

Monographs: A monograph is an authored book consisting of 100-
percent original material,

Tutorials: A tutorial is a collection of original malerials prepared
by the editors and reprints of the best articles published in a subject
area. Tutorials must contain at least five percent of original material
{although we recommend 15 to 20 percent of original material),
Reprint colleetions: A reprint colloction containg reprints (divided
into sectionswith a preface, table of contents, and section introduc-
tiens discussing the reprints and why they were selected. Collections
contain less than five percent of original moterial,

Technology seriest Each technology series is a briel reprint
gollection — approximately 126-135 papes and containing 12 1o 13
papers, each paper focusing on a subset of 8 specific discipline, such
as networks, architecture, software, or rohotics,

Submission of proposals: For guidelines on preparing CS Press
books, write the Managing Editer, IREE Computer Soclety Press,
P.0. Box 3014, 10882 Loz Vagueros Circle, Los Alamites, CA
S0720-1284, or telephone {714) 821-8380.

Purposs

The IEEE Computer Society advances the theory and practice of
computer science and engineering, promotes the exchange of tech-
nical information among 100,000 members warldwide, and provides
& wide range of services to members and nonmembers,

Membership

Allmembers receive the acclaimed monthly magazine Computer,
discounts, andopportunities to serve (all setivities are led by volunteer
metnbers), Membershipis open to all IBEE members, affiliate society
membarg, and others serionsly interested in the computer fisld,

Publications and Activities

Compuier magazine: Anauthoritative, easy-to-read magazine
contgining tutorials and in-depth articles on topics across the com-
puter field, plus news, conference reports, book reviews, calendars,
ealls for papers, interviews, and new products,

Periodicals: The soclety publishes six magazines and five re-
search transactions. For more details, refer to our membership
application or request information as noted above.

Conference proceedings, tutoerial texts, and standards docu-
ments: The IREE Computer Society Press publishes more than 100
titles every vear.

Btandards working groups: Over 1060 of these groups produce
{EEE standards used throughout the industrial world.

Technical committees: Over 30 TCs publish newslatiers, pro-
vide interaction with peers in specialty areas, and directly influence
standards, conferences, and education,

Conferences/BEducation: The society holds about 100 confer-
ences each year and sponsors many educational activities, including
eompuiing science nceredilation,

Chapters: Regularand student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts, and
serve the local professional community,

