Proceedings

Proceedings

TEEE Third Workshop on

November 14 - 15, 1994
Washington, D.C.

Sponsored by
IEEE Computer Society
Technical Council on Software Engineering

o |[EEE. Computer Society Press
Los Alamitos, California |

Washington . Brussels « Tokyo

IEEE Computer Sociely Press
16662 Los Vaqueros Circle
.0. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitied with eredit to the source. Librarics may
photocopy bevond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry o code at the boltom of the first poage, provided that the per-copy fee indicated in the code is paid

through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA (1923,

Other copying, reprint, or republication requests should be addressed to; TEEE Copyrighis Manager, [EEE

Service Center, 445 Hoes Lane, PO, Box 1331, Piscataway, NJ GBE55-1331,

The papers in this book comprise the procecdings of the meeting mentioned on the cover and itle poge. They
reflect the authors” opiniens and, in the sierests of timely dissemination, are published as presented ond
withowt change. Thelr inclusion in this peblication docs not necessarily constitute endorsement by the
edijors, the IEEE Computer Sociery Press, or the Institute of Elecvical and Elecironics Engineers, Inc,

IEEE Compuier Society Press Order Number 5647-02
Library of Congress Number 93-81245
EEE Catalog Number Y4THOGT67
ISBN O-R1B6-5645-X {paper}
ISBN (0-8186-53646-8 (microfiche)
ISBN 0-8186-5647-6 (case)

Additional copies muary be ordered from:

EEE Computer Senicly Pross TEEL Bervice Center IEEE Computer Sogiely
Cusiomer Service Center 445 Hoes Lane {3, Avenue de PAquilon
662 Los Vaguerns Circle P2 Box 133 B-1200 Brusscls

P Box 3014 Piscataway, NFIE33-1331 BELGIUM

Los Adomsitos, TA B072(- 1264 Teir +1-O08-981-1393 Tob +32-2.9740.2108
Tetr + 17148218380 Fax: +1-808-981-9667 Fax: +32.2-T70-8505

Fax: +1-714-82 14641
Fmntl enbooks@eompuler.crg

Editorial production by Regina Spencer Sipple
Cover design by Joseph Daigle, Schenk/Daigle Studios

HEEE Computor Sociery
Ooshima Building
I-i9- Mhinami-Aovama
Minpto-ku, Tokyo 107
Jaban

Tel +81-3-3408-3
Fax: +81-3-3408-3

118
353

Printed in the United States of America by Broun-Brumfield, Inc,

The institute of Electrical and Electronios Enginesrs, Inc.

Table of Contents

Message from the General Chail........ccooviiiicciecci ettt eee et sreas vii

Message from the Program Co-Chairs ..ot reen viii
. ‘VPC ’94 Commlttees“'.’.?."f‘.‘."‘.‘.'.‘.".“."."’.‘..‘..‘.'.'.f‘.‘.".".“f“'.’.'.'.'.'.'."."..'.'.'.'.'..'".‘f.'.'.'.'.1'..".“.".'.":'.'.'.."'.'..‘.'.".'.'.‘.‘.“.".“.-r.fr.-.-‘-.-.-‘s--..ix. . P,
|Keynote Address. . .~ L

Maintenance En\nronments 'I‘ooIs for Peeple or
People for Tools?

A, von Mayrhauser

Session A: Objects g B e o S S .
A Greedy Approach to Object Identlﬁcatwn in Imperatwe Code.ii i 4
B.L. Achee and D.L. Carver

Program Comprehension Through the Identification
Of ABSEract Data TyPes. ..ottt s bt et ae e 12

A. Cimitile, M. Tortorella, and M. Munro

A Tool for Understanding Object-Oriented Program
DIEPENABIICIEE L11tirver s cir s e rts ettt e e tb e ntone e s et et etsare e et s et e e et enereaneassansrranreaenrees 20

P.K. Linos and V. Courtois

I Session B: Architecture

Recovering the Architectural Dea;gn for Software
Comprehension ... S RO U OSSN UUUUIO T UOUUI VST 30
. Canfora, A. De Lucia,
G.A. Di Lucea, end A.R. Fasolino
A Documentation-Related Approach to
Object-Oriented Program Understanding et e eeeeeerieeeteerirareEratesraarereiananeatrrerenentasnn 39
L.H. Etzkorn and C.G. Davis
Layered Explanations of Software: A Methodology
for Program Comprehension. ...t ores s rraeaversesens s e e earessesns 46
V. Rajlich, J. Doran, and R.T.S. Gudla

[S-eSsian' C: Experience Reports.

Experiences Using Reverse Engineering Technigques
t0 Analyze Documentalion .ttt a et e st e ettt aesenas 54
G. Ewart and M, Tomic
Analyzing the Application of a Reverse Englneermg
~Process to-a Real SItuation o i L s i s PRI - - S
F. Abbattista, G.M.G. Fatone,
" F. Lonubile, and G. Visaggio

Session D: Non-Traditional Analysis Technigues -

Dynamic Code Cognition Behaviors for Large Scale Code
A, von Mayrhauser and A.M. Vans

Abstraction Mechanisms for Pictorial Slicing
. Jackson and E.J. Rollins

Understanding Code Containing Preprocessor Constructs
PE. Livadas and D.T. Small

..

Segsion E:i Parallelization - 0 -

Parallelizing Sequential Programs by
Algorithm-Level Transformations
S. Bhansali, J . R. Hagemeister,
C.S. Raghavendra, and H, Sivaraman

Towards Automated Code Parallelization
Through Program Comprehension
B. Ui Martino and . Iannello
Issues in Visualization for the Comprehension
of Parallel Programs
E. Kraemer and J.7T. Stasko

Session ¥ Database

Using Procedural Patterns in Abstracting Relational Schemata

Q. Signore, M. Loffredo,
M. Gregori, and M. Cima

Relational Views for Program Comprehension
T. Jones, W. Allison, and D). Carrington

Object Data Models to Support Source Code Queriss:
Implementing SCA within REFINE

8. Paul and A, Prokash

Session Gt Exploratory Trends and Tools

Determining the Usefulness of Color and Fontsin a

Programming Task.......o e

R. Tapp and R. Kgzman

SFAC, A Tool for Program Comprehension by Specialization. ..o,

5. Blazy and P. Facon
Theory and Practice of Middle-Oui Programming to

Suppoert Program Understanding. oo

K.H. Bennett and M.P. Ward

A0 Mmoottt e ey et o s

154

. 182

Message from the General Chair

Welcome to the Third Workshop on Program Comprehension!
~ This is the third workshop in a series that began in 1992 in Orlando, Florida. The
second workshop was held in 1993 in Capri, Italy, and the success of that conference led

..-to.the.planning.and. organization.of .this. third- workshop.in. Washington, D.C.,.in.1994. ...

These meetings have attracted leading researchers and practitioners in the the field of
program comprehension from around the world and we are pleased to recognize the
international appeal and focus of this particular workshop.

The field of program comprehension is often called by the synonym, “software
understanding.” It deals with the often neglected human side of software engineering, and
it is there that the organizers believe many software engineering problems are rooted —
and where they have to be resolved. Program comprehension has a direct impact on a
programmer’s productivity and capability and therefore, presents a significant and
necessary area of research. Kristen Nygaard put it in a very succinct way: “To program is
to understand!”

I would like to thank all of the volunteers who have made the Third Workshop on
Program Comprehension a reality. 1 would also like to thank the professional staff
members for their concerted efforts.

[wish all of the participants a pleasant stay in the Washington, D.C. area and |
hope that they glean many new and stimulating ideas from the 1994 Workshop on
Program Comprehension. -

Vaclav Rajlich
. Wayne State Universtty

Message from the Program Co-Chairs

Welcome to the Third Workshop on Program Comprehension. As the role of
program comprehension has come to be recognized as a substantial part of software
engineering, so too has this workshop evolved. Not only is it fully refereed, but there has
also been a conscious attempt to broaden the scope of the workshop -~ both in terms of
the topics addressed and the participants involved.

The workshop includes a keynote address, seven paper sessions, and an open
discussion of the future of program comprehension. The sessions range from experience
reports to exploratory trends, from architecture to databases, from object orientation to
paralielization, and from the role of people in the current process to automated analysis.

This workshop would not be possible without the help of many people. We wish
to thank the authors for their efforts and timeliness, the program committee and the other
reviewers, and the IEEE Computer Society — particularly Regina Spencer Sipple — for
her assistance in putting the proceedings together. Last but not least, we wish to thank
Vaclav, without whom there would be no Workshop on Program Comprehension at all.

Once again, welcome to WPC'94. We hope you gain new insights, ideas, and
contacts from this truly international workshop.

Spencer Rugaber Aniello Cimitile
Georgia Institute of Technology University of Naples

viii

WPC ’94 Committees

General Chair
Vaclav Rajlich
Wayne State University, USA

- Program CoiGhairs ™

Aniello Cimitile s
University of Naples, Italy

Spencer Rugaber
Georgia Institute of Technology, USA

Program Committee

Aniello Cimitile, Universiry of Naples, Italy (Co-Chair)
Spencer Rugaber, Georgia Institure of Technology, USA (Co-Chair)
Paolo Benedusi, CRIAIL Italy
Ted Biggerstalf, Microsoft Research, USA
William Chu, Chia University of Taiwan, ROC
Ugo De Carlini, University of Naples, Iraly
Prem Devanbu, AT&T Bell Laboratories, USA
Philippe Facon, IIE-CNAM, France
John Foster, British Telecom, UK
Lewis Johnson, Information Sciences Institute, USA
Paul Layzell, University of Bari, Italy
Panos E. Livadas, University of Florida, USA
Euore Merlo, Ecole Polytechnigue of Montréal, Canada
Glenn Racine, Arimy Research Laboratrory, USA
Steve Reiss, Brown University, USA
Harry Sneed. SES, Germany
Larry Van Sickle, Great Hill Teclmology Group, USA
Giuseppe Visaggio, University of Bari, Italy
Anneliese von Mayrhauser, Colorado State University, USA
Norman Wilde, University of West Florida, USA
Linda Wills, Georgia Institute of Technology, USA
Horst Zuse, Technische Universitar Berlin, Germnany

ix

Anneliesa von Mayrhauser

A Greedy Approach to Object Identification in Imperative Code

B.1.. Achee & Doris L. Carver

Louisiana State University

Absiract

The benzgfits of stch recent innpvations as
object-priented programming are nof realized in most
ystems currently in use becquse they are, on
average, over 10 years old. Additionally, they suffer
from extensive maintznance, This paper addresses
these concerns in the context of reverss engineering.
It discusses the development of a method to identify
objects in imperative code, specifically
FORTRAN-77. An algorithm that uses a greedy
approach 1o object extraction is presented. The
imperative code is analyzed at the subroutine level
and, wsing the concepts of graph theory, a set of
objects is penerated.

1. Imtroduction

buch of the scientific and commercial software
in use today i an average of 10 w0 15 years old. Most
of these systems have undergone exiensive
mainienance and now suffer from poor structure and
documentation. Morgover, the age of these systems
prevents them from taking advantage of the benefits
of such recent software innovations as object-oriented
programning. [8]

The benefis of object-orienied programuming
include code reuse, modularity, deferred commiument,
and a model that closely resembles the read world, In
the object-oriculed paradigm, the object is the
primitive clement. The object ¢an be viewed as an
abstract data type, encapsulating a set of dam (e
atribuies) and a corresponding set of permissible
actions on the data (1.e. methodsy, Each object 15 an
autonomous entity and ineracis with other objects
during the execution of the sysiem. [9]
Reverse-engineering involves analyzing o system (o
"ideatify the system's componeats and thelr
interreiationships” and to "create a representaton of
the system in anotber form or at a higher level of

+-8186-5647-6/04 304,00 © 1994 IEEE

absuaction.” {31 Therefore, by using iechniques of
reverse-engineering o achieve an object-oriented
design, the benefits of curment software technologies
can be readized without discording a working system.

As the connotations of reverse-engmeering have
changed from negative to necessary, there bas been a
concentration of research in the area. Mo longer i
reverse-engineering clouded by the idea that it is an
admission of failure because of the "get it right the
first time” mentality, Today it is realized and widely
accepled that a software system is dynamic. "It is not
possible to predict what you will want the system o
do five, of even two, years from now.” [11]

The widespread appeal of object-oriented
progoumming and e realization of the necessity of
reverse-cngineering as a soflware malnienance
activity have motivated rescarch on re-engineering
procedural code to object-oriented code, The concept
of the object module as a means of restructuring
FORTRAN code into an objcct-oriented style is
introdueed in [12]. While code structured with object
modules i not truly object-orionted, it marks the
beginning of the research along that path. A method
for identifvine candidate objecis based on routines
which use global variables and the types of formal
parameters and retura values 13 discussed in 3] The
problem of object identification is approached by first
developing a formal specification of the code and then
proceeding io idenufy objects from e formal
specification in {4]. Object identification based on
hints from the user and information in common
blocks is discussed in {81 "A method for becoming
familiar with a procedural system so that it can be
converted into the object paradigm” is discussed in
(101 but the issuos of object dentification e not
addressed. The results of die RE' project, which
includes eriterion for identifying abstract daia types io
existing sofiware systems are discussed in [1] and {2].
The development of the Ghinsu tool, which performs
dependence analysis on a subsct of ANST C or Pascal
programs 15 discussed in [6].

This paper presents an approach to extract
objects from FORTRAN-77 code. An algorithm for
the deflinition of the objects is given. The input to the
algorithm is structured FORTRAN-77 code and the
output is a set of candidate objects. Throughout the
paper, a simple example is used o demonsirate the
algorithm.

2. Object Identification Algorithm

This method to identfy objects analyses the
program at the subprogram level and uses a
data-driven, boltom-up approach o construct objects.
An object, O, is defined as a two-tuple, (D,M) where
D is the set of data items and M is the set of methods
that act on those data items.

In the process of developing the algorithm, a
choice was made between using a top-down approach
or boitom-up approach (o object construcdon, A
top-down approach would begin with all daa
elements being contained in a single object and
proceed to divide the object into smailer objecis.
Although this approach has some merit, the margin of
error would be on the side of objecs that are too
small. The bottom-up approach constructs objects by
determining the cohesive strength between two dala
items. We chose the bottom-up approach.

The algorithm, given in Figure 2.2, analyses
a program o extract objects in a boltom-up manner.
The funcionality of a program is viewed at three
fevels. At the top-level, the functionality is that of the
entire program. This view s, indeed, too coarse
grained to aid directy in object extraction, however, it
may provide some insight into the type of objects that
may appear. The second level concentrates on the
funcionality of the individual subroutines, The third,
and most fine-grained view, considers (e
functionality of each line of code. The view of a
subroutine as the unit of functionality is the approach
of the algorithin. By considering each subroutine as a
unit of functionality, the actual paramelers are then
necessary o perform the function of the given
subroutine. DBased on these guidelines, the algorithm

seeks to obiain the smallest set of parameters needed

strenglth of a pair of parameters is measured by
determining the frequency in which they are both
necessary to perform vartous functions {where the unit
of functionality is the subrouting). Measuring the
cohesion of a pair of parameters for a given function
results in the consideration of three cases: (i) both
paramelers are necessary , (ii) only one parameter is

necessary, and (iil) neither parameler is necessary.
The value of cohesion of a given pair of parameters is
affected by ecach case as follows: case (i) increases the
value, case (ii) decreases the value, and case (iii)
leaves the value unchanged. The greedy approach
taken by the algorithm resulis in a cosling function
that, for a given pair of parameters, weights the

necessity of both parameters of the pair as a stronger

- condition than the necessity of only one parameter of
the pair. Thus, the cost function for a pair of .

parameters 1 and j with respect o subroutine £ is as
follows:
¢it, j) = clij) T neither i norj is necessary

for the execution of f

= c{ij)+.2 1iff both i and | are necessary
for the execution of f
= ¢(ijy-.1 iff ¢ither i orj (not both} is
necessary for the execution of f

A'bouom»up approach is used (o construct a graph
that maintains the frequency of their common
occurrence. This graph is represented as a weighted
adjacency matrix M, where M[i,i} is assigned a real
number based on the result of a costing function,
c(ij). Thus, data that appear functionally related only
a small portion of the ime are given a lower weight
than those that appear functionally related a majority
of the time. By setting a threshold on the weight
necessary to be considered relevani, the set of data
contained in an object is determined. One benefit of
this representation i that it facilitates the
consideration of various sets of objects based upon
varyving the threshold,

Fm M be the set of all sets of methiods where \
M=M, UM, U UM,
Let A be the set of all sets atribuies, where
D=DwD, U UD,
Let O be the set of all objects, where
O0=0,U0,U. U0,
and O; = (B, M) foreachj=1.1

If method m, changes the value of data attribute d,
anddy € Dothen M_ =M Um,

k Method Priority Rule

Objects are determined by first grouping the data
togetiber to form atirbute sets and then affixing
methods 1o the sets of attributes. Thus, once the data
elements have been partitioned to represent the
atlribute sets, the next siep is to delermine the
corresponding methods. The process of determining

the methods involves two steps: defining the methods
and assigning the methods to the appropriate attribule
set. When defining the metbods, it is important (o
realize that the attribute sets are comprised of the
actual parameters of the original FORTRAN source
code. Thus, the procedure for method definition
evaluates the subroutine code exclusively. The
methods are auached to attribute sets using the
following heuristic to define priority: priority of
attachment is to that set of altdbutes whose state is
changed by the method in consideration (Figure 2.1).

The algorithm for identifying the objects is given
in Figure 2.2. A simple program, given in Figure 2.3,
i5 used throughout the paper to demonstrate the
application of the algorithm. The program,
STATISTICS, inputs two arrays of experimental data
and two inlegers representing the number of data
elements in each array. The function STD is used i
compule the standard deviation of the data set.
Finally the resuits are output using the subroutine
PRINT. Following is the trace of the example
program on the algorithm given in Figure 2.2:

P is the program STATISTICS. It has n = 4
subroutine calls and m = & distinct actual parameters
and function resuliants, Following step (i) we create
the following sets of actual parameters and function
resultants based on the subroutine calls in ¥

CALL,= {m,expa, n, expb]

/¥ using CALL INPUT(m, expa, n, expb) %/

CALL, = { expa, m, stda]}

/* using stda = STD{expa, m) */

CALL, = {cxpb, n, sudb}

/* using stdb = STD{expb, n) */

CALL, = {expa, m, stda, expb, n, stdb}

#* psing CALL PRINT(expa. m, sida, exph, n,

sidb} */

Proceeding to step (i) we inilialize graph, G, by
forming the sets V and B as follows:

Vo= { m, gxpa, n, cxph, stda, sdb}

E={}

Realizing that there is an arbitrary ordering imposed
on the elements of V, we refer to e elements of V as
v, = 1, v, = €Xpa, vy = 1, v, = exph, vy = stda, and vy
= sty

In step(iii) the weighted adfacency matrix is
inigialized. Since the algorithm is using &
constructive approach 1o creating the graph, the
matrix 5 initially the zerp matrix representing a
graph with no edges.

The matrix AP is a boclean matrix that is used o
represent the appearance of actual parameters and
function resuliants in a subroutine Invocation
stauement. Thus, AP[i,j] is set to 1 iff v; is used in

subroutine invocation statement 1. This is determined
by considering CALL,. If v, (as designated by V) is an
element of CALL, then AP[i,j] is set to 1, otherwise it
is set o 0. The matrix AP corresponding 1o program
P is as follows:

AP:

i 2 3 4 5 6
i wo expa i expb stda stdb

1 1 3 I 1 O

2 i 1 0 0 1 0
3 G O 1 I 0 i
4 l i I 1 i 1

Once the matrices M and AP have been
imitialized the analysis begins. Following is a partial
trace of the analysis using the first and last values of 1.

i=1:

k i 2 3 4 5 6

] m expa n expb stda sidb

i] 02 02 02 0.1 -0
m

2 0 0 02 0.2 01 -0.1
expi

3 ¥ e 0 0.2 0.1 <01
i

4 0 0 0 0 0.1 -4l
exph

5 G O 4] 0 0 0
stda

& { 0 0 0 G tt
stedb
i=d;
k } 2 3 4 3 6

j m expa n expb stda sidb

i 0 e 02 02 0.3 3.1
m

2 {0 0 0.2 02 (3.3 (1.1
expa

3 g it G 0.6 0.1 03
il

4 0 O ¥ 0 -0.1 03
expb

3 { { 0 0 0 0
stda

6 0 0 0 O 0 d
stdb

Let P be astructured FORTRAN program
with n subroutine calls
and m (distinct} actual parameters and function resultants.

(i) Fori=1tondo
e CM_.L, = et of actual-paramezers of subroutine call T
if subroutine i is a function

weethen CALL = CALL union with the function-resultant of subrowtine i

od
{11) Let G=(V,E)beagraph
YV = the arbitrarily ordered set of actual parameters and function resaltants,
and denote the elements of Vas v, vy, ., v, Hnote (Vism */

m

E={} /* wnitally E is empty */
(i11) M[1.m, l.m} ARRAY of REAL; /* & weighted adjcency matrix %/
AP{l..n, I.m] ARRAY of BOOLEAN; 1* 1 sets of actual parameters */

/* Caonstruct the graph, represented as an weighted adjcency matrix */
/* Initially GG consists of only a set of vertices with no edges */
Fort=ltwomdo
Forj=1tomdo
Mli,j] = 0
od -
od
/* Initialize the sets of actual parameters; AP{ij] = 1 iff v, is an element of CALL, ¥/
Fori=ltondo
Forj=1tomdo
v is an element of CALL,
then AP{1j] =1
else AP{1,)] =0
od
od
/* Perform the analysis on the sets AP ¥/
tori=1iondoe
Forj=1ltomdo
Fork=i+l tom do
iF AP[L,)] = 1 and AP[ik] =1
then M{jk] = MIjk] + .2
clse iFAP[j] =0and AP[LKI =0 /* inconciusive #/
then skip
else Mijk]=M[k]- .1 {* only one is O ¥/
od
od
od

{(iv) The output is r < n connected graphs. The vertices of cach connected graph

represents the attributes for a distinet candidate object.

Figure 2.2
Greedy Algorithm for Object Identification

Program STATISTICS

INTEGER m,n

REAL expa(14), expb(14), stda, stdb

CALL INPUT(m, expa, n, exph)

stda = STD{expa, m)

stdb = STD{exph, n)

CALL PRINT(expa, m, stda, expb, n, stdb)
END

SUBROUTINE INPUT(m, expa, n, exph)
INTEGER m, &
REAL expa(14), expb(14)
READ (5, 10, end = 153) m, (expaii), 1= 1, 14)

15 READ (5, 10, end = 30) n, (expb(j), j = 1, 14)
10 FORMAT /* excluded #/
30 END
FUNCTION STD(expx, x)

INTEGER x

REAL mean, expx(14), ind{14), 1ot

tot = 0.0

sum = 0.0

DOsG i=1,x
ot = tot + expx{i)
&0 CONTINUE
mean = ot fx
DOT0 §=1,x
ind(j} = mean - expl(j}
sum = sum + ind(jy #* 2

70 CONTINUE
STD = SORTsumfx- 1%
END

SUBROUTINE PRINT (cxpa, m, stda, cxph, a, stdh)
REAL stda, sudb, expa(id), exph{ld)
WRITE(S,80) " Experiment A" Measurements', ({expali), i = 1, m)
a0 FORMAT /* excluded */
WIRITE, 90 Standard Deviation’, stda
a0 FORMAT/* excluded #/
WEITES, 100) " Experment B) 'Meagurements|, ((expayy, i = 1, o)
140 FORMAT /* excluded */
WRITE, 90) Sundard Deviation', stdb
RETURN . . A
END

Figure 2.3

\\ Sample Program

At this peint consideration must be given (o the
appropriate threshold value. If the threshold is set too
low, the data sets of the candidate objects will be too
big; however, if it is set too high, the data sets will be
too smail. Consider the following possible values for
the threshold: 0, 0.2, and 0.3 (Figure 2.4).

(I;H'ES!IOH Prata Sets
0 {m, cxpa, n,expb, stda, s1db}
0.2 {m, expa, stda}
{1, expb, stdb}
(3.3 {m, cxpa} {n, exph}
[stda} {sidb}
Figure 2.4

Data Sets based on Threshold Values
- /

As expected, the value of the threshold is
inversely proportional to the size of the data sets. The
chart above can be divided into three categories, based
on the follewing {wo important characteristics of the
data sets: (i) all data sets below a given threshold
consist of a single data set containing all of the
parameters, and (u) all dala sels above a glven
threshold contain at least one singleton, e, a data set
ol cardinality one. In Figure 2.4, all data sets below
the threshold of 0.2 contain all parameters, and all
data scis above 0.2 coniain 2t least one singleton.
Thus, the threshold value classes are as follows: class
ong s the see of threshold values { 0} class two is die
sep of threshold values { 0.2 }; and class three is the
set of tireshold values { 0.3 1. Onee such a division
is obiained, the threshold value 0.2 is chosen for
determining a desired data set.

The choice of the threshold value as 0.2 gives
wo objects. Object one has IV = {m, expa, stda} and
object two has D= {n, cxpb, stdh}.

3. Method Definition and Assignment

After D is defined for each object, the next step is
to define the methods, M, for each object. The
methods for these high level objects consist of state
changes to the data sets of the objects. The methods
are determined using both the invocation statements
and the bodies of the subroutines. The invocation
statements are used to provide the proper mapping of
formal parameters to actual parameters while the

following __types: . . . incrementng,

bodies of the subroutines are considered line-by-line
to define the actzal methods.

Rudimentary methods are identifled using ooly
the assignment and VO statements of the subroutines.
During this line-by-line analysis of the subroutine, an
assignment statement is classified as one of the

computing or re-defining. An incrementing

- assignment-statement-dakes the-form X = X+ &, where.

¢ is some constant and X is any variable. Such an
assigament staternent resulis in the method
Increment X (X3 Similarly, a decrementing
assignment statement takes the form X=X - ¢, and
results in the method Decrement X(X). When X
appears only on the left band side, as in X = EXPR,
where EXPR 15 any valid expression but not a
function invocation, the resuliing method i3
Compute_X(var_list) where var list is a Jist of all
variables in EXPR. Finally, in all other cases where
X appears on both the feft hand side and nght band
stde of the assignment statement, the resultng method
15 Redefine_X{var_list) where var_list is a list of ali
variables on the right hand side of the assignment
statement {including X}. The I/O statements appear
as methods virtually as is. A Read statement resulis
in the method Read(un) var_list, where u is the unit
number and var list is the st of input variables
appearing in the statement. Similarly, a Write or
Print statement results in the method Write(w)
var_list. The unit number is retained to provide the
maxunum amount of information about the original
code. A ling-by-line review of the subroutines
generales a set of methods from each subroutine.
These methods are referred to as "formal” methods
because they are generated using the formal
parameters. Once each subroutine has produced a set
of "formal” methods, the invocation sttements are
used 1o provide the proper mapping of formal
parameters to actual parameters resulting in "actual”
methods. Every invocation statement 15 used (o
generate a set of "actual” methods, Tt is these "actual”
methods that are assigned 1o the objects. The "actoal”
methods for an invocation statement are genecrated by
substituting each formal parameter in the "formal”
methods with the appropriate "actual” parameter (as
determined by the invocation statement).

Using the example program, Figure 3.1 shows
each subroutine and the comesponding “formal”
methods. The svbroutine Input generales two
“formal” methods; Std generates five "formal”
methods and Print generates four "formal” methods.
Figure 3.2 shows each invocation statement and the

decrementing,

corresponding “actual” methods. There are a total of
sixteen "actoal” methods identified.

o

broutine

"Formal” Methods
Input{m, expa, n, expb) Read(3) m, expa
Read(5) n, expb
Stdexpx, ¥) Redefine_tot (lot, expx)
Compute_Ind(mean, expx)
Redefine_sum{sum, ind)
Compute, std(sum, x)

Print{expa, m, stda, £xpb, n, stdb) Wriie{S) expa
Write{6) stda
Wriie(6) exph
Write(6) stdb

Figure 3.1
"Formal' Methods Generated from Subroutings

N /

@()cation Statement "Actaal” I\-Ietho-b

Call Input(m,expa,n,exph Read{5} m, expa

Read(5} n, expb
Stda = Std{expa, 1} Redefine_tot (o, expa)
Compute_mean{iol, n)
Compute_Ind(mean, expa)
Redefine sumf{sum, ind)
Compute_std{sum, n)
Stdb = Std{exph, m) Redefing_{ot {(tot, expb)
Compute,_mean{iot, m}
Compute_ind{mean, exph)
Redefine_sum{sum, ind)
Compute,_sid{sum, m}

Call Print{expa, m, stda, exphb, n, stdb)
Write(6) expa
Wriie(6) stda
Wreite{6) expb
Write(6) stdb

Compute_mean{tot, xj |

Figure 3.2
"Actual” Methods Generated from {nvocatiany

Once the "actual” methods are idendfied, the
final step is attaching the methods to the data sets
form objects. Each method is attached to a data set

13

where the pricrity of attachment is given (o that object
whose state is changed by the method 10 consideration
(Figure 2.1). At this stage, human intervention is
necessary o attach a meaningful name to cach object.
The objects ideatified using the example are
given in Figure 3.3, As expected, the two objects
identified for the example are very similar. They have
data sets of equal cardinality and type signature, as
well as method sets of equal cardinality. Moreover,
" the methods are virtually identical, varying only in the
variable lists. Such similarities are expected and are
necessary for addressing the issue of class abstraction
which will be considered 1o later work,

/&UECT i

~

D = {m, expa, stda}

M=
Read(5) m, expa
Redefine totftol, expa)
Compute_mean{tot, m}
Compute Ind{mean, expa)
Compute_sida(sum, m)
Write(0) expa
Write(6) stda
Redefing_sum{swmn, ind)

}

D= {n, expb, stdb}
M = |

OBJECT Z:

Read(5) n, expb
Redefine_toi {iot, expb)
Compute_mean{tot, n)
Compute_Ind{mean, expb)
Compute_stdb(sum, n}
Write{t) exph

Write{s) stdb
Redefine_sumfsum, ind}

I

Figure 3.3

Candidate Objects

.

4. Conclusions

/

The algorithm described in this paper evaluates
the subroutines of a FORTRAN-77 program to
determine a set of objects. The relationships among
the actual parameters are evaluated o construct the
attribute sets of the objects. By using the invocation
statements of the program, a measure of cohesion is
recorded in a welghted adjacency matrix. Using this

measure of cohesion, a threshold value is determined
and the data is partitioned into disjoint sets each
corresponding t0 an attribute of a disunct object.
Methods are then generated by considering,
line-bry-line, the subroutine code. Finally, the
methods are attacked to data sets to form objects with
an attachment priority based on state change of an

obiect W e continuing 10 mipand ts ot
. Adentification process along with the method

identification process.
5. References

{1} Canfora, G, Cimitle, A., Munro, M., &
Tortorella, M. "Experiments in Identifying
Reusable Abstract Data Types in Program Code"
Prec. [EEE Second Workshop on Program
Comprehension, July, 1993, pp. 36 - 435

(2] Canfora, G., Cimitile, A. & Munro, M. "A
Reverse Engineering Method for Identifying
Reusable Abstract Data Types” Proceedings of
the Working Conference on Reverse Engineering,
May 1993, pp.73 - 82

[3] Chikofsky, EI & Cross, JH “Reverse
Engineering and Design Recovery:
A Taxonemy" In [EEE Software,
Jan 1990, pp 13 -17.

4] Gannod, G.C. & Cheng, BILC."A
Two-Fhase Approach 1o Reverse
Engineering Using Formal Methods”
In Proc Formal Metheds in
Programming and their Applications
Conference, June 1993, pp. 335 - 348,

[5] Liu, 8.5, & Wilde, N. "Identifying
Objects in a Conventional Procedural
Language: An Example of Data Design
Recovery” In Proc, Conference of
Sofiware Maintenance, 1990,
pp 266 -271.

11

(11T Waters, R.C, & Chikofsky, I,

{6] Livadas, P.E., Roy, P.K. "Program Dependence

Analysis” Proc. [EEE Cooference on Software
Maintenance, Orlande, November, 1993,
pp. 356 - 265.

(7] Ong, CL. & Tsai, W.T. "Class and
object extraction from imperative code”

~ JOOP Mar/Apr 93, pp 58 - 68.

..{8] Osborne, WM & Chikofsky, EL."Fitting ...

Pieces to the Maintenance
Puzzle" IEEE Software, Jan 1990,
pp. 11 - 12,

{91 Pokkunuri, B. P. "Object Oriented

Programming” In SIGPL.AN Notices,
Vol 24, No 11, Nov, 1989, pp.96-101.

[10] Sward, R.E. & Steigerwald, R A,

"lssues in Re-Engineering from
Procedural to Object-Orientzd Code”
In Proc 4th Systems Reengineering
Technology Workshep, 1994,

pp 327 - 333,

"Reverse
Engineering: Progress Along

Many Dimensions™ In CACM Vol 37,
No 5, May 1994, pp 22 - 24,

[12]Zimmer, JA. "Restructuring for Style”

In Software - Practice and Experience,
Vol 20(4), Apr 1990, pp 365 - 389.

This work is supporied in part by the National
Science Foundation Grant No. COR-9307917.

Program Comprehension Through the Identification of Abstract
Data Types

A. Cimitile, M. Tortorella
DIS
Dep. of “Informatica e Sistemistica”
University of Naples
Naples 80125, Italy

Abstract

This paper presents the resulta of experiments car-
ried out on identifying Abstract Data Types in erisiing
code by an improved algorithm described in previous
work. It presents o brief description of the improved
algorithm and then deseribes the results of the experi-
ments. It addresses issues in program comprehension
from the perspective of software reuse.

Introduction

The comprehension of existing software systems
plays a major role in many software enpgineering
projects, encompassing such activities as testing and
debugging, validation, migration, maintenance and
enhancement, re-enginecsing, and reuse. Identifying
the assets in an existing system reguires technignes
to decouple the components from the external envi-
ronment. By doing this and splitting a program into
simpler more cohesive modules the system becomes
ensier to comprehend and mainfain.

There are a number of approaches fo program com-
preliension, one of which is a systematic approach
where the maintainer examines the whoele program
and works eut the inferactions hetween various mod-
ules that constifute the propgram. This task is made
more diffienlt i the code is not modularized or has
heen modularized is an ad-hoc manner leading to high
coupling between, and low cohesion of, the modules,
Without these attributes of low coupling and high co-
hesion the modules, and thus the program, will be
more difficult to understand and therefore more diffi-
cult to maintain.

The approach adopted here in this paper is to apply
a method of identifying Abstract Data Types (ADTs),

these heig the basis of new, retisable, modules of the

program. The premise of this work is based on the as-

sumphion that the identified ATTs will divide the code

into modnles that will have the necessary atiributes of
low coupling and high cohesion. The drawback of the
approach s that it 13 not always possible to identify
ADTs in the code hecause for example the original de-
sign of the system preciuded the use of ADTs, or be-
cause the program has heen so heavily modified that
it is impossibie to disentangle any coherent structure
from it.

0-8186-5647-6/94 $04.00 © 1904 [EEE

12

M. Munro
CSM
Centre {or Software Maintenance
University of Durham
Durham DH1 3LE, UK

The Identification Process

Some criteria for identifying ADTs in existing code
has already been defined in {1, 2, 3, 4]. The ap-
proach hy Canfora ef, ol. has been applied in a
series of experiments [3], where the method is hased
on the relationship existing hetween the user-defined
data types and the procedure-like components (proce-
dures or functions) that use them as formal parame-
ters and for as a return type of a function.

The methad can be expressed simply by considering
the set 8TYP of couples (c,t} such that ¢ represents
a procedure-like component and ¢ represents a user-
defined data type used to define a formal parameter
and/or a return type and such that ¢ does not use a
super-type of 1. Given this set the following relations
can he defined:

ABTY P = (trans(STY P)STY Py
CCTY P = {trans(STY PI\STY Pi*trans(STY P)

where trans{R) and R* are the transpose and re-
flexive transitive closare of the relation R.

The relation ABTYP defines the supporting strue-
tnre of the ADT that is the user defined data types
that contribnte to the make-np of the candidate mod-
ule. The relatinn COTYP defines the operators on the
candidate ADT, that is the procedure-like componenis
that are included in the candidate module. Software
engineering knowledge and henristics are necessary io
climinate coincidental and spuricus connections possi-
hly existing among the components [G].

A new, more precise method, has been proposed hy
Canfora et. al. [9], that extends the work described
ahove. In this extended method the call graph to-
pether with the deminance tree is used fo give a more
precise set of modules and ADT. Before describing the
extended method, some basic definitions are given.

The call directed graph (CDG} of a program can
he described by the triple (s, PP, E). in which s is the
main program, PP is the set of procedure-like compo-
nents and B is defined hy the cail relation on {s}UPP
x PP. I recursion exists in the program, CDG is
a cyclic graph and. then, can contain strongly con-
nected subgraphs. By collapsing each subgraph into
one nodethe call directed acyclic graph (CDAG)
can be generated {11]. CDAG is defined as the triple
(s, PP'. E"}, where each element in PP’ is a compo-

nent of PP or a collapsed subgraph of PP, and E'
is the call relation defined on {s} U PP' x PP'. In
a CDAG the dominance relations are defined: a node
px dominates a node py if and only if every path from
the initial node of the graph to py span px; a node
px directly dominates a node py if and only if all the
nodes that dominate py dominate px; finally, a node

- -px.strongly direct dominates anode py if and-only if px--

directly dominates py and it is the only node that calls

..p¥..The direct dominance tree (DDT).is defined as...

the triple (s, PP', ED}, in which ED describes the di-
rect dominance relations on {s} U PP' x PP'. The
strong direct dominance tree (SDDT) is ohtained
from the DDT by marking all the edges that connect
nodes having the strongly direct deminance relation.
A method using the call-graph generated from a sys-
tem and its transformation into a dominance tree has
heen proposed by Cimitile and Visaggio [7, 8].

The need to use the dominance relations to improve
the quality of the ADTs identified with the method
illustrated ahove arises from the ohservation that, in
each module, the set of procedure-like components he-
longing to it is not complete. In fact, the method for
looking for ADTs is exclusively based on the reality
that some procedure-like components use some user
defined data types as formal parameters and/or as a
return type of a function. It does net take into ac-
count that there are some procedure-like components,
selected to constitute the set of operations of an ADT.
that call other procedure-like components that, not
referencing to any interesting user-defined data type,
have not been selected. Moreover, the set of ADTs
identified does not reveal any relation of USE hetween
the various ADTs. In fact, it can happen that the com-
ponents of an ADT call the components belonging to
other ADTs, establishing an USE relation. The direct
and strongly direct dominance relations offer an useful
instrument for the compiction of the ADTs and for
the re-engineering them.

The extended method consists of an algorithm of
seven steps and a set of rules and is described in de-
tail hy Canfora e, el [9]. The aim of the new al-
gorithm is to identify all and only the procedure-like
components invelved in the implementation of some
of the ADTs. It is an iterative process that discards,
in each iteration, the procednre-like components that
will not be involved in the implementation of some of
the operations of the ADTs. The identification of the
components to eliminate comes from the following the
observation that a procedure-like component strongly
direct dominated from the MAIN program is called
just from the latter, and it will not he called from
other components helonging to some other module.
The iterative operations of elimination in the CDGA
of these components and re-definition of the SDDT
gives the conclusive set of interesting procedurc-like
components. When the final set of interesting com-
ponents is obtained, the set of rules establishes the
USE relations that can be defined hoth hetween com-
ponents and between modules. The main instrument.
on which the rules are based, is the final SDD'T com-
posed of only the interesting components identified
above and opportunely equipped with additional in-

13

formations about the relations of call for the compo-
nents that, not heing strongly direct dominated, are
called from more than one components. On the other
hand, the components that are strongly direct domi-
nated are called from the respective dominators, The
rules indicate some guidelines that help to identify the
proceditre-like components not selected in the previ-
ous step-helonging to some modules, the hest way to
nest procedure-like components belonging to the same

module-and-how-a:module-USES-other moduleg:=Fop- s b

example, if a component is strongly direct dominated
and it belongs to the same module of its dominator or
to no module, it will he nested in its dominator, other-
wise. if it helongs to a different module of its domina-
tor, a USE relation hefween the two modules is estab-
lished. Analogously, a component not strongly direct
dominated js called from more than one other com-
ponents if it has not already heen established which
module it helongs to, it will belong to the same mod-
ule of the calling components, otherwise, a multiple
USE relation hetween modnles is defined.

Results from Experiments

To show the validity of the method proposed above.
a set of Pascal program are used in a series of exper-
iments. These programs were analysed by Canfora
et.al. [5] to test the strength of their criferion for
looking for ADTs and, hy comparing the actaal re-
sults with that they obtained, it will be shown how
improved sohutions are obtained by applying the new
process. Moreover, it will be shown how the method
adopted facilitates to the splitting of a software sys-
tem, no matter how complex, into more than one mod-
ule, that are simpler and easier to analyse and to com-
prehend.

The analysis system uses a Prolog program dic-
tionary to keep all the main information relative to
the subject program. A dictionary is prodnced hy
static code analysis and it is composed of facts of ar-
ity 1 {proc(procedure_name), func(function_name) and
user_def.typef{type_name)}. to describe the kind of each
software component. and facts of arity 2 (proc_use_ty-
peanainterfoce(procedure-name, type_name), funcou-
se-typesin_interfacel procedure neme, fype_name). u-
sed_to_define(type_name_1 type_name 2}, proc_func.de-
ofprocedure.name_{ . procedure_nome.2), and proc_fun-
cocall{procedure.name. ! procedure.name.2)}. to descri-
be the reintions existing between two software compo-
nents. By query of the program dictionary, a Pro-
log program generates the ADTs proposed for the
reuse, and another Prolog propram penerates the
dominance relations existing hetween the procedure-
like components. The second program constructs
a second Prolog dictionary hy storing facts of ar-
ity 2, dircdom{procedure.name_1,procedure.name.3)
and str_dir.dom{procedure_name. !, procedure_name.2),
expressing if a procedure-like component is either di-
rectly or strongly direct dominated and the component
dominater.

The data for the experiments consist of four Pascal
programs, developed in different periods and by differ-
ent people. Clearly, for the different expertise of the
developers, the programs present different character-

istics, but the results obtained are comparable.

Al the programs analysed have a size between 1000
and 2000 LOC. A brief description and the relative
analysis for each program follows. For each program
the structure of the identified modules are presented.
The notation adopted here uses EXPORT as the in-
terface apecification, that is all the information, the
names of the types involved and the operations that
act on those types, that the module exports; and uses
BODY for the implemnenitation, that is the represen-
tation of the type, the local resources and the imple-
mentation of the operations on the types, that s, all
the information that the module hides.

Editor.pas

This is a version of the Unix text editor. The pro-
gram is angmented with functions that have been writ-
ten for a particular environment to carry out opera-
tions such as opening files and detecting interrupts
from the user.

The first results, obtained by applying the method
for the extraction of ADTs, gave three modules. The
first two modules were well-formed and easy tfo as-
sign a meaning; on the contrary, the third appeared
as a large ‘pot pourri® module, compesed of five user-
defined data types and thirty-seven procedure-like
components. This clusterisation was due to the use of
an enumeration type. As discussed in {9]. sub-range
and enumeration types are often the cause of the clus-
terization of more than one simple medule in a bigger
one. The isclation or, if possible, the replacement in
code of these types with other kinds of types, for ex-
ample infeger types, allows to the splitting of the mod-
ule ohiained in the simpler modules. The operation
described ahove and the re-application of the ADTs
method split the last modnle into three simpler mod-
ales. Definitively the modules identified are presented
in the following table:

M. user-dofined provsd ure-hike compoagonts
sl duty types

1 travesiring strage

2 Tinoptr ol e, freclinegetind gelnow,
votpak.goetixtlinkap

kS Flennmestring asaigniie.doread dowrit. goetfnupen

4 linesteing adtset,ctol,eeediset et rond cnnl
rendline. readiorm

5 wrystring, wimuticheatsubdunmppat.getoch gotvhs

putturnstring lorsteanukpat.nak:ubanatehoomatel,

poisiz.stolossulst

In reality, as cited above, the modules now pre
sented are not complete. In fact. the procedure-like
components invelved in the constitution of a modude,

call;-in-the implantation. other compenents that-do.

not use the user-defined data types, that are part of
the subject module, in their interface. are not included
in the same. Moreover, at this point of the analysis,
the relation of USE existing hetween the varions mod-
ules is not clear. To solve these problems the method
hased on the dominance relation is used.

In Fig.la the strongly direct dominance tree
{SDDT) is presented for the program Editor.pas; the
solid lines represent relations of strong direct dom-
inance, and the dashed lines the relation of direct,

14

but not strong, dominance; the number in some of
the nodes indicates the module that the procedure-
like component represented from the subject node be-
longs to. As described above, Fig.1h shows the SDDT
ohtained from the CDAG of the program by deleting
all the components not belonging to any modules and
that are strongly direct dominated from the MAIN.
In fact, for the definition of strongly direct dominance
the above components will be called only from the
MAIN and not from components belonging to some
modules. The tree in Fig.1b has been obtained after
a recursive process that in each iteration deletes from
the CDAG the components with the above peculiari-
ties and all the links in and links out of them, creates
hypothetical links in from the MAIN with all the com-
ponents that are remained without components calling
them, and re-consiructs the SDDT associated with the
new graph. In addition, the informations placed inside
the nodes not strongly direct dominated indicate from
which module or which component {if this does not
helong to some modules) the component mentioned in
the node is called.

Tnt the operation of creating the final SDDT, a con-
siderable number of procedure-like components was
discarded. Analysis of the code has revealed that
they are either components never called, or initial-
isation components. or components referring to the
nser-defined data type SiaiusRHenge, hefore isolated,
and checking the states codified from that type after
a nuthber of different operation.

Definitively, it can he said that the software com-
ponents of the program Editor.ps can be grouped in
the ADT TraceString with a debugping routine as the
only operator; the ADT implements the type Lines
with the operations to manapge two lsts of lines, the
list of the nsed lines {the ones that currently contain
text} and the list of free lines; the ADT Files with ali
the primitives to manage a file; the ADT LineStrings,
with the operators for reading a line from either the
terminal or a file buffer, modifying a piece of text and
inserting an escape character; and the ADT Patiern-
Matcher with the operators for searching and substi-
tuting strings. and of pattern matching.

The frst two module do not present a particular
structure, in fact, as can be seen in Fig.lh, they do
not use other modules, and do not call componenis
different from that discovered with the method look-
ing for ADTs. The only observation that can be made
is on the order of declaration of the componenis of
module 2 for example. the component getnew has to
be declared before, or nested in, the component allo-
line, since the fornier is sirongly dominated from the
latter and then @ called only from it 7 7

More interesting is the discussion of the other mod-
ules. For module 3 the SDDT reveal, by means the
information annotated under some nodes, that it uses
modules 1.2 and 4. Moreover, module 3 includes the
component skipbl, hecause it is strongly dominated
from doread. The structure of $his module follows:

wodule MOD3 USES MOD1I MOD2MOD4
type eMNumebirimgstatusRange: EAPORT
function open(fileNuuefileNuimeStringidirdinteger rintegers
function dowrit{fromLinc,toLincinteger;
fileNumefiloNunieString) statusRange:
function derced (inesintogerdfileNamerfileNameString}
statusRanpe:
Tunction gpetfu(var fileNomerileNueStringdstatusRange:
vitist BODY

statusRunpe=(NOSTATUS, -OKSTATUS,
ERRSTATUS, EOFSTATUS.INTSTATUS)
function epen(fleNumefileNanStringaliniateger) futegen
oy retion B En FEE{ Ve FIDEXUekc v Bl apgas s
fileNumeString: dininteger)integer;

Legin ... el
begin .., end
function intrpt{var x :
begin eud

function dowrit{fromLine toLincinteger;
fileNamedfileNumeStringhtutusRange
begin v, end
function doread{lincintegeridfileNamerfleNumeString)

integer} @ booleans

sstatusRunpger
function injpakivar stsmetatusRunpel=totusRangs
begin ... end
bBagin v, end

function getfn{ver BleNamoifileNumoeString) s tatusTiange
provedure skiphl;
begin ... end
Boegin ... end

Module { uses module 2 as it can he established
by observing the component injpak. The struciure of
module §, appearing more complex, follows:

wodule MODS
type wrghiringy patfornStriug:
function mmstolargString: frencintogen
var pubiputlernStringlantegen
function mukpotfargiagString: fronmzintogen
delimchar vur patrpattersString)integer;
funetion nistch(lhoorgStringvar putiputiernString)thuelenn:
function subst{suhipaticrnStringgfagbootonn Bintegen
funetion getrhalvar subipatternString
var ghagbosleanjintegers
procedure dum]l;sut(puttp:\tturuStriug: Jintepery
LSS ovniiiiianin
type argSteing = HpeStrings
patternString == HucString:
function smstoh{lnargStringifronintegen
var patipatteraStringhintogen
fenciion suntch(BudlineSivngivar Givtegurs
putiputternString: Binteger):hoolean:
function lseate{etchar: patipatiernString:
uffzetsintegeri:hoolean:
fwuction patsiz{peirpetiernStringnintegor jintegen
function makpatisrgrergString fromsintegen;
delimzchar var patipatternString Fintegor
Tunction getecHuargargString var integer;
var pad patternString: var Rintegerhhooionn
funution stefes{var putipatternString:
var lustj lnstelintegeriintegen
function matchilinmurgStringoar patipatternStringthoolean:
function subst(xubepatfcenString: glugboolenn iniegen
typoe stuta=Range={NOSTATUS, OKSTATUS,
ERRASTATUS.EQFSTATUS INTSTATUS):
function du]ut::(frmnLinc,tuLinc:intugur):rslutusﬂuugu:
function previn{linsinteger jrintegers
procedure catsabllin:dineSinng: L aintegers:
sulepatternString; var strlineString:
vir kiintegen: maxnewsinteger):
funetion getehs{var subipuiternString:
var giiagshooleun lintegen:
function suuksublargurgString: Ginteger:
delimiichar var salepatternStang tintoger:
proveduare dumppat{patipetiornString: Jrintaeper);

USES MODI.MODLMOD
EXTORT

BODY

type fileNumeString=Packed array [1.MAXNAME] of char;

15

Module 5 nses module !, 2 and 4, includes com-
ponents like delete and prevl that, in the structure
of the module, will he nested in aubst, and it con-
tains more complex functionalities, composed of sub-
functionalities belenging to the same module, like am-
ateh that implements the sub-functionalities imple-
mented by omatch, patsiz and locate, that can be
nested in the dominant component.

ExamMarker.pas

“The program fmpletients 5 system for the evilua

tion of multiple choice examinations. Tt is particularly
suitable for Universities that adopt a college organi-
zation like that of the University of Durham. The
program inputs the number of questions, with the al-
ternative answers and the exact answers, and the in-
formation ahout the students, with their answers, and
produces the resulting marks in various orders.

The analysis of the program with the method de-
seribed above splits the program into seven modules.
A first incomplete picture of these modules follows:

N. wser-difined procedure-tike componcuty
rewed, dati typos
1 sirings rouatring
2 colfepes neweullvge rendoollege,
writccollege
3 listelement alphaprecede, collegepreeede:,
highermark. swup
4 cundidatesines checkevatfublendternatives,
pUPGrs checkeandidute, chicekextradata,
readunduohicckunswers,
writcpurticulars
5 Wetslaes guarkfudge, | getpreliog narios, read g,
rarksohomes, writelitic
guostasu titic
8 Bists tisthycollegedistbymurk
listhyname liatforstudenty,
perite.guick=ort
d e wialyso.duin plofile,
getpurticnlars listserted resalts,
wark sumoarise, validute

The first five modules were ohtained simply by ap-
plying the original algorithm leoking for ADTs in soft-
ware code. It also produced the last two modules clus-
terized in one big module. This clusterisation was due
to the use of two subrange types. The operation to
isolatian of these types and the re-application of the
method looking for ADTs pave the final situation as
Mustrated in the table above.

For the program ExamMarker.pas. in the opera-
tion of deletion of components not helonging to mod-
ules, only one component. initialise. has been deleted.
The procedure initinlise is a component, called from
MAIN, executing the necessary initialisation at the
start of the program. The final SDDT, obtained after
the deletion, is presented in Fig.2

The program ExamMarker.pas can be seen as im-
plemented by seven modnles, interacting with each
other on the basis of relation of USE. In particular
meodule I, implementing the type Siring and with the
only operator ReadString to read a string to a maxi-
mum length from a file, is used only from the module
4- Module 2, implementing the type Colleges with the
operators to write and to read the name of the college
as well as the components already discovered, includes

also the components lower and capital, with the first
nested in the operator readeollege. The structure of
module 2 is the following:

mudule MOD2
type colleges;
procedure ReadCollege {var colicgercolleges
wviur unkeownibeoleansvar sourge,cchofile:r text):
procedure WriteCollege {collogeicollegesyvar vutfilestext):
procedure NewCollege {vollogeieollepe:
var lusteolicegocollogesivar outfiloitoxt);
typu colleges = (grey, colltigwood, Ierys, trevs,
wmilderet,pidans, hatficld,chinds johos,
cuthscastle kildandbeden
function capitul (ch clined: churs
provedure ReadCollege {var colicgaicoileges
var unknown:booleanvar source,cchefile: text):
fenction lower {chichur)ghar;
procedure WeiteCollege {collegecollegesivar outfiletoxt):
procedure NewCollege (college:colle
var lasteollegeresllepesivar outfilertexth

EXPORT

BODY

Module 3 implements the type ListElements with
the operators to compare students records on the basis
of alphabetical order of their name, their marks or the
college which they belong.

Module 4 implements the type CandidatePapers
and it contains all the operators for reading and check-
ing the data of a student and his answers and print.
ing out the resulting mark. As is revealed in Fig.2
from the number 4 under the same of the compo-
nent writecollege. module 4 nses module 2. Besides,
it includes in its implementation the declaration of
the components seekchar and checkierminafor, whose
declaration will he added also 1n module 7.

All the operations fo read the title of an exam. the
total number of questions, the marking scheme. and to
produce a form echo-printed into a file arve offered from
module 3 implementing the type Seripl, necessary io
acquire the initial information for the examinabion.
This module does not use other modnles,

Module & implements the type Lisis and contains
all the operators to list the results of an exam in dif-
ferent orders on the basis of the college, the mark, the
name, and the students. Tt also contains the opera-
tor to dyaw the histogram of the resulis, the operators
quicksort, to order in different ways, and permute to
exchange two elements. Tt willinclnde the components
dire and getrandomnumber nested in permute. For its
implementation the module nses module 2 and 4.

The final module, 7. is the fundamental module.
By using all the. other.modules, with. the. exception
of module I, it implements the type ezams. It man-
ages the whole exam, with operator to use module 5 to
input the information about the exam, module 2 {0 in-
put information about the colleges, module 4 to input
information about the candidates and their answers,
module 3 to verify the validity of the information ac-
quired, module 5 to list the candidates and their an-
swers in different way, and the operator to analyse the
exam, assign values and validate the legality of all the
terms.

18

Minicalc.pas

This program implements a simple spreadsheet, It
is provided with a simple portable interactive user in-
terface, and shows the display divided into cells, la-
belled A to H vertically and 1 to 5 horizontally. The
system takes as input the user commands that can
be either be commands for the management of the
spreadsheet or information to input into the cells.

The analysis of this program showed in [5], even
showing interesting resulis, was not complete in terms
of operations presented for each module. In fact, the
application of the criterion to only the procedure-
like components declared in the MAIN did not take
into consideration operations that are fundamental
for some ADTs but are implemented by components
nested in others. Different results lave been ohtained
by not considering the nesting hetween components in
the first stage of the analysis. When compared with
the previous results, the new results appear richer in
terms of operations for each module, Also in this case,
a real partition of the software compenents in more
than one hierarchic module is obtained. To be pre-
cise, five modules are ohtained, and they are shown in
the following table:

N. user-defined procedure-iike components
mod. data types

1 AT 1L crrothandier, wrileuscr

2 cont il eeteom mund

3 inputiype, writeuserinput,gelccl gettoken, goting

token alplisheticekipblunks getchurnamerice
getuscrinput.ungoetchur, postinbel
] nsdepty chavkexprizoemaluale prioxprossion,
factor,expression.nunkenodesubexpr,
parscuxpression.bernuw dioexpression
5 cellid docellex pradoceillnb el docellchunge

To obtain the last three modules the human in-
tervention was necessary. In fact, after the applica-
tion of the meihod based on the AD'Ts. the last three
modules were clusterized in one big module, compre-
hending in the structure more user-defined data types,
sub-range, and more procedure-like components. The
isolation of the sub-range fypes brought simpler mod-
ule, hut equally complex, composed of the set of all
the components that appear in the st three mod-
ules. The splitting of the module was obiained by
analysing the call relations between the procedure-like
components and those existing between them and the
nser-defined data types. The clusterization was due
to components, makenode, checkerprivee and parseer-
pression, that implement the characteristic functional-
ities to manage and to evaluate algebraic expressions,
and are strongly dominated (Fig.3) from other compo-

nents.with the same purpose, hut use in the interface

the types inputiype.foken and cellid. The insertion of
the components causing the clusterization in medule
4 brought io the configuration presented above.

Fig.3 shows the final SDDT obtained after the dele-
tion of uninteresting components. Only three compo-
nents used to initialise the system, were discarded.
As it can bhe seen in if, the components in module
1 do not call other components, but are used from
other modules. Module 1is very simple, it implements
the type User Messages manapging the messages to the

user., The second module, User_Commands, contains
the operator to read and to interpret the user cam-
mands. It uses module I and operations of module 3.

Module 3 implements the type Input with the op-
erators to manage all the different kinds of inputs,
that is commands, or information to store in the cells
of the spreadsheet. This information ean he a Ia-

bel, or numeric values, or references to other cells.

“The module contains operations to vérify the correct-
ness of the information by analysing eventual links

= hetween-cells Thefinal SD T revesls thiat ssmie coims™

ponents (alphabetic, getcell, numeric. ecc.) implement
sub-functionalities of another component (gettoken).
and that they can be nested in the latter. Also the
component simpledoken can be nested here. This was
not apparent from the first analysis and was thus not
added to the module, but can since it is strongly dom-
inated from getfoken. The routine monetocell called
from postiabel will also he inserted in this module. It
appears that the subject module uses module 7. These
and other ohservations, that can spring from Fig.3,
bring to the final structure of the modufe.

Module 4 is interesting in that it implements the
ADT Ezpression with the operators to read and to
memorize in the spreadsheet, to write, to check the
correctness of and to evaluate an expression. In
particular, the operation to read and to memorize
the expression is tmplemented by the components ez-
pression, subexpr, term and factor that constitute a
strongly connected component in the call graph, This
component is represenfed by the node called EX.
PRESSION. Tt will be nested in parscezpression., that
will be nested in gelezpression. The modnle will in-
clude also the component addiodependlist nested in
checkexprivee. Module 4 uses module | and module 3.
In the module the type counter is also defined: this
type is used from some components te consider the
depth in the representation of the managed expression
like binary tree. The above information is synthesized
in the following schema:

module MOD4 USES MOD1.MOD:3
type nodeptricounice EXVFORTY
procedere WriteExprossion{ ExpeNedePtrLevel:iCounter):
function GetExpression:NodePin
function Evaluate{Expr:NodePirvar Dufinediboolean rrenl:
function CheskBExprTreo{ BxprTree:NodePtr;
var CountiCounterhboolewn:

BODY

LOUSE werirrrrrorasris
type Ceanter = #.maxint;
LineType = urruy] . MAXLINE]of char:
InpueiType = reoord
Linu @ LineType:
Length, Lust 1 Countoer;
cid;
proceduare WriteBxprossion{ExprNodePtnLeveliCuunterl;
funciion GetExpression:NodePtr;
function PurseExpression(Userbup:InpulType): Nodepte
function MukcNode(NedeValuerreal;
Left, Right:NodePtr):NodePin
function Expression:NodePtr:
function Term @ NodePtrg
function Fucter : NodePir:
function SebBxpr: NodePitr
function Evulente{ExprNodePtrivar Defined:hoolean)rronl;
function CheckBExprTrec(ExprTroaNodePtr;
var Count:Coanter)iboolenn;
procedure AddTeDependList{var Count:Counterl:

17

Finally, the last module implements the AD'T Cells,
This module, by using all the other modules, manages
the spreadsheet, with all the operators for the acquisi-
tion and the checking of lahels, cell addresses and nu-
meric expressions, In particular, for the last task, the
component docellexpr declares the components eval-
uatecells, buildgraph, sorteells and findzeroes, whose
names express the kinds of implemented operations.

Format.pas

e Thigds an-ancient publicdomain pretty priviter pros

gram for Pascal that has been changed and added to
hy a numbher of different people.

The previons application of the method bhased on
ADTs to the Format program produced very low re-
sults. Three modules were obtained with a very simple
struture,

This time, the first incomplete modnles obtained
are the following:

N, wsecr-tufined precodure-like components
s Jdatn types

1 wlphseymtols choeeckfur, doatmtlistinserizyhel

F connenttext width dublock.dostetmont

4 B Ying clisngetirginty

4 sytnholzet dodeclurativnuntil, doficidiistunti

& optivnzize bBunch

4 Jrritii e rewdin

Fig.4 shows final SDDT of the Format program.
From the original SDDT. only the initialization
procedure-like components have heen discarded; all
the other components enoperate together fo the im-
plentation of the functionalities expressed in the iden-
tified modules. The six modules ohtained look very
simple. hut in reality, are very complex. 1t ap-
pears that they canuot he re-engineered to be reusable
ADTs becanse they are poor of operations, and, more-
over, the large nse of global variables wonld suake this
task very difficult. However they ean offer an usefnl
trace of the complexity of the code. They can he con-
sidered as main functionalities which is compoesed of
the set of functionalities offered from the whole pro-
gram. By using each other these modules cooperate
in ohtaining the goal of the program.

The study of the call graph reveals the existence of
the following four strongly connected compeonents:

SCC1i:dobleck,doprocedures

SCC2:dostatemant, dostmlist
SCC3:dorecord,dofieldlistuntil,dovariantrecord
5CC4:readsymbol , skipcomment, docomment

The existence of the strongly connected compo-
nents is the main cause of the recursion hetween the
modules. In fact, §CCZ is composed of a procedure-
like component belenging to module and another one
helonging to module 2. Since there are two compo-
nents that are mutually recursive we should expect the
two modules to he mutually recursive. On the other
hand $CC4 does not contain components helonging to
some module, but it is used by module 1,2 and 4, and
it uses some of this module, then its components cause
the mutual recursion between module 1.2 and 4.

The other strongly conmnected components are
SCC1 and SCC3. The former, having a procedure-
like component, doblock, belonging to moedule 2 and
the other one, doprocedures to no module, will im-
plement a sub-Tunctionality of module 2 that will in-
clude both the procedure-like components. compo-
nent, SCC3, will belong to module 4 because it con-
tains one procedure-like component, dolisifielduntil,
belonging to this module and two to no other module.
Analogously to the previous case, the last fwo compo-
nents will be included in module 4 to enrich the struc-
ture of it. Another cross use hetween modules, and
hetween components can be seen in the final SDDT.
The only medules that are not involved in the recur-
sions and not used fromother modules are module 3, 5
and #. The names of the procedure-like components,
helonging to these modules, are eloguent enough to
indicate the kind of functionalities implemented. For
example, module 3 is responsible for implementing one
of the layont parameterizations, namely the width of
the indentation. It is quite difficult to identify the way
in which these functionalities are implemented. This
is probably caused by the number of anthors respon-
sible for writing the program and the unavailahility of
the original program design.

Format is an important experiment even though
poor results were achieved. This'is because a pariition
of the program into simpler modules was obtained,
and becanse it shows the importance of program de-
sign and that the loss of documentation is very often
the main cause for not understanding a systen.

Conclusion

The paper has presented a set of experiments to
show the validity of a method to identify reusable ns-
sets in Pascal code thus making the programs easier
to understand. By splitting the subject program into
more than one modules, each of which implements an
abstract data type or a group of functionalities, the
method proposed can he used for the comprehension of
the code. At the end of the application of the method,
the program appears as & collection of simpler systems
that, for their dimensions, are easier to comprehend
than the {nll program. Also the interactions exisfing
hetween the obiained meodales to the pursning of the
program goal. are identified.

Unfortunaiely, despite obtaining hetter resulis than
in past experiments, in some cases the comprehension
of the implementation of some modules is difficull.
This is due either to the original sysiem design. that
often does not follow guidelines nseful for a corract
programming, or to changes that weaken the vajidity
of the program’s specification and design,

“The efectiveness of the method can be shown also

on ‘C’ code, hut the limited use of typedef in the O
programs so far studied produces results that are not
really significant to be presented here.

The method and the experiments presented here
have been developed in the RE? project. a two-years
research project funded by the Ttalian National Re-
search Council {CNR} and jointly developed by DIS
(Dep. of Informatica e Sistemistica) at the Univer-
sity of Naples and CSM (Centre for Seftware Malnte-

18

nance) at the University of Durham. The project ad-
dresses the wider issnes of software reuse through the
exploration of reverse engineering and re-engineering
techniques to identify and extract reusable assets from
existing systems.

References

[1] Lin 8.5., Wilde N., Identifying Objects in
a Conventional Procedural Language: An
Example of Data Design Recovery, Proc.
of IEEE Conference on Software Mainienance,
1990

Duna M.F., Knight J.C., Automating the De-
tection of Reusable Parts in Existing Soft-
ware, Proc. of IEEE International Conference on
Software Enginesring, 1993

Canfora, G., Cimitile, A., and Munro, M.
RE?: Reverse Enginecring and Reuse Re-
Engineering, Journal of Software Maintenance,
Research and Practice, Wiley. 1993

Canfora. G.. Cimitile, A., and Munre, M., A
Reverse Engincering Method for Identify-
ing Reusable Abstract Data Types, Working
Conference on Reverse Enginecring, IFEE, May
1993

Canfora, G.. Cimitile, A., Munre, M., and
Tortorella, M.. Experiments in Identifying
Reusable Abstract Data Types in Program
Code, Workshep en Frogrom Comprehension,
TEEE, 1903

Canfora, G.. Cimitile, A, Munro, M., and Taylor,
C.}., Extracting Abstract Data Types from
C Programs: A Case Study, Conference on
Software Maintenance, IREE, 1993

{7} Cimitile. A and Visaggio, G.. Seftware BSal-
vaging and the Dominance Tree. o appear
an Jowrnal of Systema and Software, 1083

Cimitile. A, Fasolino, A B, Maresca, P Reuse
Reengineering and Validation via Concept
Assignment. Conference on Software Mainte-
nance, IEEE, 1903

Canfora. G.. Cimitile. A, Munro, M., and Tor-
torella, M., A Precise Method for Identify-
ing Reusable Abstract Data Types in Code,
International Conference an Softwars Maoinde-
nonee, JEEE, 1094

De Lacia, A.. Di Lucca, G.A., and Fasolino AR,
Towards the Evaluation of Reenginecring
Effort to Reouse Existing Software, Inferna-
tional Conference on Achieving Quality in Soft-
ware, 1993

[10]

[11] Hetch, M.S.. Flow Analysis of Computer
Programs. Elsevier Norih-Hollund, New York,

1977

P —
i{xrvmn;lé!umpp-{l

‘ - B gt ponny
gﬁgﬁ WS vy grreaey
\um'vW\ .mmé ff:«a,mz. "‘@!%!mmul"l

: prkey ey 3 oy ¥ - oy
enew 3 & e
'gw j lgﬂﬂpﬂil lrﬂd"-"m% lm“‘f!lem!chl {fresiing] Tekp M Frmove infpab!npe-[gemlsuhsl]ﬂn«e-d}nlectmezssl[dcpm{dnmn}xpmn geghs]
g‘,. PR Trma -’C RPN g’(_)_”_.me ‘d/«; n’“._{a‘v‘ww‘%' ".\:.u-.wk‘ M”‘ \MMW%N‘" ‘,i
el i I . o L. .. SOOI o-.c. IO
sy
[durnppet}
Zosrn _ poamil
e N E- eI . s Y
ilgeﬁr\dz i f"“h’ Sé'ﬂ"’hnrkupl
2

by
\;’M ond ‘-‘_.AM“.M.““\,,,“EH

P grees 5 ovs 2 Rgny
_;rmdlr.-vm[[u-nu:hi !pa!s&zi

Y

i
Sty g S I e g %ﬂn candivre e ot feias . oo ook
fiaea o e foedin
Tue oot e L e E]

-

= & s M T o e ana
- E: £ 5 i 3 i 7
T 4 Eid T s ~ iyse
{gurmptofild .dﬂ"dd}ﬂﬁkﬂﬂﬂwlﬂ’ fparteularslhnckeminute[sulidste] !. km‘”} [wrllaﬂtir] I-”’z““‘f !a\'gﬂpi 4 -Im veel
; s : ; 4 P12 S T SN R TR

VR S A RPN S PO S S |

b b e

-
ot ;lJ E;: relitrdnaghrch py sl Heaiternst st =" '&*u ! ' ltforstaded 7 cott 2l
[psm e} 9 fxd ook pvstisbleattzineg I; ke gridl dxlilﬂflMﬂ"’Q‘ia!ma;ﬂettde‘] lckscl{;s!bwum@]ilemn mﬁ{ k]e?ogram‘]wm]Hsu{udm ¥ ety
Lot ELACRERCIRT TS S PSSV OT. S I BB,T Dereeseeesiieecn s dan e i .

FeRrIEI IR Lot

prasas

S] K
idimi frengtite}

F

Rzt

[REPPER]

iggtrs'\daﬂr‘unbg(!

N ! :
[te;dmlitge elds!ztng] cw:eliegf}

Fig.2 - Final SDDT of ExamMaker.pas

E
ee==2822%
e M'— o T o
Er— u-”“”"""w(“" e "

-
= . o
ER
{ eempﬁ"’ Twrilcuscr] fpet 1uktnfﬁ~ F‘N"kaﬁf‘i ovelocell] Ewr'lwsm;npu e tearinpui) jdoaslicxpr] [wr!:m.‘xvms:imi‘éﬂmﬁchar& [
9 1 3 2 o 4,

2N talue: i 4B s;/‘/3, ‘ — 5 R AU
i

{:m:uexpsesm'

Bnamaren sonsianil

2F

{a:idtm'zper'é!!m;

33.’1??‘.3‘,‘.‘??1 Fig.B - Final SDDT of Minicalc.pas

- -
e T R T T g b : Tl BTt e R Y h I
Meiusm,nmnmnm.nca readacherncter & SCC4 ! seca 14,8602 ;é‘unvuwsse sccﬂ Tasortaymbol]
{Sol’brmﬁtlwglg{lrrcl_lveujwlle_s % g, nntheses wiltecom ET Sy * nChatac 1__a(mmanndlrer:!lves, [P
P s L ' ‘ ey ‘|'°$’)‘7 Py seiveqri AR & Ao gy
Edc!:tmal:mdhecl!vrfcem k-rd rectives}5 dolcrmatietdirestivel thecktor] §dadmlauﬂma-nl- chsngemarglmo] [SCC‘.’]
wrresen et bt osenct SECE rompilediimetve b st Rivecrnin o cornnend 3,24, dopinoedut e i \
[reldlni 15CTy] {wrllecomneﬂ!][hunch]
R i i Trurer vereeed fam. and
Fig.4 - Final SDDT of Format.pas Froouaroms

A Tool for Understanding Object-Oriented Program Dependencies

Panagiotis K. Linos
Tennessee Technological University
Computer Science Department
Cookeville, TN 38505, USA
email : PKL3678 @tntech.edu

Abstract

In this paper, we present a tool for understanding and re-en-
gineering C++ programs called OO!CARE (Object-
Oriented Computer-Aided Re-Engineering). OOICARE
demonstrates some practical solutions to the problem of
extracting and visualizing object-aoriented program
dependencies (i.e. data-objects and their relationships). It is
an extension of an earlier tool for maintaining C programs
called CARE (Computer-Aided Re-engineering). In this
paper, we also discuss some early experiences acquired from
using the tool. For instance, an important observation made
during a re-engineering exercise is that some characteristics
of the object-oriented programming paradigm such as
inheritance and polymorphism contribute significantly to
the complexity of understanding program dependencies.
Moreover, in this paper, we discuss how object-oriented
program dependencies differ from the procedural ones and
explain how they can be visualized within the same
environment.

1. Introduction

Program dependencies include information regarding the
relationships between various compenents in computer
programs such as the interaction between modules {i.e.
files), the use of variables and their types, as well as the
calls among functions. Today, there are many software
environments which facilitate the comprehension of
programs written in procedural programming languages by
systematically extracting a large number of program
dependencies contained in the source code. These
dependencies are stored in a database and then visualized in
various graphical representations, Taxonomies of software
visualization environments and their characteristics can be
found in Price [8] and Stasko [12]. These environments
have been reasonably successful in helping to reduce the
time and effort spent to understand existing programs
written in procedural programming languages. However, a
new problem arises from the fact that object-oriented lan-
guages are quickly emerging from the procedural ones.
Although, the new features introduced by object-oriented
languages offer flexibility some complications during
program understanding can arise {16]. In particular, the
use of cfasses and inheritance often leads to a plethora of
small program compenents (e.g. objects) with many
relationships (e.g. message passing) [14]. Consequently,
locating and understanding object-oriented program
dependencies becomes a difficult problem. Today, there are

20
0-8186-5647-6/94 $04.00 © 1994 [EEE

Vincent Courtois
Hautes Eiudes Industrielles
13 Rue de Toul
59046, Lille
France

several commercial and academic tools available for
understanding and re-engineering object-oriented programs.
Examples of commercial tools include the ObjectCenter
by Centerline Software Inc. [1], the ObjectWork by
Parcplace Systems and the Objective Cfrom the Stepstone
Corporation. In addition, several research prototype tools
for maintaining object-oriented programs are available
today. A software environment described in Lejter {3} en-
tails a relational database with an interactive interface
which supports queries about programs written in object-
oriented programming languages. Another software iool
provides browsing features through the source code of
object-oriented programs using hypertext techniques [10].
Finally, some visualization mechanisms for maintaining
object-oriented software are described in DePauw [15]
which are based on a language-independent approach.

Many of the above tools utilize graphical representations
which become difficult to understand when medium-o-large
programs are displayed. In addition, they support limited
abstraction mechanisms and transformation tools for
facilitating the re-engineering of object-oriented programs.
In this paper, we address the above issues by developing a
software environment for understanding and re-engineering
C++ programs called OOICARE (Object-Oriented
Computer-Aided Re-Engineering). This effort focuses on
the dynamic behavior of object-oriented programs and it
supports the general hypothesis that visualization of
program dependencies is most effective for program
comprehension [8]. The OO!CARE environment evolved
from an earlier tool for maintaining C programs called
CARE (Computer-Aided Re-engineering) [5]. The new
environment facilitates the understanding of existing C pro-
grams as well as the difficulties introduced by the C++ lan.
guage, The rest of this paper is organized as follows @ the
second section explains how object-oriented program depen-
dencies differ from the procedural ones. Then, a description
of the OO!CARE environment is given in the third section.
The fourth section presents a brief history of the OO!CARE
project and finally in the fifth section we present our
conclusions, '

2. Object-Oriented Program Dependencies
Programs written using a procedural programming language
(e.g. Pascal, C) consist of various components which em-
body data-efements, data-types and sub-programs. Examples
of data-elements in procedural languages include variables,

constants and parameters of the program. Data-types can be
standard or user-defined and sub-programs represent
functions, procedures or modules (i.e. a group of functions
or procedures). These components are linked via various
relationships such as calls between functicns, the use of
parameters by a procedure or the definition of a variable as
of a data-type. We call these compenents and their
relationships Procedural Program Dependencies (PPDS)

between X and Y. For example, the iriplet <Variable, Type,
is-defined-as> presents the fs-defined-as relationship
between variables and data-fypes An instance of this
program dependency is <counter, integer, is-defined-as>
meaning that a variable called counter is defined as an
jateger data-type in the program.

On the other hand, programs written in an object-oriented
language entatl different kinds of components and relation-
ships due to the different programming paradigm supported.
Today, there are two families of object-oriented languages;
the pure object-oriented ones where all computation is based
on message passing (e.g. Smalltalk, Eiffel) and the hybrid
- object-oriented languages which have evolved from the
‘procedural ones (e.g. C++) [11]. They usually include a
“mixture of features from both families of languages.
*:Programs written in a pure object-oriented language consist
“of data-objects, class-types and methods. We call these
entities and their relationships Object-Oriented Frogram
2o Dependencies (OOPDs). Similarly, an OOPD can be
“represented by a triplet QOPD=<X, Y, R> where the
“pntities X and Y can be data-objects, class-types or
"methods and R represents a relationship between X and Y.
For ‘example, the triplet <Class, Method, implements >
- defines the implements relationship betweerr Classes and
5 ,M_et_b_o_ds An instance of this relationship is <Shape, draw,
implements> meaning that the class Shape implements
i.e.:defines within its body} a method for this class called
draw. Finally, programs written using a hybrid object.
riented programming language entail a combination of
both procedural and object-oriented program dependencies.
: An’ example of such dependency is represented by the triplet
. =<Class::Method, Function, calls > meaning that class
o methods call user-defined functions. An instance of this de-
':_pendency is <Shape::draw, PrintLabel, calis> indicating
~.that'the draw method of the class Shape calls a regular
L funcnon caiied PrintLabel,

~In ﬂ:us work we have selected C++ as a hybrid object-ori-
nted. programming language in order to study how object-
riented program dependencies can be visualized, C++ sup-
orts the object-oriented programming paradigm while
mamt_ammg the procedural features of the C language. In
bject-oriented programming paradigm data and behavior
f'a program are strongly connected. C++ implements this
- concept by the use of classes whose instances are objects
2L A classconsmts of a set of values (data members) and a

"PPD <X, Y, R> where X and Y can be data- eiements, data-
Larfypeyor subsprograms Cdnd R depicts A rélationship

collection of operations (methods or member functions) that
can act on those values. For example, we can create a class
called GeometricFigure where the data members are the
cenler and perimeter and where methods are operations using
those members such as draw-figure. Inheritance is a way of
deriving a new class from existing classes called base
classes. The derived class is developed from its parent by
adding or altering code. Inheritance is said to be singleif a

class is derived from only one parent, or multiple if it is

developed from several base classes. Moreover, access
privilepes to classes and their members can be'managed and -
limited to whatever group of functions needs to access their
implementation (this is accomplished in C++ by the use of
the keywords public, protected and private). Also, functions
and operators can be overloaded in C++. Overloaded
functions or operators are also known as polymorphic
entities because they can take many different forms {i.e. can
have several distinct implementations). In particular,
polymorphic funciions are implemented by virtual member
functions in C++.

A. Polymorphic Program Dependencies

The above mentioned features of object-oriented
programming languages introduce some additional
complexity towards extracting program dependencies from
source code. In particular, the use of polymorphic entities
create dynamic program dependencies in object-oriented
programs. As we know, static program dependencies are
exiracted directly by analyzing {i.e. scanning) the source
code and execution of the program 15 not necessary.
However, dynamifc program dependencies are only
determined at run-time and they require program execution.
Message passingto a virtual member function in & C++
program is an example of a dynamic program dependency.
In order to demonstrate this dynamic behavior we present a
C++ example shown in Figure 2.1. As we can see in this
figure, the ¢lasses named Box and Circle are derived from
the class Shape. Also, the class Sguareis a subclass of
Box, Moreover, a variable P is declared as a pointer to a
Shape ar to any of its subclasses (i.e. Box, Circle and
Sguare). When the program statement P->draw() is
executed a message is sent to the virteal member function
draw(). However, all four classes in the program of Figure
2.1 implement their own version of this method.
Therefore, the version being called can only be determined
at run-time, depending on what kind of shape P points to at
the particular time of execution. This dynamic behavior is
also demonstrated graphically in the same figure. When the
while loop of the program in Figure 2.1 is executed for the
first time the message is sent to the method Shape::draw
because P points to a Shape object but on the next
iteration P points to a Box so the message is sent to
Box::draw. During the following loop iteration, the same
message is sent to the Circle;:draw method and then to
Square::draw . This sequence continues until execution of
the program stops. With this example, we demonstrate the
fact that a statement such as P->draw() can have several
different meanings (i.e. polymorphic entity) and can be

21

determined only at run-time. We call such dependencies
Polymorphic Program Dependencies.

B. Implicit Program Dependencies

In addition, program dependencies can be implicit or
explicit. Explicit program dependencies appear in the
program and can be directly extracted from the source code.
However, implicit program dependencies do not arise
explicitly in the source code and thus some additional
complexity is introduced for extracting them.

winclude <iostream>
class Shape @ { virtual void draw{veid)
{ vout =< "drawing a Shape™, } 1,
class Box ¢ publis Shape { virwal void drawivoid)
{ cout =« "drawing a #ox™ 1 1
class Circle @ public Shape { virual void drewivoid
{ cout =< "drawing z Circle™ } |
class Square : public Box { virtual vold draw{void)
{ cout << “dravwing a Squure™ 1§,

main () {

Shape * P, int i=0; int limit=10;

Shape Sh; Box Bo; Circie Cb Sgquare Sq;

while (i<limit)

(
switch (1%4) {
case 00 P=Sk;

break;
case it P=Bo;
break;
case 2: P=C;
break;
case 3: P=5q;
break;
1
Pe=drawl};

b
1

Circle™
e

Figure 2.1 : A C++ program demonstrating dynamic
program dependencies

In order to demenstrate some caveats regarding implicit
program dependencies we consider a small C++ example
shown in Figure 2.2, The output (with some explanations)
generated by this program is given in Figure 2.3. Although
only four objects {i.e. ashape, abox, somesquare and
othersquare) are created in the main{) function of the pro-
gram as shown in Figure 2.2, nine constructors (i.e.
member functions used to create objecis) are executed (see
their output in Figure 2.3). This happens because in the
program, a square is defined to be a special case of box and
a box a special case of shape. Thus, in order for the
program to create a square object, it first builds a shape
object, then constructs a box object of this shape, and
finally turns this box into a square. This results in the

1o
1)

execution of additional statements which do not appear
explicitly in the source code. Moreover, in this example,
there is no explicit call to destructors {i.e. member
functions which deallocate space for an object). However,
several destructors are invoked implicitly in the program for
the four objects created (see their output in Figure 2.3).
Notice that the program sends a message to three different
destructors in order to destroy a square.

Example of implicit operations performed by O+
rinclude <iostream.h>
class shape |
private: double area;
. shape(y

at <= "l am oaosh

shapo{veid)
{ cout << " am 1o sha
I
class box @ public shape |
private: double LL:
public @ boxivoid)
{ cout << 7 {amabox " << end}; }
hbg)x(vcid)
{ cout == "F am the box destructor "<« endl;)
i
class square © public box {
private; double side,
public © square{void}
[cout =< " i wm asquare "
"squarc{vnid)
{ coul << | am the square destructor” <= endly}
i
maing) |
shape ashaps,
bog aboy;
SQUAre somesguare, othersquars,
somesquare = othersquare,

i

po destnicion

¢

" e it
<< enidl)

<< endh |}

Figure 2.2 : C++ spurce code demonstrating implicit
program dependencies

In addition, C++ provides defauit constructors and
destructors (i.e. none defined by the programmer).
Conseguently, another versicn of the program in Figure 2.2
is shown in Figure 2.4. The two programs are functionally
equivalent however, the program of Figure 2.4 depicts a
higher abstraction of implicit program dependencies {i.e.
constructors and destructors are not defined explicitly in the
source code) than the program of Figure 2.2. Evidently, the
above mentioned features of object-criented programs can
compiicate the task of understanding program dependencies.
In this paper, we-focus on the above issues with respect to
extracting object-criented program dependencies from C++
programs. Also, we explore ways to efficiently visualize
such dependencies in order to facilitate the comprehension
of object-oriented programs. To this end, we have designed

and implemented a software tool for understanding and re-
engineering C++ programs. An overview of its main
features is given in the next section.

OuUTPUT

PRODUCED BY

T am a shape
I am a shape

1.1 ama box’

I arn a4 shape

. lama square

I am a shape

,iama box

,iamsa square

I arn the square destructor
t arm the box destructor

! am the shape destructor
f am the sguare destructor
I ar the box destrucior

I am the shape destructor
I am the box destructor

[am the shape destructor
I am the shape destructor

constructor of ashape
constructor of abox

“gonstructor of “abox

constructor of SOmesquare

CoRSHrUCHEor FomesguEre |

constructor of somesquare
constructor of othersquare
constructor of othersquare
constructor of othersquare
destructor of othersquare
destrucior of othersquare
destructor of othersquare
destructor of somesquare
destraclor of somesquarc
destructor of somesguare
destructor of abox
destructor of ahox
destructor of ashape

Figure 2.3: Quiput produced by the C++ program
of Figure 2.2

3. The GO!CARE environment

This section explains how OO!CARE (Object-Oriented
Computer-Aided Re-Engineering) evolved from the CARE
{Computer-Aided Re-Engineering) tool. Then, it presents
the architecture of OOICARE and the data model used to
construct its database. Finally, it describes the presentation
model used to display data-flow and control-flow
information graphically.

The OO!CARE environment evoived from an existing soft-
ware tool called CARE which facilitates the comprehension
and re-engineering of existing C programs [5]. The
OCICARE tool extends the existing features of CARE in
order to facilitate the comprehension of C++ programs.
Specifically, the original functionality and user-interface of
CARE are extended in order to extract and visualize ohject-
oriented program dependencies. The user-interface in
QOICARE is done through specially designed windows
including the main panel as well as graphical and textual
windows. Each window in OO!CARE is equipped with a
group of typical operations for manipulating graphs or text
(e.g. hide, highlight, zoom, code etc.). The architecture of
OO!CARE is comprised of the code analyzer, the
dependencies database and the display manager. The code
analyzer extracts program dependencies from C++ source
code and populates them into the database. In OO!CARE,
eight kinds of program components are extracted from C++
code namely data-types, user-defined functions, constants,
variables, parameters, objects, classes and member
functions (methods). These components and their relations
are populated in the database based on the data model shown

in Figure 3.2. The type node in the figure represents Ct++
standard or user defined data types. The functions of the
program are depicted by the function node. The constant and
variable nodes in the graph represent constants and variables
respectively. Moreover, the object node represents data-
objects (i.e. instances of a class).

/A modified version of the C++ program
| M shown in Figure 2.2

#include <iostream h>

constructors and destructors are not defined explicitly
/ in the source code but provided by Cot
class shape @ { double area; };

class boy public shape { double LLS 1
class square ; public box { double side; |
main(} {

shape ashape;

box abox;

SquAre samesquare, othersquare;
somesquare = othersguareg;

]

Figure 2.4 : A C++ program with highly abstracted
implicit program dependencies

Information passed to a function or a method is depicted by
the parameter node which can be defined as a class oras a
type. A class encapsulates data with member functions. A
member functionis a function declared within a class and it
can only be invoked by instances of this class. The
relationships between these components are also shown in
Figure 3.2 by connecting arrows. For example, the
connecting asrow between class and member function means
that a class implements {defines) a member function within
its body. The program dependencies included in the database
can be displayed using a presentation model designed for the
OQ!CARE environment. This model includes hierarchical
displays for presenting class inheritance, control-flow
program dependencies and file dependencies. In addition, an
original display called colonnade (i.e. a sequence of
columns displayed at regular intervals} is utilized in order to
present data-flow program dependencies graphically. Such
graphical displays are created and manipulated by the use of
several graphical editors in OO!CARE. These include the
data-flow, control-flow, inkeritance-hierarchy and file-
dependencies editors. Textual information (i.e. code) can
also be manipulated in the OO!CARE environment using a
traditional text editor (e.g. emacs, vi). The file dependencies
editor presents the incfude relationships between files using
a hierarchical display. Each file is represented by a node and
included files are linked via connecting lines. The control-
flow graph editor displays user-defined and member
functions using different graphical notations. Table 1
includes a list of C++ program function types supported by
the editor and their graphical notation. Function calls or
message passing is denoted by connecting lines between

functions and methods (i.e. member functions).
Specifically, a connecting line between two functions (or
between a method and a function) depicts a call relationship.
A connecting line between two methods (or a function and a
method) represents a message being passed. Moreover,
information regarding polymorphic program dependencies is
also displayed in the control-flow graph.

returns as a valug

“inherits -
properties
{rom

defined

./ delined

relurys ar » walue
mplernents

returas ag 2 wale

member
fungtion

overwrites sends a

sends a message (o

has

calls has

message to

paramete

N—

defined as defined as

Figure 3.2 : The data model used in OOICARE

For example, in the case of a message passed o a virtual
member function (i.e. known at run time) the parser
determines all possible entities where a message could be
sent. In this case, OO!CARE creates a dummy member
function of an unknown class (displayed as
?umember_function} which is connected to all possible
mermber functions with the same name. This approach is
illustrated by an example in Figure 3.5. In this example, a
message to a polymorphic member function called drawis
sent. The function drawis implemented differently within
the classes shape, box, circle and square. OOICARE
displays a dummy node called ?::draw which is linked to all
the member functions named drawvia connecting lines. An
example of the control-flow graph of a C++ program is dis-
played by OOICARE as shown in Figure 3.6. This
example contains four user-defined functions namely main,
getname, getid and getsal (ali displayed by an oval shape
according to Table I)and three virtual member functions
called student::print_virtual, teacher::print_virtual and per-
son:iprint_ virtual. Moreover, we can see in Figure 3.5 that
the main function of this program sends a message to a
polymorphic function called print_virtual (all possible
paths of this message are shown in Figure 3.6). In addition,
the main driver function sends a message to three different
types of constructors namely student::student,
person::person and teacher::teacher and to their
corresponding destructors namely student:: “student,

person:: "person and teacher:: "teacher. The above
constructors call the user-defined functions getid, getname
and getsal respectively. Finally, each of the three virtual
member functions student::print_virtual, per-
son:print_virtualand teacher::print_virtual sends a message
to a print member function to their respective class.

NOTATION MEANING

User-defined functon

Public member function

Protecied member funciion

Private member function

Virtual member function

Table I: Shapes used in the control-flow graph
and their meaning

Hshape::drawﬂ “box::draw ” “circle::draw” ”square::drawﬁ

Figure 3.5 : Visualization of a message sent to a
polvmorphic function called draw

The data-flow program dependencies are presented separately
in OO!CARE using a graphical display called colonnade
{i.e. a sequence of columns drawn at regular intervals).
Experimental data have shown that the colonnade display
appears 10 be a promising graphical model for visualizing
data-flow program dependencies [7]. It produces crossing-
free, easy-to-draw and sesthetically pleasing layouts, The
colonnade includes information about Variables or Objects,
Types, Parameters, Functions, Methods, Classes and
Constants. The relations between entities are represented by
connecting lines between columns. Figure 3.7 gives an
example of a colonnade display of a C++ program produced
by OOICARE. From this figure we can see that the first
column displays the variables (or objects) of the program
and the second column depicts the data-types. The next
column contains the parameters and the following one
embodies the functions (i.e. user-defined or member
functions).

Finally, the fifth column displays the classes and the last
one entails the constants of the program. Among others,
Figure 3.7 depicts two constructor member functions for
the classes student and teacher respectively. The main
function is also displayed in the colonnade which uses an
integer variable called i and six objects named aperson,
myperson, ateacher, myteacher, astudent and mystudent .
These objects are instances of their corresponding classes.

24

\\\\

wwd grts e snd drnt

m :.; ne~taaeher —

\\

Feprivg_vitresl

pirsnIz-pereon

sadengzzprimt_sirtal m

: teneherrprint victual

»:,3?.,:3 wirtual

ol amprint

Yanthermprint uﬁ

FATER Raptint

_ pArFanspersen m

Aud totystud am — — ttathirtesaher

T D

Flgure 3.6: ODICARE displays the control-flow graph of a C++ pragram

25

sdefault () Tennesses Technological Univers v 1992 - 19494

VARIABLES : TYPES PARAMETERS FUNCTIONS CLASSES CONSTANTS

—_—

3 hirme ‘

JIYLTE

'w Teri e

[rmed]

1]
| : e
R T A T R T e e A T e LT T Y Y : a TN T oy pry— - T ———

Figure 3.7: A colonnade display by Q0JGCARE

26

Also, the mainfunction references a variable called fist
which is an array of pointers to a person object. Finally,
main utilizes a constant called arraysize. If two columns
are not adjacent, the relations between their entities are
hidden. In order to display such relations, the colonnade
allows the user to change the placement of the columns
using a move-column operation. For instance, if the

relationships between~ functions—and -types need-to-be -

visualized, the move-column option can be used to create a

“-differert layout: Finally; the‘inheritance graph-includes-all

the classes defined in a C++ program and their inheritance
relationships (i.e. both single and multiple inheritance).

4. History

OOICARE {Object-Oriented Computer-Aided Re
Engineering} is a software environment for understanding
and re-engineering C++ programs. It is apn on-going
research project since 1990 and it evolved from an earlier
effort towards maintaining C programs. It is partially
funded by Tennessee Technelogical University (under grants
#9211, #9423 and #9512) and it involves a faculty member
and three research studenis. A protolype version runs on
DEC stations under the Ultrix operating system and it uses
the X window manager {9]. Finally, the Jex utility available
in the Ultrix environment is also used to implement the
code analyzer [4].

5. Conclusions

in this work, we have designed and implemented a sofltware
ool for understanding and re-engineering C++ programs
called OO'CARE (Object-Oriented Computer-Aided Re-
Engineering). During the implementation of s prolotype
version of GOICARE, we made some observations with
respect to understanding object-oriented program
dependencies (i.e. data-objects and their refationships). First,
we have observed that the unique characteristics of the
ohject-oriented programming paradigm such as inherilance
and polvmorphism can increase the complexity of
understanding objeci-oriented program dependencies. In
particular, tracing the control-flow program dependencies
{i.e. message passing between objects) of a medium-to-large
size object-oriented program becomes a difficult task
because the maintenance programmer is forced to travel
through a vsually large hierarchy of classes. Moreover,
polymorphic program dependencies contribute significantiy
to the complexity of object-oriented programs because their
values cannot be known before the execution of the
program (i.e. they are known only at run-time). Finally, the
use of implicit object-oriented program dependencies (i.e.
the ones that do not appear explicitly in the source code)
adds some additional complicatiens to the task of program
comprehension. Although, we do not have any
experimental data to support these observations at this
point, our experience during the development of OO!CARE
indicates that object-oriented program dependencies appear
to be complicated enough in order to make tools for
program comprehension a compelling area of research and
investigation. These environments need to focus on

1
-

efficient ways of visualizing object-oriented program
dependencies, simple abstraction mechanisms and effective
transformation tools. Such features can be useful to the
maintenance programmer for understanding the difficulties
introduced by object-oriented programs.

Refercnces
[1] Centerline Software, "Ohjeét Center "Reférence,

Centerline Software Inc., Cambridge, Massachusetts, USA,
R e i A ot 8 o

[2] Gorlen K., Orlow §., Plexico P., {ata Abstraction and
Object-Oriented Programming in C++, Wiley and Sons.

[3] Lejter M., Meyer 5 and Reiss S., Support for
Maintaining Object-Oriented Programs, JEEE Transactions
on Software Engineering, Vol. 18, Ne 12, pp. 1045-1052,
December 1993,

[4] Levine J., Mason T., Brown D, Lex & Yace, O'Reilly
& Asscciates, Inc.

[5] Linos P., Auhet P., Dumas L., Helleboid Y., Lejeune
B., Tulula P., CARE : An Environment for Understanding
and Re-engineering C programs, 1EEE Conference on
Software Maintenance, Montreal, Canada, 1993, pp. 130-
139.

i6] Linos P., Aubet P., Dumas L., Helleboid Y., Lejeune
P., Tulula P., Visualizing Program Dependencies,
Soltware-Practice and Experience, Vol 24(4), April 1994,
pp. 387-403 .

{71 Lincs P., Aubet P., Dumas L., Helleboid Y., Lejeune
v Tulula P., Facilitating the Comprehension of C
Programs : An Experimental Study, 2nd 1EEE Workshop
on Program Comprehension, Capri, Italy, 1993, pp. 55-63.
181 Price B., Baecker R., Small 1., A Principled Taxonomy
of Software Visualization, Journal of Visual Languages and
Computing, Vol. 4, 1993, pp. 211-266.

[9] Reiss L., Rodin J., X Window inside-out, McGraw
Hidl

[10] Sametinger J., A Tool for Maintenance of C++
Programs, VEEE Conference on Software Maintenance, San
Diggo, California, 1990, pp. 54-59.

[11] Sebesta R., Concepts of Prograruming Languages, The
Renjamin/Cummings, 1993.

[12] Staske J., Patterson C., Understanding and
Characterizing Software Visualization Systems, 1EEE
Visual Languages Workshop, Sealtle, Washington,
September 1992, pp. 3-10.

[13] Stroustrup B., The C++ Programming Language,
Addison-Wesley.

[14] Taenzer D., Ganti M., Podar S., Object-Oriented
Software Reuse : The Yoyo Problem, Journal of Object-
Oriented Programming 1989, pp. 30-35,

[15] Wim DePauw, Helm R., Kimelman D., Viissides J.,
Visualizing the Behavior of Object-Oriented Systems,
OOPSLA'93, pp. 326-337.

[16] Wilde N., Huitt R., Maintenance Suppert for Object-
Oriented Programs, 1EEE Transactions on Software
Engineering, Vol. 18, No 2, December 92.

Recovering the Architectural Design
for Software Comprehension

G. Canfora®, A. De .Lucia*, G. A. Di Lucca*, A. R. Fasolino™

{canfory/delucin/dilucen/Tasoling) @ nadis dis.uning.it

Dep. of "Informatica ¢ Sistemistica” - University of Naples "Federico 11" - ITALY

Dep. of "Ingegneria dell'Informazione ed Ingegneria Eletirica”
University of Salerno, Facuity of Engincering at Benevento - ITALY

Abstract

The work described in this paper addresses the problent of
understanding a software system and focuses in particular
on the comprehension of the system drchitectural design, A
method is proposed to reconstruct the architecture of a
system and represent it in the form of a structure chart. The
method assumes the system was originally designed with a
Junctional decomposition approach, and aggregates program
units into modules swhenever these {mplement a
Sunctionality of the systesr. A directed graph that describes
the activations of program units is used 1o model the
systemn, and the concept of node dominance on a directed
graph is exploited to aggregate program units imto modules
and to derive intermodular relationships from the unit
activazions. Finally, the svstem data set [5 partitioned into
sets of data ftems which are local o a given module and
sets of data items which are global 1o the modules
belonging to 4 subiree of the structure chart, and the
interfaces of modules are identified.

1. Introduction

The steady increase in sofiware production costs has
caused the Enginecering of Existing Software to emerge as a
viable discipline. A number of experiences have shown that
it is often cost effective to keep an existing system alive by
adfusting it over time a8 the user requirements and/or
operating environment change. Keeping existing sysiems
alive 15 sometimes indispensable because they encode
knowledge and expertise which is not available anywhere
else than in the source code. Indecd, many picces of
software exist that perforn valuable tasks for which no
writien documeniation is available,

Software maintenance, evolution, re-engineering, reverse
enginecring, migration and reuse are a few examples of

This work has been supporied by "Progetis Finolizzato
Sistemi Informatici ¢ Calcolo Peraliele” of the C.N.R. (Iinlion
National Research Council) under grant n. 9301633PF60,

0-8186-5547-6/94 $04.00 © 1954 [EEE

a0

activities that aim 1o prolong a soltware system's lifetime.
Al the heart of all these actlivities is soflware
comprehension, and in particular the ability 10 comprehend
systems develeped by other people.

For a software sysiem 10 be completely understood three
different aspects have o be analysed: the {unctienal layer
(what systemn modules do), the low level design fayer (how
modules work) and the architectural layer (how modules are
organised to form the system).

Artificial intelligence techniques and knowledge-based
systems have long been recognised as pioneers in
automating some aspects of software understanding, mainly
related 1o the functional layer [10, 12]. Common
approaches featare: (i) an intemal representation of the
program conirol and data flow; (ii) a library of
programaing plans and clichés, and (i) an algorithm to
map program fragments onio these clichés. The main
problem with these approaches is the size of the plan
library, whick must coniain both domain independesnt and
domain specific plans, and the size of the mapping
algorithun search space. This greatly limits the fength and
complexity of the programs that can be tackled and, in fact,
aritficial intelligence iechnigues have not yet been
realistically applied in any particular application domain.

Several reverse engineering tools have been proposed in
the Hterature that aim io faciliiate software comprehension
at the low level design and architectural iayers, Most of
these iools are essentially browsers that provide psers with
different textval and graphical views of the code. While
these tools have been seen to be effective in supporting
comprehension at the low level design layer, they often fail
o address the architectural layer. Notabie examples of
successes in understanding the low level design layer
include the automatic gencration of low level Jackson or
Wamnier/Orr documents from COBOL source code [2], the
work of Snecd ef al. on software recycling [13], and the
GRASP/Ada project [5]1. All these experiences show that
understanding the low level design of a module essentially
requires little more than re-mapping objects and the
relations among them, which are already explicitly shown

in the source code, into nicer and more readable forms. This
is exactly what browsers do. Understanding the architecture
of a system, on the other hand, involves abstracting views
which may not be explicitly shown in the code. For
example, many tools exist that produce structure chart-like
views of a system. This is the case of VIFOR [11], which
graphically displays the calls and references to global items

" in a FORTRAN system, and the VIASOFT toolset, which

produces structure charts from PERFORM statements.

‘Indeed, while resembling striscture charts, the views these™

tools furnish differ considerably from the structure charts
that can be prodoced in a forward engincering process.
Reverse engingering tools often merely assimilate the
concept of a module in a structure chart o a program unit
of the coding language {a routing in FORTRAN, a
proecedure in Pascal, or a perfonmed section/paagraph in
COBOLY, thus failing to aggregate program units into a
maodule whenever these contribuie io implementing a
system functionality or to break a progriun unit info several
modules whenever it implements more than one
funciionality. The identification of the module interfaces is
also often performed simply on the basis of the langoage
characteristics, for example by derving the intermodular
relationships from calls to routines or PERFORM
statements and compiling the Hst of the data ffowing in and
out from each module according to the st of parameters
exchanged in a routine call. The conscquence is that the
structure charts produced are a snapshot of the system
structure rather than o representation of s architectural
design,

Understanding the architecturad design of a software
system requires much more than just depicting relations
already explicit in the code, such as a procedure call or the
binding of an actual parameter to the corresponding formal
parameter in the form of boxes, bubbles and edges. The
type of decomposition, either functional or based on the
ideas of datn encapsalation and ohject orientation, which
Brought about the architectural design of the systern must
guide the definition of what the content of a madule 15, ie
which kind of abstraciion each module implements. Once
the moduale content has been defined, the relative
abstractions have to be localised in the source code, and the
relationships between the resulting modules have to be
derived. This requires the formulation of hypotheses on the
way abstractions in the design have been mapped onio cade,
It is worth stressing that both the criteria and models
adopted o localise the modules and the techniques used to
derive the imermodular relationships vary considerably
according to the kind of decomposition that drove the
griginal development of the sysiem, i.e. according to the
type of abstraction to be identified in the source code,

This paper deals with the comprehension, at the
architecturai level, of a software system designed according
10 a functional decomposition approach, A method is
proposed to reconstruct the architecture of a software system
and represent it in the form of a structure chart. The
structure chart nodes are not simply program units, but
aggregates of units, cach aggregate implementing a

31

functional abstraction. Consequently, edges are not a mere
representation of routine calls or PERFORM statements
but, rather, depict the different kinds of relationship that can
exist between modales and, in particular, the "uses” and "is
composed of” relationships [6]. The concept of node
dominance on a directed graph is cxploited 10 aggregaie

relationiships from the anit activations,
The architectural design produced by our method does not

“pEke G dectin T the lintitdidons of “either - the-coding

language or the operating environment: it is a sori of ideal
architecture, Le. the system architectural design as it could
be implemented on an idea! platform. This means that all
the design decisions deriving from considernsions on the
internal consistency of modules and the abstractions they
implement are reflected in the structure chard, while the
decisions dictated by Ihnits of the implementation platform
are filtered out. This is a matter of considerable importance
as the platform limits usually corrupt the ideal design, thus
making it difficult to understand the meaning of modules
and their interconnections. Filtering out design decisions
related to the implementation platform allows the
architecture of the systemn as it was originally conceived by
the designer o be reconstrucied, and this is a valuable aid o
comprehending the system. On the other hand, the structure
chart we produce cannot be seen as a re-modularisation of
the system ilsell, as tricks and shortcomings may have 1o
be re-introduced in the architectusad layer in order to make
the modularisation feasible.

2. Recovering the system modular
architecture

Several methods have been proposed in the literature to
identify modules in existing systems with the aim of
remodularising thew, ie. substituting a large program with
a functonally equivaleni coliection of modules. A varicty
of reasons can trigeer syslem modularisation processes,
including the prodiuction of reusable assets, improving the
guality attributes of a system or migrating it from a
mainframe to a client/server platlomm,

For example, Sneed ef al. [14] ackle the probiem of
remoduolarising large application programs in the context of
migration from mainframe sysicms to distributed
architectures, The paper snggests three different approaches
to program downsizing (a procedural approach, a functional
approach and a data type approach) and describes experience
gained in practical applications of the methods. Markosian
et al. {8] describe a tool for modularising large COBOL
programs. The paper tackles the technical problems of
constructing the modules but docs nol suggest any strategy
for planning the new modular architecture of the software
system, Ning er al. [9] propose program slicing as a tool
for recovering functionally related code segments from
legacy systems so that they can be packaged into
independent reusable modules.

program units into modules, and to derive intermodular

None of these methods, however, proposes the
reconstruction of the system's original architectural design,
As the objective is simply to remodularise code, these
methods reconsiruct an high level design documentation
which is nothing other than a snapshot of the actual
implementation, and make no atlempt to distingnish the
real design decisions from the choices imposed by the
implementation platform, . .

In this section we propose a process for reconstructing
the architectural design of large programs in order o get a
better understanding of them. The process consists of two
phases: first the system modules are identified and the
functional relationships between them are derived; then the
focal dasy and interfuces are reconstructed for cach module,

Next step consists of producing the specification of each
modole. This requires comprehending what modules do,
what each intermodular relationship means and which
concepts of the application domain data items implement.
These activities cannot be completely automaled because, as
Biggerstaff ef al. state [3], the way human-oriented concepts
are associaled with soflware components and related
relationships is not precisely formalised. Knowledge of the
application domain and human expertise play a fundiumental
mole in program understanding.

2.1, ldentifying modules and intermodular
relationships

‘The method we propose identifies the systetn modales by
aggregaling program units that implement a functional
abstraction, and produces the system architecture by
deriving the functional relationships that exist between
moduies (4], The method is based on functional dependency
relationships, which are expressed in terms of dominance
relationships [7] between the nodes of a graph deseribing
the activations of program units. We will call such a graph
the "call graph” of the program. Two different kinds of
intermodular relationships are singled out, namely "uses”
and "is composed of” relationships [6].

The identification of modules and their relationships is
divided into the following steps:

Step 1. Production of the Call Graph and Dominance Tree

The Call Graph CG of a program P is a flowgraph
CG= (N, L, 8), where:
s Negw PP s the set of the program units and s is the
main program;
= I describes the activation relation on (s W PP) x PP,

() Dominance Relation. In a CDAG a program unit px
deminates 2 program unit py if and only if all paths from the
oot of the CDAG to py go through px.

Direct Dominance Relation. A program unit px directly
dominates a program unit py if and only if px dosminates py and
all the program units that dominate py deminate py too.

Strong Direct Dominance Relation. A program unit px strongly
and directly dominstes a program unit py if and oaly if px
directly dominates py and px is the only program unit in CDAG
that activates py.

The existence of dircet or indirect recursion between
program units produces cycles inside the CG. A cyclic CG
can be reduced to a Call Directed Acyclic Graph (CDAG),
by collapsing every strongly connected subgraph {i.e. each
subgraph containing one or more cycles) into a single node.
In fact program units linked by recursion contribute 1o the
implementation of a single functionality and can, therefore,
be regarded as a single module. Figure 2.1 shows a sample
CG and its corresponding CDAG.

Figure 2.1. A sarmpie CG and the relalsd CDAG

From the call graph it is possible to obtain the
dominance tree by computing the dominance relations([7]
between the nodes in the CDAG. Moere specifically, the
rellexive and transitive closure of the dominance relation on
the CDAG is a tree, called the Direct Dominance Tree
{(DDTY. The dominance tree outlines the hierarchical
functional dependences between program units: if a program
unit py dominates a progeam unit pa then each activation of
P is preceded by an activation of py.

The Strong and Direct Dominance Tree, SDDT, is
obtained from DDT by marking those edges that link two
nodes in a strong and direct dominance relation. The strong
direct dominance concept capiures a fundamental
characteristic of a typical functiona! dependency between
two program units in a software system: if a program unit
p2 is activated only by the program unit py, then pa
implements a subfunctionality of a more general
functionality defined by py. Figore 2.2 shows the SDDT of
the call graph in figure 2.1. Production of the CG, the
CDAG and the SDDT can be {ully automated. The SDDT
is a wuseful starting point in identilying functional
abstractions clustered in whole or partial subirees.

Step 2. Production of the Module Tree

CG and SDDT can be used 1o reconstruct the set of
modules making up the high level architecture of the
program P and the intermodular relationships between

< SATORE RO EHIECT g ol g

dominance refation

“ifirect duniinatoe B
relation

Figura 2.2, The SDDT of the CDAG in Figurs 2.1

them, We have aiready outlined a first rule for the
identification of modules ona CG:

a) a strongly connecied component of the CG can be
considered as a single module implementing a recursive
functionality.

The second rule we use (o identify moduoles consists of
aggregaiing whole subtrees each of which implemenis a
single functionality represenicd by its ro0t:

by each subtree of SDDT which holds only marked edges
generates a module formed by all the program units
belonging (o this subtree.

Tach nede of such a subireg, except the root, IS a program
unit that implements a service that can be accessed only
through its own strongly direct dominator node and can
therefore be considered a subfunctionality of this dominator,
The Reduction of the Suong Direct Dominance Tree,
RSDDT, is the trec obsained from SDDT by collapsing
each subtree of SDDT having only marked edges into one
neude. Figure 2.3 shows the RSDDT of the SDDT in figure
2.2.

strong and direct
dominance relation

diret dominance
selation

Figure 2.3. The RSDDT of the SDDT in Figure 2.2

Each subtree which holds both marked and nnmarked
edges may constitute a module implementing a
functionality represented by its root. However the
subfunctionalities implemented by the dominated nodes
cannot be indiscriminately clustered and hidden in this
module. In fact the nodes connected to the root by a marked
edge represent subfunctionalitics that may be considered as
componenis of (he more general functionality represented

33

by the root, Vice versa, cach node connected to the root by
an unmarked edge represenls a common service (a
functionality used by more than one program unit) and
therefore it must be clustered in an independent module:

¢} each subtree of RSDDT which holds both marked and
unmiarked edees generates a module that aggrepaltes the
root of the subtree and the leaf nodes representing single
program units which are linked to the root by marked
edges. Each of the remaining program units defines a
oImodule., .. .

The tree obtained by dpp!ymg rule c) to Ehe RSDD‘F is

called the Module Tree. This tree partitions the sets of
program units into a set of modules and identifies a
hicrarchical decomposition of the functionalides of the

original system. Finally, direct and strong direct dominance

relations between the modules idemified on the Module Tree
can be interpreted as follows:

d each of the marked (uamarked) edges of the Module Tree
is a candidale to generate an "is_composed_of” ("uses”)
refation between the sofiware componerys represented by

the nodes that the edge links.

Figure 2.4 shows the Module Tree oblained from the
RSDDT in Figure 2.3, The Module Tree shows the
functional relations between recovered modules. These
relations now have to be completed with intermodular data
relations.

‘uses’ relation
— e ey

& O

Figure 2.4. The Module Tree fromthe RSDDT in Figure 2.3

RER fzapﬁs* i of relation

2.2, Identifying local data and interfaces of
modules

Apgregating program units into modules and recognising
the hierarchical functional relations existing between them
is not sufficient io ensure full comprehension of the
program, because information has o be gathered on module
data coupling. As a first aid to reduce the comprehension
effort, we partition the global data set of the program by
singling out the set of data items local {o each module and
the set of data ilems global 1o the modules in a subtree of
the Module Tree. Using this partition and the call relations
between modules, the data items that potentially belong to
the module interfaces are also identified. This preliminary
decomposition does not take into account intramodular and
intermodular data-flow, so we are unable to identily whether
one and the same data item is used as local data in different

LOCALM1) = &
LOCAL(M2) = (¢}
LOCAL(M3) = @

LOCAL(MG) = @

LOCAL(MS) = [c)
LOCALMIO) =@
LOCAL(M11) = &
LOCALMI2) =10

GLOBALMD = [a}
GLOBAIL(M2) = {b}
GLOBALM3) =@
GLOBALM6) =3
GLOBALMS) = {d, 1)
GLOBALMI10)=@
GLOBALMID =
GLOBALMI2)=&

INTERFACEMD = &
INTERFACEM2) = {)
INTERFACE(M3) = {a, b}
INTERFACE(MS) = {a, b)
INTERFACE(MS) = {a, b)
INTERFACEMI0) = {a}
INTERFACEMID) = (b, 4, f)
INTERFACEMI2) = {d} ..

Table 2.1. The data sels of the modules of Example 2.1

modules, However, this {irst decomposition is a useful
starting point for software comprehension becavse it allows
for global variables to be deall with as exchange parameters.
Finally dam-flow analysis (1] is exploited to refine data sets
and interfaces,

Given a flowgraph G= (N, E,), we denoie with N{(G)
and E{(G) the sets of nodes and edges in G, respectively. Leg
M = {my, .., my} be the set of modules of the Module
Tree and let P(m;) be the set of program units ¢lustered into
the module mj (i = 1, ..., n). We define the relation
MCALL ¢ M x M as follows:

MCALL = {(m;, mp)e MxM {3 ppe Plmy),
Pk € P(my) such that (py,) € E(CDAG))

1t is worth noting that py must be the root of the module
mj because of the construction of the dominance tree and
Module Tree. For each module mj € M we also define the
sets of immediate successors and predecessors on the
relation MCALL:
ISUCC(my) = {mj& M | (m;, mj) € MCALL}
IPRED(m) = {mje M | {m;, mj) & MCALL]

and the sets of successors and predecessors:
SUCC(m;) = ISUCCGm)) Um;eISUCC{mi) SUCC{my)
PRED{m;) = IPRED(m;) Umﬁ IPRED(m;} PRED(IHJ')

Similarly, for each module m;e M, let MTSUCC{my)
and MTPRED(m;) be the sets of successors angd
predecessors of my, respectively, on the Module Tree.
Finally, we use DREF(m;) to denote the set of varinbles
referenced in the module m; and MREF(D) 1 denole the set
ol modules referencing the variable d.

For each module m; we construct the following data
sels;
LOCAL{m;) is the set of variables local to mi, i.e.,
the set of the variables which are only referenced in the
module mj:
d € LOCAL(my) iff MREF(d) = {m;)

Fach variable d is considered global 10 the minimum
subtree of the Module Tree that contains modules in which
d is referenced;

34

- GLOBAL(my) is the set of variables which are global
1o the subtree of the Module Tree rooted in my;
d € GLOBAL{my) iff
B de LOCAL(m) and
2) MREF(d) ¢ ({m;] v MTSUCC(m;)
By my & MTSUCC(my)
not (MREF(d) < {({my) v MTSUCC(mh)

It is worth noting that each variable d € GLOBAL(m;)
can be considered local to m; and can be propagated to cach
module my referencing it through the interfaces of the
modules in the call chain that connects m; to mj:

- INTERFACE(m;) is the set of the variables potentially
belonging to the interface of my, i.c., the variables that
o module oy export/import 1/from another module m;
when (mj, miye MCALL:
d g INTERFACE(my) iff
I de GLOBAL(mj)
for some mj € MTPRED(m;)
2) gither my e MREFY or
dmg & SUCC(m) m MREF@)
The interface of the module my, the root of the module

iree, coincides with the interface of the origingd program, if
this exists,

and

and

Example 2.1, Let us consider the Module Tree in Figure
2.4 and suppose that variables a, b, ¢, 4, ¢ are referenced in
the original program:

MREF(a) = (M1, M2, M6, M10)
MREF(b) = (M3, M11)
MREF(c) = [M8)

MREF(d) = {M8, M12]

MREF(e) = {M2)

MREF(f) = (M8, M11}

Table 2.1 shows the recovered LOCAL, GLOBAL and
INTERFACE module data sets.

Intermodular data-flow analysis technigues help in
understanding the intermodular data relationships, by
detecting the module that defines the value of a global
variable and the module that uses it, thus enabling the data
sets and interfaces of the recovered modules to be refined. In

fact, it is possible that a variable v, which is global to a
subtree of the Module Tree, is assigned to the INTERFACE
set of some module m in the subtree. However this variable
counld be used as a logal variable in this module, ie.:
- every lime the value of the variable v is used in the
module a1 it is also first defined in m;
- no other module uses a value of the variable v which
is defined in the module m..

In this case, the variable v has to be mévcd fromihe “
ANTEREFACE 1o the LOCAL set of the module . Tet us

consider example 2.1, The variable [has been assigned o
the GLOBAL set of module M8 and 1o the INTERFACE
sct of module M11, However, if no definition of { in M§
reaches a use of Tin MI1 and no definition of { in MI1
reachos a use of £ in MBS, then [s used as local variable in
hoth MY and M11. This means that £is the same name for
two distinet data items and then i must be in the LOCAL
sets of both modules M8 and M1

3. Case study

The method for reconstructing the architecturat design of
a system has been validated by applying it in a set of case
studies, the results of which are shown in this section.

The set of case studies consisis of five COBOL programs
selected from a university's halls and residence information
system, The system consists of 103 programs and Y0 more
Copy and Screen files; the overall size of the system is
approximately 200 K fines of code, The soltware sysiem
was designed by adopting a lunctional decomposition
approach and respeciing the software reusability requisiie:
for insignee, functionalities that are frequently used in the
systeim are encapsulated in independent programs activated a
npumber of dmes through CALLS. Table 3.1 shows some
siructural characteristics for cach of the five programs
analysed and, in particular, the number of Lines of Code
{LOCy, the nomber of Paragraphs/Sections and the number
of different programs activated with o CALL instruction,

NAME L.O.C.| PARAGRAPHS | CALL
AUDIT 336 23 3
UTTRGRENT 43 b7 [
DAMAGE 1 (01 32 13
LETTGEN 352 EM [
ROGMANM 1667 43 12
TOTAL 3618 157 40

Table 3.1. Structural Characteristics of the analysed
programs

Although our method has been introdaced and discussed
withoui making reference either to the coding language or
the operating environment of the software systems, il now
becomes necessary to make a number of considerations that
are typically language-dependent. The characteristics of the
language require certain peints to be clarified regarding the
proposed model but without diminishing the model's
generality. Consequently, the first part of this section is

35

devoted to customising the proposed method for COBOL
systems, while the second part illustrates the resulls
obiained.

3.1. The architectural design recovery method
in COBOL environment

The model proposed for the reconstruction of the

“architectural design ol existing sofiware systems-is based on

the program call graph, The defirition of CG introduced

=refers“tothe-concept-of program-units-that “make-up-a -

program. However, while the identilication of these
program units for languages like Pascal, Fortran and C is
almost immediate as they coincide with syntactic structures
such as procedures, functions and subroutines, this 18 not
irue for COBOL. COBOL does not allow "procedure like"
units 1o be declured inside a program, which is monolithic,
Nevertheless COBOL makes it possible, through the
Procedure Division segmentation mechanism, for a progrim
io be functionally decomposed into severid sections which
can in turn be decomposed into & number of paragraphs,
The PERFORM verb is used to activate a paragraph or
section, or a scquence of paragraphs or sections. In
agreement with these considerations, 2 COBOL. program P
can be modelicd through a call graph defined as
CG= (N, E, 53, where:

s DD is the set of the performed Paragraphs, Scctions and
sequences of Paragraphs/Sections of P
« I describes the activation relation of program units in

PP by means of the PERFORM verb.

Defining the set PP oag the set of performed
paragraphs/sections means that the resulting call graph does
not represent transfers of control from one paragraph o
another due to the fall-through execuwtion or GO TO
statements. Consequently this model faithiully reproduces
the execution of those programs in which syntactic
mechanisms different from PERFORM have not been used
to transfer control between program units, and in which
GO TO statements have been used in a structured way, i.c.
without producing any jumps outside the performed
prOgram unil,

Apart from this characterization of the call graph adopted,
the modules and relative intermodular relationships are
identificd as described above. The way in which the data
referenced by each module my is distributed among the sets
LOCAL(n;), GLOBALGy) and INTERFACE(m;)} remains
unchanged,

3.2, Experimental resulits

In this section the application of the proposed method is
shown with reference o the "LETTGEN" program, one of
the five programs analysed, LETTGEN consists of 552
L.OC and is structured in 42 paragraphs. The call graph,
prodaced by a commercial code static analyser, and the
related dominance tree have been used Lo recover the
architectural design. Figures 3.1 and 3.2 show the call
graph and the recovered Module Tree respectively.

Figure 3.1. The CG for the LETTGEN program

ML

- - ’/
-
|a133| |n133] |JML:_‘

M4
. ‘uses relation
m———r
‘ M0 l [ﬁ_ﬁl is composed of relation
e

Figurs 3.2.The Module Tres for the LETTGEN program

In Figure 3.1 each performed paragraph/section has been
idenlified with a progressive number, while the noumberg
associated with each module in Figure 3.2 corresponds (o
the root of the subtree clustered in the module itself. In
Table 3.2 the composition of each module is shown. The
subseguent step is dedicated to the reconstruction, for cach
module m;, of the sets DREF(m;), LOCAL(m;),
GLOBAL(m;) and INTERFACE(n;). Table 3.3 shows the
GLOBAL, LOCAL and INTERFACE data sels for cach
module.

This is followed by the reconstruction of a data dictionary
which is achieved by assigning a meaning in the
application domain to cach data item. Meaning assignment
is a process that cannot be easily formalised as itis founded
on groups of clues and hints hidden in the code, such as the

34

MODULE
M1z (1)
M2= (2, 3)
Md= (4,5,6,7,8,9,10,11,12.14,15,16,17,18,19,20,
21.22,23.24.25.26.27,28.29,40)
M13= (13, 36)
M10= (30, 31)
M32=(32)
M33=(33)
M4z (34, 37, 38)
M33= (35, 39)
Md1= (41. 42)

COMPOSITION

Table 3.2, The composition of the modules in Figure 3.2

choice of variable names, the position of the declarations,
the comments inserted by the programmer, etc.. It often
happens that logically correlated data have declarations that
are physically close in the code and their names are assonant
with the nomenelature adopted in the application domain.
For example, Figure 3.3 shows the declaration of the data
item describing the identification number of a college room
conlained in the Working-Storage Section of the LETTGEN
program. The use of names that are very close to the
tenninology of the application domain makes it casy {0
understand the meaning of the ‘mormalised-room-number’
data ilem.

text-lensth

Ji%1 INTERTFACE(MD LOCAL(M) GLOBAL(M)

M1 wene s tetter-pir, letter-record, letter-file, text-file,
masier-record, input-room-number, error-
parameter, input-address-lines, text-pir,
text-length. svstem-parameter-block

M2 Fetter-ptr, text-file, text-pir, diff e

letier-ptr, letter-file, text-record, text-ptr,
master-record, input-room-number, Faput-
address-lines, error-parameter, text-length

text-parameter, word-buffer,
‘full-offer-room, pericd-cound,
teanpdate, temp-value,
femp-amount. parnptr

issing-record, sssembly-bulfer

missine-record

MI3 | aszemibly-bufTer. svsteni-parameter-hlock full-date e
M30 | tetter-pir. letier-record. assemblyv-huffer baffer-ntr, len [one
M32 | letter-record, lenes-file sves aeas
M33 | feter-pir, letter-recornd s o
M34 | ieher-pir, letierrecord, letter-fife, master | Is-fexi-file-name, eof-flag, -

record, inpui-room-number, texi-file, text-file-name, letter-file-pame

error-parameter, input-address-lines, texi-

[, text-lensth, svstem-parameter-hlock
MA3 [letter-record, Tetter-file. text-{ia e e
M4l | fetter-record, letter-file, master-record, s o

Tabie 3.3. Data set partitions for the LETTGEN program

1 ised-room~number .
k! in.
5
5 onrnersom-no
3 nrn-place

Figure 3.3. A sample code fragment

It was now possibic 1o tackle the problem of identifying
the functionality performed by each module and to deaft a
series of functional specifications in natural language {or
each of them. This required the specification of the
funcionality performed by each subtree in the Module Tree,
abstracting it from the ones performed by its component
modules. This procedure was performed using a boltom-up
techuique: first the functionality porfonned by the deepest
evel subtrees were identified, siariing from the leaf
modules; this gradually made it possible to rise in level up
to the root of the Moduaie Tree. This reduces the
comprefiension effort as the process is caried out on g
quantity of code that is smaller than the whole program;
morcover, the comprehension process can also be carried
out in paralle] for the various sublrees, Table 3.4 describes
the funciionalities obtained for the modules belonging to
the subtree with the root M4, and the global functionality
associated to the M4 module itself.

The experiment effectively shows the validity of the
proposed method. This ean be seen by the fact that once the
Module Tree has been obiained and the data has been
partiiongd among the various modules, the process for the
assignment of meaning o each data item and module was
considerably facilitated compared to the effort that would
Ive been required if the process had been conducted on the
whole system as a single entity. It was also possible to
conduct this process in parallel by svitably proning the
Module Tree. The experiment showed that pruning the
Module Tree vertically (ie., depth first visiting severat

37

MODULE FUNCTIONALITY

M Prints a line of a letter

M3 Uonverts and prinis the curremt date

Mg iJalcizs blanks {rom ihe fail of a string

M Heads e master file and prints the letter body

Table 3.4. Summary of the functionalities for module M4

subtrees of the Module Tree in parallel) was more effective
than horizomtal pruning.

4. Conclusions

The work described in this paper addresses the problem of
understanding a software system and focuses in particalar on
the comprehension of the system architectural design. A
method has been presented to reconstruct the architecture of
a system and represent it in the form of a structure chart
which we call module tree. The method assumes the system
was originally designed with a functional decomposition
approach, and atlempis (o aggregaie language program units
into modules whenever these implement a functionality of
the system. The system is represented in the form of a
directed graph describing the activations of program units,
and the concept of node dominance on a directed graph is
exploited 10 aggregale program units into modules, and to
derive intermodular relationships from the unit activations.
Two types of intermodular relationship are singled out,
namely the "pses” and “is composed of” relationships.
Finally, the system data set is partitioned into sets of data
ilems which are local o a given module and sets of data
items which are global to the modules belonging 1o a
subtree of the suructure chart. The analysis of both these
partitions and the activations of the program units forming
a module allows the set of dala items potentially belonging
to the module interface o be identified.

The architectural design this method produces does not
reflect either the characteristics of the coding language or
the limitations of the operating environment. While this is
an imporiant feature in the comprehension of the system, it
implics that the recovered architecture cannot be directly
assumed as a basis to re-modularise the system. In fact,
remodularising the system requires firstly mapping the

module Jocal data set and interfaces onto the programming . . .

language, and then possibly modifyving the recovered
architeciural design 1o take into account the limitations of
the operating environment,

For example, if the aim is 10 modularise a COBOL
systerm on the basis of the architectural design recovered by
our meihod, the sets of local, global and interface data liems
have w0 be mapped onto File Section, Working Sterage
Section and Linkage Section, The following two equations
define the Working Storage Section - denoted WS{m;) - and
tise Linkage Section - denoted LE(n;) - of each module my;
belonging (o the module tree of a COBOL sysiem:

WS(m;) = LOCAL(m;) v GLOBAL(m;)
LK(my) = (DREF(my) Umje 1SUCCm,) RO\ WS(my)

Of course, each module will have its own Input Output
Section and File Section in which the files will be
described. To illustrate the problem deriving from the
limitations of the operating eavironment, let us consider
the case in which the recovered architecture includes
modules that access one and the same file, This could be a
problem whenever the operating environment docs not
allow files o be shared mnong modules, as in the case of
OS/VS COBOL.

Acknowledgements

We wish o thank professors Andelio Clnitile and Ugo De
Carlind for thelr precious suggestions,

References

{11 AN, Aho, R. Sethi and 1.D. Uliman, “Compilers,
Principles, Techniques, and Tools”, Addison-Wesley,

1986.

38

i6}
{71
i8]

{10}

[11]

[z}

[13]

[14]

P. Antonini, P. Benedusi, G, Cantone and A. Cimitile,
“Maintenance and Reverse Engineering: Low-Level
Design Documents Production and Improvement large
application programs”, Proc. of Conference on Software
Maintenance, Austin, Texas, IEEE Comp. Soc. Press,
1987, pp. 91-100.

T.1. Biggerstaff, B. G. Mithander and D. Webster, “The

Concept Assigament Problem in Program
- Understanding”;— Proc.. of - the-15th--International -
Conference on Software Engineering, Baltimere,

Maryland, 1993, pp. 482-497.

A Cimitile and G. Visaggio, “Software Salvaging and The
Dominance Tree”, Int. Rep. PF-CNR "SICP” Sp6R77,
1992, Dep. of "Informatica e Sistemistica” - Universily
of Naples. To appear on The Journal of Svstems and
Seftware,

1L Cross 1T, "Reverse Engineering Control Structure
Disgrams”, Proc. of Working Conference on Reverse
Epginzering, Beltimoere, Maryland, TEEE Comp. Soc.
Press, 1993, pp. 107-1 16,

C. Ghezzi, M, Jazayeri and D, Mandrioll, “Fundamentals
of Software Engineering”, Prentice Hall Pub., 1991,
M.S. Hecht, "Flow Analysis of Compuier Programs”
Elsevier North-Holland, New York, 1977,

L. Markosian, P. Newcomb, R. Brand, S. Burson and T.
Kitzmiller, “Using an Enabling Technology io
Reengineer Legacy Systems™, Conmm. of ACM, vol. 37,
no. 3, May 1994, pp. 58-70.

J.Q. Ning, A. Engberts and W. Kozaczynski,
“"Recovering Reuszble Components from lLegacy
Systems by Program Segmentation”™, Proc. of Working
Conference on Reverse Engineering, Baltimore,
Muaryland, IEEE Comp. Soc. Press, 1993, pp. 64-72.

A, Quilic, “A Memory-Based Approach to Recognising
Programming Plans”, Comm of ACM, vol. 37, no. 5,
Muay 1994, pp. 854.93,

Y, Rajlich, N. Damaschinos, P. Linos and W. Khorshid,
"VIFOR: A Tool for Software Maintenance”, Software
Practice and Experience, vol. 20, no. 1, Janoary 1990,
pp. 67-77.

C. Rich and L. M, Wills “Recognizing a Program's
Design: A Graph-Parsing Approach”™, JEEE Software, vol.
7, no. 1, Jan. 1990, pp. 82-8%.

H.M. Sneed and G. Jandrasies, “Seftware Recycling”,
Proc. of Conference on Sofvwvare Maintenance, Ausun,
Texss, IREE Comp. Soc. Press, 1987, pp. 82.50.

H.M. Sneed and E, Nyary, “Downsizing Larpe
Application Programs”, Proe. of Conference on Software
Maintenance, Montreal, Canada, 1IEEE Comp. Soc. Press,
1993, pp. 110-119.

A Documentation-related Approach to Object-oriented Program Understanding

L H. Eizkorn and C.G. Davis

s The University of Alabama in Huntsville

Abstract

Object-oricited code is considered to be inherently
more rewsable than functional decomposition code;
however, abject-oricated code can suffer from a program
understanding standpoint since good obfect-oriented
style seems to require a large number of small methods.
Hence code for a particilar task may be scaticred
widely. Thus good semantics based lools are necessary.
This paper describes an appreach to object-oriented
code understanding that focuses largely on informal
linguistic aspects of code, such as comments and
identifiers.
Kevwords: obfect-orienied

program understanding,

software, software reuse, soffware maintenance.

1. Introduction

The use of the object-oriented paradigm should result
in the poals of software esgincering such as
maintainability and reussbility being more easily
achieved, This is duc to the encapsulation, inheritance,
and polymorphism aspecis of the object-oriented
paradigm. Studies have tended to show that reusability
(7, and maintenance {6] are beiter achieved with
objecl-oriented code than with functional decomposition
code. However, object-oriented code, due to the very
aspects that make it desirable, tends to suffer from the
wide scattering of the code that performs a parlicular
(even a fairly simple) task. It is considered to be good
object-oriented programming style to write small member
functions [10]. This results in an objeci-oriented system
consisting of a large number of small moduoles. Also, by
the use of inheritance, a class may inherit one or more
classes, with associated methods. Often, these inherited

0-8186-5547-6/94 304.00 © 1984 IEEE

39

classes way be inherited by more than one derived class,
and are not always defined focally. This tends to
underline the need for good. semantically-based tools for
object-oriented code [12]. Some structure-oricoted tools
for C++, for example, do exist, For example,
Together/C++ (by Object International, Inc. Austin
Texas) provides an object model in one window, with
associated C++ code in another window. If one window
is edited, updated
automatically. This type of tool has uscs both in

then the other window s

object-oriented sofiware development, and in
object-oriented software maintenance and reuse.
However, there is sttt a need for domain-based

understanding tools that would provide more than just
the structure of the code, but also a domain-based
understanding of the program concepts.

2. Background

Our primary rescarch area is the metrics-based aulo-
mated extraction of reusable from
object-oricnted code. A workable program understanding
approach is an infegral part of the extraction process.
There have been several knowledge-based approaches 1o
program understanding. These approaches differ in the
understanding methedologies, and in the prograum speci-
fications produced. Some of these approaches are more
autornated than others -- most require user intervention
at some point. Caldiera and Basili [4] provide an identifi-
cation methodelogy that automatically extracts
candidales for reuse. Then, in a following component
qualification phase, a domain expert analyzes and re-
cords the meaning of each candidate component. An
interactive (ool (the specifier) employed by the domain
expert assists in the formal specification of the candidate

components

component. Our approach is similar to Caldiera and

Basili's in that both approaches are metrics-based, and
both include an automatic candidate component exirace
tor. However, our understanding phase, instead of
attepting formal specification, provides a heuristic,
knowledge-based, concept-recognition approach 1o pro-
gram understanding of the candidate componeius, Our
system 15 called the PATRicia (Program Aualysis Tool
for Reuse) system. The concept-recognition module is
known as the CHRiS {Conceplual Hierarchy for Reuse
cuploying Semantics) module, A block dingram of the
PATRIcia system is provided in Figure 1. The resi of our
discussion is related to the approach cmploved by the
CHIUS module.
Typically, the more automated versions of the heuris-
program understanding approaches consist of
dentifving typical program components as being compa-
rable 1o those program compenent plans located in a
progrun-knowiedge base, and deriving a specification

tic

that is based on plans associated with the program com-
ponent plans that were identified. Rich and Wills {13]
take a graph-parsing approach to program understand-
ing. In this appreach, the program is first transformed
into a flow graph. This flow grapl is then parsed using
progranyming-knowledge plans (grammar roles stored as
sraphs), and o design tree (consisting of progriom compo-
nenis) is produced. A natural languape description
associnted with the programming-knowledge plans is
then produced. WNing and Harandi [3] (11 ke 3
hewristic-based concepl recognition approach This ap-
proach uses programming-knowledge plans, and 2
mechanism catled interval logic, to rccognize concepts at
various levels (structure-level concepts, function-level
concepts, eic.), and to formulale abstract concepts at
higher fevels. A natural language description associaied
with the progranmming-knowledge plans is then pro-
duced. More recenily, Koznczynski, Ning, and Engberis
8] used a transformation approach fo formulnie higher
level concepts frony lower level concepts, Low level con-
cepts are represenicd by absiract syniax trees. Production
rules are used o recognize language concepts. These pro-
gram cencepls arc combined io form more abstract
concepts. Note that all of these approaches (except
Caldiera and Basili's, which depends on a human domain
expert), look only at the code itsell {(or a version of the
code translated into an interinedinte formy), and ignore
the comuments, identifiers. and related documentation.

Biggerstafl, Mitbander, and Webster [2] [3] take a differ-
ent approach that employs informal information --
keywords embedded in comments, idenlifier names, and
design documents -- as well as code analysis. In this sys-
tem a wser would first identify a suggestive identifier
name. Then the user requests @ browser view of all func-
tions relaled to this identifier. The idenlifiers from these
functions give additional information. Various other
ools provide a pattern of relgtionships thai gives addi-
tional information. A concept assignment can then be
applied. Further aualysis can then ocour using this iden-
tificd concepi. This approach can be applied easily o
domuin-related concepts, whereas the earlier approaches
discussed {except Caldiern and Basili's, which relied on 2
damain tended 1o identify primarnidy
programning-oricnied concepls, or algorithms. Bigger-

engineer)

staff claims that there is g paradigm-shift when moving
from programming-oriculed concepls io domain- or hu-
man- related concepts, and not just a simple aggrepgation
of programming concepis to form a higher fevel domain
concept.

3. Object-oriented program understanding

The proposed approach for object-gpriented code
understanding cmplovs methods derived from the
Biggerstafl’ approach. a5 well as the programming
concepts approach. We think that a belicr concept
recognition engine could be buil that would employ
comment and ideniificr recogniion initially to derve
indtial tentative concept understanding, then apply o
programuning-concepl recognition approach o identily
programming-concepts related informalion within the
previously tentatively identified conecptl. (Note that
Biggerstall {2 {3] hias recommended a similar approach).
The sccondary undersianding cycle would serve muitiple
purposes. First, i would enable parual-filling of
previously partially undersiood concepis. Second. it
would serve as a check o make ceriain that the initial
tentative concept understanding had not been mistaken.
The primary geal is to achieve, as nearly as possible, a
tolally avtomated understanding system, with very little
human input required. This is beneficial in our primary
research area of interest, the aulomatic extraction and
cateporization of reusable code components. If good
auiomation could be achieved, and inlermediate resulls

Software package candidate
; component
of interest
storage

candidate
Rt Ui

oopamdidates i T
compuimt

“Component=:{:

Extractor

clasg hicrarchy
class couplings

dosin
concepts
Base

class hierarchy
chuss couplings

Metric
Analyzer

matrix
template

reusable
compaonents

understood

understood
candidaiz

{.‘QE!}FOHCI]I

destgn metrics/

not-design meteics

Figure 1. PATRicia System

could be reported, then this process could operate in the
background, and any extra processing lime required
would not be as important, Also. when discussing
object-oriented reuse, most of the programming-related
concept understanding would be performed on member
functions, which are typically short [10}. Thus some
intermediate resuits could be reported fairly quickly.
Some of the issues involved in combining the two
understanding approaches are:
1) Comment/identifier understanding (in an object--
oriented system, sce later dis